Hidden Charm Spectroscopy from Tevatron Observation of the Y(4140) in $J/\psi\,\phi$ from $B^+\to J/\psi\,\phi\,K^+$

Felix Wick on behalf of the CDF Collaboration

Karlsruhe Institute of Technology

October 21, 2010

CHARM 2010

Motivations

- discovery of several states with charmonium-like decays but unexpected properties (*XYZ*) in recent years
- possibly explained by exotic models beyond usual mesons
- \bullet CDF contributions: first confirmation of Belle's X(3872) with determination of allowed quantum numbers and most precise mass measurement
- $J/\psi\,\phi$ good channel for exotic meson search
 - final state consisting of two vector mesons (positive C-parity)
 - invariant mass high enough for open charm decays
 - ${\scriptstyle \bullet} \rightarrow$ charmonium state unlikely for narrow structure
- $\bullet\,$ search near $J/\psi\,\phi$ threshold motivated by closeness of Y(3930) to $J/\psi\,\omega$ threshold
- $\bullet\,$ strong background reduction by using exclusive $B^+ \to J/\psi\,\phi\,K^+$ decays

Felix Wick (KIT)

Hidden Charm Spectroscopy

Y(4140) Evidence Recap

2009: CDF evidence (3.8 σ) for narrow $J/\psi \phi$ structure at $4140 \,\mathrm{MeV}/c^2$ in exclusive $B^+ \to J/\psi \phi K^+$ decays (PRL 102, 242002)

• no signal seen by Belle \rightarrow upper limit on branching ratio: $\mathcal{B}(B^+ \rightarrow Y(4140) K^+, Y(4140) \rightarrow J/\psi \phi) < 6.0 \cdot 10^{-6} (90\% CL)$

• important to investigate with larger CDF data sample

CDF Experiment at Tevatron

Tevatron

• $p - \bar{p}$ collider

• $\sqrt{s} = 1.96 \,\mathrm{TeV}$

CDF II

- multipurpose detector
- excellent tracking and mass resolution: $\frac{\sigma(p_T)}{p_T^2} \approx \frac{0.1\%}{\text{GeV}/c}$ $30 \,\mu\text{m}$ vertex resolution
- K/π separation power $\approx 1.5\sigma$

Analysis Strategy

- Dimuon Trigger requires $\mu^+\mu^-$ pair with invariant mass $2.7\,{\rm GeV}/c^2 < m(\mu^+\mu^-) < 4.0\,{\rm GeV}/c^2$
- use integrated luminosity of $6.0 \, {\rm fb}^{-1}$ (no linear increase of sample size due to trigger prescales)
- B^+ reconstruction:

$$\begin{array}{c} 3^+ \to J/\psi \ \phi \ K^+ \\ J/\psi \to \mu^+ \ \mu^- \\ \phi \to K^+ \ K^- \end{array}$$

• $\pm 50\,{\rm MeV}/c^2~J/\psi$ mass window, $\pm 7\,{\rm MeV}/c^2~\phi$ mass window

 ${\, \bullet \,}$ search for structure in $J/\psi \, \phi$ spectrum inside B^+ mass window

B^+ Selection

 $\, \circ \,$ cut on transverse decay length because of long B-meson lifetime: $L_{xy}(B^+) > 500\, \mu {\rm m}$

 \rightarrow reduction of prompt combinatorial background

- use dE/dx and ToF information summarized in log-likelihood ratio for kaon identification (3 final state kaons)
 - \rightarrow separation from dominant pion background
- background reduction of factor 20000 after both cuts

B^+ Signal

- fit to data with Gaussian signal and linear background function
- B^+ signal of 115 ± 12 events (53% increase over evidence report)
- select candidates $\pm 3\sigma~(17.7\,{
 m MeV}/c^2)$ around B^+ peak
- sideband events within $[-9, -6]\sigma$ or $[+6, +9]\sigma$ of nominal B^+ mass (combinatorial background)

$J/\psi\,\phi\,\,{\rm Spectrum}$

- exclude events with $m(\mu^+ \mu^- K^+ K^-) m(K^+ K^-) > 1.56 \,\text{GeV}/c^2$ to avoid combinatorial backgrounds from misidentified $B^0_s \rightarrow \psi(2S) \phi \rightarrow (J/\psi \pi^+ \pi^-) \phi$ decays
- narrow near-threshold excess in B mass window
- no evidence from B mass sidebands

Fit to $J/\psi\,\phi$ Spectrum

- unbinned likelihood fit
- signal: S-wave relativistic Breit-Wigner function convolved with Gaussian resolution ($\sigma = 1.7 \,\mathrm{MeV}/c^2$ from Monte Carlo simulation)
- two background components:
 - three-body phase space (dotted blue curve)
 - fixed remaining B_s contribution (dash-dotted black curve)

Fit Results

- study of systematic uncertainties by using nonrelativistic and P-wave relativistic Breit-Wigner signal shapes
- $19 \pm 6(\text{stat}) \pm 3(\text{syst})$ signal events
- mass (after including world average J/ψ mass): $m = 4143.4^{+2.9}_{-3.0}(\text{stat}) \pm 0.6(\text{syst}) \text{ MeV}/c^2$
- decay width: $\Gamma = 15.3^{+10.4}_{-6.1}(\text{stat}) \pm 2.5(\text{syst}) \text{ MeV}/c^2$ much wider than resolution $(1.7 \text{ MeV}/c^2) \rightarrow \text{strong decay}$
- relative branching fraction: $\frac{\mathcal{B}(B^+ \to Y(4140) \ K^+, Y(4140) \to J/\psi \ \phi)}{\mathcal{B}(B^+ \to J/\psi \ \phi \ K^+)} = 0.149 \pm 0.039 (\text{stat}) \pm 0.024 (\text{syst})$
- mass and width consistent with values from evidence report

Significance Determination

- estimate probability of background fluctuations creating such signal
- calculate log-likelihood ratio $-2\ln(\mathcal{L}_0/\mathcal{L}_{max})$ of null and signal hypothesis fits
- ${\, \bullet \,}$ simulate large number of three-body phase space B^+ decays
- find most significant fluctuation anywhere in the mass window with $\Gamma = [1.7, 120]\,{\rm MeV}/c^2$

- count number of trials with $-2\ln(\mathcal{L}_0/\mathcal{L}_{max}) > \text{value in data}$ $\rightarrow p\text{-value} = 2.3 \cdot 10^{-7}$
- corresponding to significance of 5.0σ $(n\sigma = \sqrt{2} \cdot \text{erf}^{-1}(1-p))$ \Rightarrow observation

Additional Structure?

- fix Y(4140) parameters
- second peak: S-wave relativistic Breit-Wigner function convolved with Gaussian resolution ($\sigma = 3.0 \,\mathrm{MeV}/c^2$)
- two background components:
 - three-body phase space (dotted blue curve)
 - fixed remaining B_s contribution (dash-dotted black curve)

• $22 \pm 8(\text{stat})$ signal events

•
$$m = 4274.4^{+8.4}_{-6.7}$$
(stat) MeV/ c^2

•
$$\Gamma = 32.3^{+21.9}_{-15.3}$$
(stat) MeV/ c^2

Felix Wick (KIT)

Significance Determination of Additional Structure

- calculate log-likelihood ratio $-2\ln(\mathcal{L}_0/\mathcal{L}_{max})$ of null hypothesis fit assuming only Y(4140) and signal hypothesis fit
- significance determined by simulations (same method as for Y(4140))
- p-value = $1.1 \cdot 10^{-3}$ corresponding to 3.1σ significance \Rightarrow evidence

Summary

- CDF contributes to the zoo of XYZ mesons
- observation of Y(4140) in $J/\psi \phi$ mass spectrum from $B^+ \rightarrow J/\psi \phi K^+$ decays with more than 5σ significance
- evidence (3.1 σ) for second structure at $4275 \,\mathrm{MeV}/c^2$
- more data to come ...

http://www-cdf.fnal.gov/physics/new/bottom/100701.blessed-jpsiphi6.0/cdf10244_y4140_public.pdf

Felix Wick (KIT)

Hidden Charm Spectroscopy

Backup

Alternative Significance Determination

- $\bullet\,$ fit empirical shape to $-2\ln(\mathcal{L}_0/\mathcal{L}_{max})$ from trials
- p-value from integration of fitted shape $1.8\cdot 10^{-7}$
- consistent with counting method

