Theoretical Review on Exotics Charmonium

M. Nielsen Universidade de São Paulo

Charm 2010

Beijing/China 21-24/10/2010

Charmonium spectroscopy before the B-factories

Charmonium spectroscopy after the B-factories

 J^{PC}

X(3872)	Y(4260)	Z ⁺ (4430)
hep-ex/0309032	hep-ex/0506081	arXiv:0708.1790
Y(4360)	Y(4660)	Z ₁ ⁺ (4050)
hep-ex/0610057	arXiv:0709.3699	arXiv:0806.4098
Z ₂ +(4250)	Y(4140)	X(4350)
arXiv:0806.4098	arXiv:0903.2229	arXiv:0912.2383

X(3872)	Y(4260)	Z ⁺ (4430)
$B^{\pm} ightarrow K^{\pm}(J/\psi\pi^{+}\pi^{-})$	$e^+e^- \to \gamma_{IRS}(J/\psi\pi^+\pi^-)$	$\bar{B}^0 \to K^-(\psi'\pi^+)$
Y(4360)	Y(4660)	Zı ⁺ (4050)
$e^+e^- \to \gamma_{IRS}(\psi'\pi^+\pi^-)$	$e^+e^- \to \gamma_{IRS}(\psi'\pi^+\pi^-)$	$\bar{B}^0 \to K^-(\chi_{c1}\pi^+)$
Z ⁺ ₂ (4250)	Y(4140)	X(4350)
$\bar{B}^0 \to K^-(\chi_{c1}\pi^+)$	$B^+ \to K^+(\phi J/\psi)$	$\gamma\gamma ightarrow (\phi J/\psi)$

X(3872)	Y(4260)	Z+(4430)
J ^{PC} =1++	J ^{PC} =1	J ^{PC} =?
3871.4±0.6	4252±7	4433±14
Γ<2.3 MeV	Γ=88±24	Γ=44±17
Y(4360)	Y(4660)	Z ₁ +(4050)
J ^{PC} =1	J ^{PC} =1	J ^{PC} =?
4361±13	4664±12	4051±14
Γ=74±18	Γ=48±15	Γ=82±21
$Z_2^+(4250)$	Y(4140)	X(4350)
$J^{PC} = ?$	J ^{PC} =? ⁺	J ^{PC} =? ⁺
4248 ± 44	4143±3	4350±5
$\Gamma = 177 \pm 54$	Γ=11.7±8	Γ=13±9

BaBar Collaboration arXiv:1005.5190

the 3π mass distribution strongly favors P-wave $\Rightarrow J^{PC} = 2^{-+}$

s / 10 MeV/c²

BaBar Collaboration arXiv:1005.5190

the 3π mass distribution strongly favors P-wave $\Rightarrow J^{PC} = 2^{-+}$

Burns et al. (arXiv: 1008.0018): the production cross section at CDF is predicted to be much smaller than that observed

BaBar Collaboration arXiv:1005.5190

the 3π mass distribution strongly favors P-wave $\Rightarrow J^{PC} = 2^{-+}$

Burns et al. (arXiv: 1008.0018): the production cross section at CDF is predicted to be much smaller than that observed

Kalashnikova, Nefediev (arXiv:1008.2895): stablished properties of the X(3872) are in conflict with the 2⁻⁺ assignment

Common features

- All these states decay into J/ ψ or $\psi(2S) \rightarrow$ they have a $c\overline{c}$ pair in their quark components
- Their masses are not compatible with quark model calculations for charmonium states
- Absence of open charm production in their decays is inconsistent with $c\bar{c}$ interpretation
- Candidates for exotic (not quark-antiquark) states

masses and widths of these states are not consistent with any of the 1-charmonium states (Zhu, IJMPE17(08)283)

X(3872) DD* molecular state tetraquark state mixed charmonium- -molecular state threshold effect	$\begin{array}{c} Y(4260) \\ \text{charmonium hybrid} \\ J/\psi - f_0 \text{ bound state} \\ \text{tetraquark state} \\ D_0 D^* \text{ molecular state} \\ S \text{ wave threshold effect} \end{array}$	Z ⁺ (4430) D ₁ D [*] molecular state baryonium state tetraquark state threshold effect
Y(4360) charmonium hybrid	Y(4660) charmonium hybrid ψ '-f ₀ bound state tetraquark state	Z1 ⁺ (4050) D [*] D [*] molecular state hadro-charmonium not a resonance
$Z_2^+(4250)$ D ₁ D molecular state	Y(4140) D _s *D _s * molecular state tetraquark state not a resonance	X(4350) D _s *D _{s0} * molecular state tetraquark state P-wave charmonium mixed charmonium- -molecular state

$$\sum_{X \to J/\psi \pi^+ \pi^- \pi^0} \sim 1 \quad \implies \text{ strong isospin and G}$$

$$X \to J/\psi \pi^+ \pi^- \quad \sim 1 \quad \implies \text{ strong isospin and G}$$

$$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$$

X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Tornqwist (ZPC61(94)) predict a $\overline{D}D^*$ molecule with $J^{PC} = 0^{-+}$ or 1^{++} Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state

$\sum_{X \to J/\psi \pi^+ \pi^- \pi^0} \sim 1 \quad \implies \text{ strong isospin and G}$ $X \to J/\psi \pi^+ \pi^- \sim 1 \quad \implies \text{ strong isospin and G}$ parity violation

$$M(D^{*0}\bar{D}^0) = (3871 \pm 1)$$

X(3872): molecular $(D^{*0}\overline{D}^0 + \overline{D}^{*0}D^0)$ state (Swanson, Close, Voloshin, Wong ...) Tornqwist (ZPC61(94)) predict a $\overline{D}D^*$ molecule with $J^{PC} = 0^{-+}$ or 1^{++} Maiani et al. (PRD71 (05)) tetraquark $J^{PC} = 1^{++}$ state

molecular and tetraquark interpretations differ by the way quarks are organized in the state

QCD Sum Rule

Fundamental Assumption: Principle of Duality

$$\Pi(q)=i\int d^4x~e^{iq.x}~\langle 0|T[j(x)j^\dagger(0)]|0
angle$$

Theoretical side Phenomenological side

QCD Sum Rule

Fundamental Assumption: Principle of Duality

$$\Pi(q) = i \int d^4x \ e^{iq.x} \ \langle 0|T[j(x)j^{\dagger}(0)]|0 \rangle$$
Theoretical side Phenomenological side
Good Sum Rule \Rightarrow Borel window such that:

- pole contribution > continuum contribution
- good OPE convergence
- good Borel stability

QCD sum rules calculation for X (3872)

Matheus, Narison, MN, Richard: tetraquark current (PRD75(07)014005)

$$j_{\mu} = \frac{i\epsilon_{abc}\epsilon_{dec}}{\sqrt{2}} [(q_a^T C\gamma_5 c_b)(\bar{q}_d\gamma_{\mu}C\bar{c}_e^T) + (q_a^T C\gamma_{\mu}c_b)(\bar{q}_d\gamma_5C\bar{c}_e^T)]$$
$$m_X = (3.92 \pm 0.13) \text{ GeV}$$

Lee, MN, Wiedner: $D^0 \overline{D}^{*0}$ molecular current (arXiv:0803.1168)

$$\begin{split} j_{\mu}^{(q,mol)}(x) &= \frac{1}{\sqrt{2}} \bigg[\left(\bar{q}_a(x) \gamma_5 c_a(x) \bar{c}_b(x) \gamma_{\mu} q_b(x) \right) - \left(\bar{q}_a(x) \gamma_{\mu} c_a(x) \bar{c}_b(x) \gamma_5 q_b(x) \right) \bigg] \\ \\ m_X &= (3.87 \pm 0.07) \text{ GeV} \end{split}$$

QCD sum rules calculation for X (3872)

Matheus, Narison, MN, Richard: tetraquark current (PRD75(07)014005)

$$j_{\mu} = \frac{i\epsilon_{abc}\epsilon_{dec}}{\sqrt{2}} [(q_a^T C\gamma_5 c_b)(\bar{q}_d\gamma_{\mu}C\bar{c}_e^T) + (q_a^T C\gamma_{\mu}c_b)(\bar{q}_d\gamma_5C\bar{c}_e^T)]$$
$$m_X = (3.92 \pm 0.13) \text{ GeV}$$

Lee, MN, Wiedner: $D^0 \overline{D}^{*0}$ molecular current (arXiv:0803.1168)

$$j_{\mu}^{(q,mol)}(x) = \frac{1}{\sqrt{2}} \left[\left(\bar{q}_a(x) \gamma_5 c_a(x) \bar{c}_b(x) \gamma_\mu q_b(x) \right) - \left(\bar{q}_a(x) \gamma_\mu c_a(x) \bar{c}_b(x) \gamma_5 q_b(x) \right) \right]$$
$$m_X = (3.87 \pm 0.07) \text{ GeV}$$

Problem: decay width $X \rightarrow J/\psi\pi\pi$ ~ 50 MeV (Navarra, MN, PLB639 (06)272)

$$\left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{exp} = 3.4 \pm 1.4, \quad \left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{mol} \sim 4 \times 10^{-3}$$

production rate (Monte Carlo simulation) for a pure molecule should be two orders of magnitude smaller than exp. (Bignamini et. al., PRL103(09)162001)

$$\left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{exp} = 3.4 \pm 1.4, \quad \left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{mol} \sim 4 \times 10^{-3}$$

production rate (Monte Carlo simulation) for a pure molecule should be two orders of magnitude smaller than exp. (Bignamini et. al., PRL103(09)162001)

indication of a significant mixing of the $c\bar{c}$ and $D_0\bar{D}^{*0}$ molecular components

$$\left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{exp} = 3.4 \pm 1.4, \quad \left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{mol} \sim 4 \times 10^{-3}$$

production rate (Monte Carlo simulation) for a pure molecule should be two orders of magnitude smaller than exp. (Bignamini et. al., PRL103(09)162001)

indication of a significant mixing of the $c\bar{c}$ and $D_0\bar{D}^{*0}$ molecular components

Meng, Gao, Chao (arXiv:hep-ph/0506222) necessity of mixing

$$\left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{exp} = 3.4 \pm 1.4, \quad \left(\frac{X \to \psi(2S)\gamma}{X \to J/\psi\gamma}\right)_{mol} \sim 4 \times 10^{-3}$$

production rate (Monte Carlo simulation) for a pure molecule should be two orders of magnitude smaller than exp. (Bignamini et. al., PRL103(09)162001)

indication of a significant mixing of the $c\bar{c}$ and $D_0\bar{D}^{*0}$ molecular components

Meng, Gao, Chao (arXiv:hep-ph/0506222) necessity of mixing

mixed charmonium-molecular state (arXiv:0907.2683)

$$j^X = \cos(\alpha) \ [c\bar{c}] + \sin(\alpha) \ j^X_{mol}$$

 $\label{eq:mx} \begin{array}{l} m_X = (3.77 \pm 0.18) \; GeV \\ 5^0 \leq \alpha \leq 13^0 \end{array}$

Decay width $X \rightarrow J/\psi V$

$$\Pi_{\mu\nu\alpha}(p,p',q) = \int d^4x d^4y \ e^{ip'.x} \ e^{iq.y} \Pi_{\mu\nu\alpha}(x,y)$$

 $\Pi_{\mu\nu\alpha}(x,y) = \langle 0|T[j^{\psi}_{\mu}(x)j^{V}_{\nu}(y)j^{X^{\dagger}}_{\alpha}(0)]|0\rangle$

$$\Pi_{\mu\nu\alpha}(x,y) = \frac{\langle \bar{u}u \rangle}{2\sqrt{6}} \cos(\theta) \Pi^{c\bar{c}}_{\mu\nu\alpha}(x,y) + \sin(\theta) \Pi^{mol}_{\mu\nu\alpha}(x,y)$$

$$\Pi^{(phen)}_{\mu\nu\alpha}(p,p',q) \longrightarrow \langle J/\psi(p')V(q)|X(p)\rangle$$

 $\langle J/\psi(p')V(q)|X(p)\rangle = g_{X\psi V}(Q^2)\varepsilon^{\mu\nu\rho\sigma}p_{\mu}\varepsilon^*_{\rho}(p')\varepsilon^*_{\sigma}(q)\varepsilon_{\nu}(p)$

$$\label{eq:relation} \begin{split} m_{\text{X}} &= (3.77 \pm 0.18) \; \text{GeV} \\ &\Gamma &= (9.3 \pm 6.9) \; \text{MeV} \\ &5^0 \leq \theta \leq 13^0 \end{split}$$

Decay width $X \rightarrow J/\psi \Upsilon$

(arXiv:1006.0467) $\Pi_{\mu\nu\alpha}(x,y) = \langle 0|Tj^{\psi}_{\mu}j^{\gamma}_{\nu}j^{X^{\dagger}}_{\alpha}]|0\rangle$

$$j^{\gamma}_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d + \frac{2}{3}\bar{c}\gamma_{\mu}c$$

 $\frac{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^+\pi^-)} = 0.19 \pm 0.13, \quad 5^0 \le \theta \le 13^0$

$$\frac{\Gamma(X \to J/\psi \gamma)}{\Gamma(X \to J/\psi \pi^+ \pi^-)}\Big|_{exp} = 0.14 \pm 0.05$$

QCDSR → X is a mixed charmonium-molecular state

$Y(J^{PC} = 1^{--})$ family

, Lattice (PRL82(99)): $M\sim4200\,{
m MeV}$

charmonium hybrids:

 $^{
m imes}$ flux tube (Barnes et al. (PRD52(95)) $M \sim 4200\,{
m MeV}$

more recent lattice (EPJA19(04)1) and string models calculations (Kalashnikova et al., PRD77(08)054025) \Rightarrow M ~ 4400 MeV

charmonium hybrid \Rightarrow dominant decay mode $D\bar{D}_1$

(Close & Page, PRLB628(05)215)

, Lattice (PRL82(99)): $M\sim4200\,{
m MeV}$

charmonium hybrids:

<code>`flux tube</code> (Barnes et al. (PRD52(95)) $M\sim4200\,{
m MeV}$

more recent lattice (EPJA19(04)1) and string models calculations (Kalashnikova et al., PRD77(08)054025) $\Rightarrow M \sim 4400 \text{ MeV}$

charmonium hybrid \Rightarrow dominant decay mode $D\overline{D}_1$ (Close & Page, PRLB628(05)215)

Maiani et al. (PRD72 (05)) tetraquark $J^{PC} = 1^{--}$ states:

 $Y(4260) = ([cs]_{S=0}[\bar{c}\bar{s}]_{S=0})$ P-wave

Ebert et al. (EPJC58(08)) = such state would have M ~ 4450 MeV

, Lattice (PRL82(99)): $M\sim4200\,{
m MeV}$

charmonium hybrids:

Y(4260)

 $^{
m imes}$ flux tube (Barnes et al. (PRD52(95)) $M \sim 4200\,{
m MeV}$

more recent lattice (EPJA19(04)1) and string models calculations (Kalashnikova et al., PRD77(08)054025) = M ~ 4400 MeV

charmonium hybrid \Rightarrow dominant decay mode $D\overline{D}_1$ (Close & Page, PRLB628(05)215)

Maiani et al. (PRD72 (05)) tetraquark $J^{PC} = 1^{--}$ states:

 $Y(4260) = ([cs]_{S=0}[\bar{c}\bar{s}]_{S=0})$ P-wave

Ebert et al. (EPJC58(08)) = such state would have M ~ 4450 MeV

baryonium $\Lambda_c - \Lambda_c$ state (Qiao, PLB639(06))

S-wave threshold effect (Rosner, PRD74(06))

molecular state (Ding, Liu et al., Yuan et al., MN et al.,...)

manifestations of Regee zeros (Beveren et al., arXiv:0811.1755)

QCD sum rules calculation for $Y(J^{PC} = 1^{--})$

tetraquark state (arXiv:0804.4817)

$$j^{Y} = [cs]_{S=1}[\bar{c}\bar{s}]_{S=0} + [cs]_{S=0}[\bar{c}\bar{s}]_{S=1}$$

 $m_Y = (4.65 \pm 0.10)$ GeV in good agreement with Y(4660)

molecular state (arXiv:0804.4817)

$$j^Y=D_0ar{D}^*+ar{D}_0D^*$$

 $m_Y = (4.27 \pm 0.10)$ GeV in good agreement with Y(4260)

other states {

$$D_s^* \overline{D}_{s0} \Rightarrow m = (4.42 \pm 0.10) \text{ GeV}$$

 $D\overline{D}_1 \Rightarrow m = (4.12 \pm 0.09) \text{ GeV}$
 $[cq]_{S=0}[\overline{c}\overline{q}]_{S=1} \Rightarrow m = (4.49 \pm 0.11) \text{ GeV}$

PRL100(08)142001

charged state \Rightarrow not a $c\overline{c}$!

arXiv:0905.2869

no conclusive evidence for the existence of Z⁺(4430) seen by Belle

Events /

PRL100(08)142001

charged state \Rightarrow not a $c\overline{c}$!

arXiv:0905.2869

searched Z⁻(4430) in 4 decay modes:

no conclusive evidence for the existence of Z+(4430) seen by Belle

threshold effect in the D_1D^* channel Rosner, arXiv:0708.3496

four-quark radial excitation with $J^{PC} = 1^{+-}$ Maiani, Polosa & Riquer, arXiv:0708.3997

 $Z^{+}(4430)$

radial excitation of $\Lambda_c - \Sigma_c^0$ bound state Qiao, arXiv:0709.4066

 D_1D^* molecular state with $J^P = 0^-, 1^-, 2^-$ Meng & Cheng, arXiv:0708.4222

QCD sum rules calculation for $Z^+(4430)$ tetraquark states with $J^P = 0^-, 1^-$ (arXiv:0807.3275) $j_Z(1^-) = [cu]_{S=1}[\bar{c}d]_{S=0} + [cu]_{S=0}[\bar{c}d]_{S=1}$ $m_Z = (4.84 \pm 0.14) \,\, {
m GeV}$ $j_Z(0^-) = [cu]_{S=0}[\bar{c}d]_{S=0}$ $m_Z = (4.52 \pm 0.12)$ GeV molecular state with $J^P = 0^-$ (PLB661(2008)28) $j_Z = D_1^0 D^{*+} + D_1^+ D^{*0}$ $m_Z = (4.40 \pm 0.10)$ GeV in good agreement with $Z^+(4430)$

Better agreement with the molecular model

$Z_1^+(4050)$ and $Z_2^+(4250)$

$M(\bar{D}^{*0}D^{*+}) \sim 4020 \text{ MeV}$

 $M(\bar{D}_1^0 \bar{D}_1^+) \sim 4285 \text{ MeV}$

c1

earrowsstrong atraction in $D^* ar{D}^*$

Liu et al. (arXiv:0808.0073)

 ${}^{\searrow}Z_1^+(4050) \Rightarrow D^*ar{D}^*$ state, $J^P=0^+$

Ding (arXiv:0905.1188): Z₁⁺(4050) molecular interpretation not favored

QCD sum rule (arXiv:0808.0690) $\bar{D}^*\bar{D}^*$ molecule with $J^P=0^+$ \bar{D}_1D molecule with $J^P=1^-$

 $M_{D^*D^*} = (4.15 \pm 0.12) \text{ GeV} > (D^*\bar{D}^*)_{thre}$

 $M_{D_1D} = (4.19 \pm 0.22) \text{ GeV} < (\bar{D}_1D)_{thre}$

\prec strong atraction in $D^* ar{D}^*$

Liu et al. (arXiv:0808.0073)

 ${}^{\searrow}Z_1^+(4050) \Rightarrow D^*ar{D}^*$ state, $J^P=0^+$

Ding (arXiv:0905.1188): Z₁⁺(4050) molecular interpretation not favored

QCD sum rule (arXiv:0808.0690) $\bar{D}^* \bar{D}^*$ molecule with $J^P = 0^+$ $\bar{D}_1 D$ molecule with $J^P = 1^-$

 $M_{D^*D^*} = (4.15 \pm 0.12) \text{ GeV} > (D^*\bar{D}^*)_{thre}$ $M_{D_1D} = (4.19 \pm 0.22) \text{ GeV} < (\bar{D}_1D)_{thre}$ including the width (Lee et al., PRD78(08)): $M = (4.25 \pm 0.15) \text{ GeV}$ $40 \le \Gamma \le 60 \text{ MeV}$ consistent with $Z_2^+(4250)$

(i) $c\bar{c}$ → large decay width into open charm pair Liu & Zhu (arXiv:0903.2529): $D_s^* \bar{D}_s^*$ molecular state, $J^{PC} = 0^{++}$ or 2^{++} Ding (arXiv:0904.1782): boson exchange model supports $D_s^* \bar{D}_s^*$ Stancu (arXiv:0906.2485): tetraquark $cs\bar{c}\bar{s}$ 1^{++} state Beveren et al. (arXiv:0906.2278): is not a resonance

Wang (arXiv:0903.5200) QCD sum rules Y(4140) Xhang, Huang (arXiv:0905.4178)

(i) $c\bar{c}$ → large decay width into open charm pair Liu & Zhu (arXiv:0903.2529): $D_s^* \bar{D}_s^*$ molecular state, $J^{PC} = 0^{++}$ or 2^{++} Ding (arXiv:0904.1782): boson exchange model supports $D_s^* \bar{D}_s^*$ Stancu (arXiv:0906.2485): tetraquark $cs\bar{c}\bar{s}$ 1^{++} state Beveren et al. (arXiv:0906.2278): is not a resonance

QCD sum rules Y(4140) $D_{c}^{*}\bar{D}_{c}^{*}$ with $J^{PC} = 0^{++} \rightarrow M = (4.14 \pm 0.09)$ GeV

arXiv:0903.5424 \rightarrow if Y(4140) is a D^{*}_s D^{*}_s molecule, it should be seen in the $\gamma\gamma$ process

arXiv:0903.5424 \rightarrow if Y(4140) is a D^{*}_s D^{*}_s molecule, it should be seen in the $\gamma\gamma$ process

no signal of Y(4140) but evidence for a new X(4350) state

point against the molecular assignement?

 $1^{+} \Rightarrow$ exotic: not consistent with constituent quark model

X(4350) Stancu (arXiv:0906.2485): $2^{++} cs\bar{c}\bar{s}$ tetraquark state Liu et al. (arXiv:0911.3694): P-wave charmonium state $\Xi_{c2}^{''}$ Wang. (arXiv:0912.4626): mixed 0^{++} charmonium- $D_s^*\bar{D}_s^*$ state Ma (arXiv:1006.1276): $0^{++} D_s^* D_{s0}^*$ molecular state

 $1^{+} \Rightarrow$ exotic: not consistent with constituent quark model

X(4350) Stancu (arXiv:0906.2485): $2^{++} cs\bar{c}\bar{s}$ tetraquark state Liu et al. (arXiv:0911.3694): P-wave charmonium state $\Xi_{c2}^{''}$ Wang. (arXiv:0912.4626): mixed 0^{++} charmonium- $D_s^*\bar{D}_s^*$ state Ma (arXiv:1006.1276): $0^{++} D_s^* D_{s0}^*$ molecular state

> QCD Sum Rule (arXiv:1001.3092): $1^{-+}D_s^*\bar{D}_{s0}^*$ current M = (5.05 ± 0.19) GeV

not compatible with the mass of the narrow structure observed by

MN, Navarra & Lee, arXiv:0911.1958

X(3872)	Y(4260)	Z+(4430)
mixed DD [*] charmonium state J ^{PC} =1 ⁺⁺ (3.77± 0.18) GeV	D ₀ D [*] molecular state J ^{PC} =1 (4.27± 0.10) GeV	D ₁ D [*] molecular state J ^P =0 ⁻ (4.40± 0.10) GeV
Y(4360)	Y(4660)	Z₁⁺(4050)
not compatible with scalar-vector cq state neither with D _{0s} D [*] s molecular state J ^{PC} =1	scalar-vector cs tetraquark state J ^{PC} =1 (4.65± 0.10) GeV	not compatible with D [*] D [*] molecular state J ^P =0 ⁺ (4.19± 0.18) GeV
Z ₂ +(4250)	Y(4140)	X(4350)
D ₁ D molecular state J ^P =1 ⁻ (4.25± 0.10) GeV 40< Γ <60 MeV	D _s [*] D _s [*] molecular state J ^{PC} =0 ⁺⁺ (4.14± 0.09) GeV	not compatible with D _s [*] D _{s0} [*] molecular state J ^{PC} =1 ⁻⁺ (5.05± 0.19) GeV

$T^+_{cc}([cc][ar{u}ar{d}])\;J^P=1^+$

Stable against strong decay if $m < m[DD^*] = 3.875 \text{ GeV}$: $\Rightarrow DD$ in S wave due to J nor in P wave due to P

 $J^P = 1^+$ light antidiquark: $\epsilon_{abc}[\bar{u}_b\gamma_5 C \bar{d}_c^T]$ heavy diquark: $\epsilon_{aef}[c_e^T C \gamma_\mu c_f]$

$T^+_{cc}([cc][ar{u}ar{d}])\;J^P=1^+$

Stable against strong decay if $m < m[DD^*] = 3.875 \text{ GeV}$: $\Rightarrow DD$ in S wave due to J nor in P wave due to P

 $J^P = 1^+$ heavy diquark: $\epsilon_{abc}[\bar{u}_b\gamma_5 C\bar{d}_c^T]$

QCD sum rule study Navarra, MN, Lee, hep-ph/0703071 $m_{T_{cc}} = (4.0 \pm 0.2) \text{ GeV}$

T_{cc}: as easy to form in HIC at LHC as X (3872) Lee, Yasui, Liu, Ko, arXiv:0707.1747

Conclusions

- Lots of charmonia in the last 7 years: a new spectroscopy?
 - Emerging consensus that X(3872) is a mixed charmonium-molecular state.
- Discovery of Y(4260), Y(4360) and Y(4660) represent an overpopulation of the 1⁻⁻ states
 - Absence of open charm production in the Y decay is inconsistent with $c\bar{c}$ interpretation
- Z⁺ states, need confirmation, but only molecule or tetraquark interpretations are possible

Topics

Theoretical Review on Exotics Charmonium M. Nielsen Universidade de São Paulo

Charm 2010

Beijing/China 21-24/10/2010