$D_1^0 \rightarrow D^0 \gamma$ motivation $D_1^0 \rightarrow D^0 \gamma$ method $D_1^0 \rightarrow D^0 \gamma$ results

 $\begin{array}{l} \mathsf{D}^{0} \rightarrow \, \ell^{*} \, \ell^{*} \, \operatorname{motivation} \\ \mathsf{D}^{0} \rightarrow \, \ell^{*} \, \ell^{*} \, \operatorname{method} \\ \mathsf{D}^{0} \rightarrow \, \ell^{*} \, \ell^{*} \, \operatorname{results} \end{array}$

Belle II

Rare and forbidden charm decays

Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration

BELLE

roity "ložof Stofa

University "Jožef Stefan" of Ljubljana Institute Introduction

$$D_1^{\ 0} \rightarrow D^0 \gamma$$

 $D^0 \to \ell^+ \, \ell^-$

Charm 2010, IHEP, Beijing, Oct 21 – 24, 2010

Charm 2010, IHEP, Oct 2010

B. Golob, rare/forbidden charm decays 1/13

 $D_1^0 \rightarrow D^0 \gamma$ motivation $D_1^0 \rightarrow D^0 \gamma$ method $D_1^0 \rightarrow D^0 \gamma$ results $\begin{array}{c} \mathsf{D}^{0} \to \ell^{+} \, \ell^{} \, \, \text{motivation} \\ \mathsf{D}^{0} \to \ell^{+} \, \ell^{} \, \, \text{method} \\ \hline \mathsf{D}^{0} \to \ell^{+} \, \ell^{} \, \, \text{results} \end{array}$

Introduction

Experiments

B-Factories BaBar @ PEPII SLAC Belle @ KEKB KEK

on resonance production $e^+e^- \rightarrow Y(4S) \rightarrow B^0B^0, B^+B^ \sigma(BB) \approx 1.1 \text{ nb} (\sim 10^9 \text{ BB pairs})$

Belle $\int \mathcal{L} dt \approx 1020 \text{ fb}^{-1}$ BaBar $\int \mathcal{L} dt \approx 550 \text{ fb}^{-1}$

 $D_1^0 \rightarrow D^0 \gamma$ motivation $D_1^0 \rightarrow D^0 \gamma$ method $D_1^0 \rightarrow D^0 \gamma$ results $D^0 \rightarrow \ell^+ \ell^- motivation$ $D^0 \rightarrow \ell^+ \ell^- method$ $D^0 \rightarrow \ell^+ \ell^- results$

Introduction

B-Factories BaBar @ PEPII SLAC Belle @ KEKB KEK

on resonance production $e^+e^- \rightarrow Y(4S) \rightarrow B^0B^0, B^+B^ \sigma(BB) \approx 1.1 \text{ nb} (\sim 10^9 \text{ BB pairs})$

continuum production $\sigma(c\ \overline{c}) \approx 1.3 \text{ nb} (\sim 1.3 \text{x} 10^9 \text{ X}_c \overline{\text{Y}}_c \text{ pairs})$ $N_{rec}(D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+) \approx 2.5 \text{x} 10^6$

Belle $\int \mathcal{L} dt \approx 1020 \text{ fb}^{-1}$ BaBar $\int \mathcal{L} dt \approx 550 \text{ fb}^{-1}$

 $1P \rightarrow 1S$ radiative transition

L=1 D mesons: broad (*j*=1/2) doublet $D_0^0 \rightarrow D\pi, D_1^{,0} \rightarrow D^*\pi$ S-wave decays

narrow (j=3/2) doublet D_1^0 , D_2^0 *D*-wave decays

- $1P \rightarrow 1S$ radiative transition
 - L=1 D mesons: broad (*j*=1/2) doublet $D_0^0 \rightarrow D\pi, D_1^{\prime 0} \rightarrow D^*\pi$ S-wave decays

narrow (j=3/2) doublet D_1^0 , D_2^0 D-wave decays

L=1 D_s mesons: "broad" doublet $D_{s0}^+ \not\rightarrow DK, D_{s1}^{\prime+} \not\rightarrow D^*K$ narrow doublet D_{s1}^+, D_{s2}^+

$1P \rightarrow 1S$ radiative transition

use (not measured yet) *D*** radiative transitions as probes of internal structure; test the HQL, mixing between 1⁺ states;

 $\frac{\Gamma(D_1 \to {}^3 S_1 + \gamma)}{\Gamma(D_1 \to {}^1 S_0 + \gamma)} = \frac{\omega_t^3 |\langle r \rangle_t|^2}{\omega_s^3 |\langle r \rangle_s|^2} \frac{\sin^2 \theta}{\cos^2 \theta}$

S. Godfrey, PRD72, 054029 (2005)

$1P \rightarrow 1S$ radiative transition

use (not measured yet) *D*** radiative transitions as probes of internal structure; test the HQL, mixing between 1⁺ states;

 $\frac{\Gamma(D_1 \to {}^3 S_1 + \gamma)}{\Gamma(D_1 \to {}^1 S_0 + \gamma)} = \frac{\omega_t^3 |\langle r \rangle_t|^2}{\omega_s^3 |\langle r \rangle_s|^2} \frac{\sin^2 \theta}{\cos^2 \theta}$

 $L=1 \\ D^{**} \\ D^{**} \\ 1.75 - D^{**} \\ M \\ D^{*} \\$

 0^+

1+

1+

2+

JP

 $D_1^0 \rightarrow D^0 \gamma$

S. Godfrey, PRD72, 054029 (2005)

obvious 1st choice: $D_1^0 \rightarrow \gamma D^0 (\pi^0 D^0 \text{ forbidden})$

Method Belle, 605 fb⁻¹, preliminary

- $D^{**} \text{ from } B \text{ decays} \\ B^{-} \to D_{1}^{0} \pi^{-} \to (D^{0} \gamma) \pi^{-} \to (K^{-} \pi^{+} \gamma) \pi^{-}$
 - background from $B^- \rightarrow D^{**0}\pi^- \rightarrow (D^0\pi^0)\pi^ (D_0^0/D_2^0)$ different helicity angle;

Method Belle, 605 fb⁻¹, preliminary

 $D^{**} \text{ from } B \text{ decays} \\ B^{-} \rightarrow D_{1}^{0} \pi^{-} \rightarrow (D^{0} \gamma) \pi^{-} \rightarrow (K^{-} \pi^{+} \gamma) \pi^{-}$

background from $B^- \rightarrow D^{**0}\pi^- \rightarrow (D^0\pi^0)\pi^ (D_0^0/D_2^0)$ different helicity angle;

simultaneous fit in bins of $\cos\theta_{J}$: $M(D^{0}\pi^{0})$ for $B^{-} \rightarrow (D^{0}\pi^{0})\pi^{-}$ decays;

MC: feed-down shape & relative ε for $D^0 \pi^0$ reconstr. as $D^0 \gamma$ MC using results on D_0^0 / D_2^0 properties from Belle, PRD69, 112002 (2004) 60 fb⁻¹

Method Belle, 605 fb⁻¹, preliminary

D** from B decays

$$B^{-} \rightarrow D_{1}^{0} \pi^{-} \rightarrow (D^{0} \gamma) \pi^{-} \rightarrow (K^{-} \pi^{+} \gamma) \pi^{-}$$

simultaneous fit in bins of $cos\theta_J$: $M(D^0\gamma)$ for $B^- \to (D^0\gamma)\pi^-$ decays; feed-down from $D^0\pi^0$ fixed $D_1^0 \rightarrow D^0 \gamma$

 $\begin{array}{c} \mathsf{D}^0 \to \ell^+ \, \ell^\text{motivation} \\ \mathsf{D}^0 \to \ell^+ \, \ell^\text{motivation} \\ \hline \mathsf{D}^0 \to \ell^+ \, \ell^\text{motivation} \end{array}$

 $D_1^0 \rightarrow D^0 \gamma$

Method Belle, 605 fb⁻¹, preliminary

D** from B decays

$$B^{-} \rightarrow D_{1}^{0} \pi^{-} \rightarrow (D^{0} \gamma) \pi^{-} \rightarrow (K^{-} \pi^{+} \gamma) \pi^{-}$$

simultaneous fit in bins of $cos \theta_J$: $M(D^0\gamma)$ for $B^- \to (D^0\gamma)\pi^-$ decays; feed-down from $D^0\pi^0$ fixed

 $M(D^{o}\gamma)$

- sum
- signal
- feed-down

 $\begin{array}{l} D^{0} \rightarrow \ell^{+} \, \ell^{} \, \, motivation \\ D^{0} \rightarrow \ell^{+} \, \ell^{} \, \, method \\ D^{0} \rightarrow \ell^{+} \, \ell^{} \, \, results \end{array}$

 $D_1^0 \rightarrow D^0 \gamma$

Belle, 605 fb⁻¹, preliminary

Result (first observation)

$D_1^0 \rightarrow D^0 \gamma$ motivation
$D_1^0 \rightarrow D^0 \gamma$ method
$D_1^0 \rightarrow D^0 \gamma$ results

 $\begin{array}{l} D^{0} \rightarrow \ell^{+} \, \ell^{} \, \, motivation \\ D^{0} \rightarrow \ell^{+} \, \ell^{} \, \, method \\ D^{0} \rightarrow \ell^{+} \, \ell^{} \, \, results \end{array}$

Belle, 605 fb⁻¹, preliminary

Result (first observation)

 $D_1^0 \rightarrow D^0 \gamma$

S. Godfrey, PRD72, 054029 (2005)

Method Belle, PRD81, 091102 (2010), 660 fb⁻¹

Normalization $D^0 \rightarrow \pi^+ \pi^$ tagged $D^{*+} \rightarrow D^0 \pi_s^-$; blind optimization of $M(\mathcal{U}), q = M(\mathcal{U} \pi_s) - M(\mathcal{U}) - m_{\pi}, E_{miss},$ F.O.M.= $\varepsilon_{\mathcal{U}} / N_{UL}$

$$\frac{\mathcal{B}(D^0 \to \ell^+ \ell^-)}{\mathcal{B}(D^0 \to \pi^+ \pi^-)} = \frac{N_{\ell\ell}}{N_{\pi\pi}} \frac{\varepsilon_{\pi\pi}}{\varepsilon_{\ell\ell}}$$

 $D^0 \rightarrow \ell^+ \ell^-$

(negligible)

1.84

1.82

1.86

1.88

1.9

 $M[GeV/c^2]$

$$D^0 \rightarrow \ell^+ \ell^-$$

$$D^0 \rightarrow \ell^+ \ell^-$$

leptoquarks:

(genuine, coupling to ℓq ; contribute to $D_{(s)} \rightarrow \mu v, D^0 \rightarrow \mu \mu$) I. Dorsner et al., PLB682, 67 (2009)

Charm 2010, IHEP, Oct 2010

 $D^0 \rightarrow \ell^+ \ell^-$

 $D^0 \rightarrow \ell^+ \ell^-$

- B-factories active also in rare charm decays
- $1P \rightarrow 1S$ charm meson radiative transition measured for the first time
- best UL's on $D^0 \rightarrow \ell^+ \ell^-$
- FCNC of charm:

complementary constraints to rare *B* decays

 $\begin{array}{l} \mathsf{D}^{0} \to \ell^{+} \, \ell^{-} \, \text{motivation} \\ \mathsf{D}^{0} \to \ell^{+} \, \ell^{-} \, \text{method} \\ \mathsf{D}^{0} \to \ell^{+} \, \ell^{-} \, \text{results} \end{array}$

Additional info

 D^{**} from *B* decays $B^{-} \rightarrow D_{1}{}^{0}\pi^{-} \rightarrow (D^{0}\gamma)\pi^{-}$ $\rightarrow (K^{-}\pi^{+}\gamma)\pi^{-}$

> background from $B^- \rightarrow D^{**0}\pi^- \rightarrow (D^0\pi^0)\pi^ (D_0^0/D_2^0)$ different helicity angle;

simultaneous fit in bins of $\cos\theta_{J}$: $M(D^{0}\pi^{0})$ for $B^{-} \rightarrow (D^{0}\pi^{0})\pi^{-}$ decays

Normalization
$$D^0 \rightarrow \pi^+ \pi^-$$

tagged $D^{*+} \rightarrow D^0 \pi_s^-$;

$$D^0 \rightarrow \pi^+ \pi^-$$
 control sample

$$f \equiv \frac{1}{N_{\pi\pi}} \frac{\epsilon_{\pi\pi}}{\epsilon_{\ell\ell}} \mathcal{B} \left(D^0 \to \pi^+ \pi^- \right)$$

	$D^{ m o} ightarrow \mu^+ \mu^-$	$D^0 ightarrow e^+ e^-$	$D^{\circ} ightarrow e^{\pm} \mu^{\mp}$
N_{bkg}	3.1 ± 0.1	1.7 ± 0.2	2.6 ± 0.2
N	2	0	3
$\epsilon_{\ell\ell}[\%]$	7.02 ± 0.34	5.27 ± 0.32	6.24 ± 0.27
$\epsilon_{\pi\pi}$ [%]	12.42 ± 0.10	10.74 ± 0.09	11.22 ± 0.09
$f[10^{-8}]$	$4.84(1\pm5.3\%)$	$6.47 (1\pm 6.4\%)$	$5.48(1 \pm 4.8\%)$
UL $[10^{-7}]$	1.4	0.79	2.6
- []			

F.O.M.= $\varepsilon_{\ell\ell}$ /*N_{UL}* background estimated from tuned MC (6x data)

UĽs

Channel. n		b	U.L.	FC w/o syst.
$\mu^+\mu^-$	2	$3.1 {\pm} 0.1$	2.98	2.97
e^+e^-	0	$1.7{\pm}0.2$	1.22	
$e^{\pm}\mu^{\mp}$	3	$2.6{\pm}0.2$	4.83	