FOCUS Semileptonic and Rare Decays (a retrospective)

Will E. Johns (for the FOCUS collaboration) Vanderbilt University October 22, 2010 CHARM2010

Fixed Target Semileptonics (a stepping stone process)

Typically, kinematics can not be closed (no energy constraint) and though statistics can be sizable, backgrounds can be large compared to e⁺e⁻ experiments, like CLEO-C (or BES-III)...

Fixed Target Semileptonics

• ...But factorizable if you can measure or estimate the backgrounds FOCUS $D^+ \rightarrow \rho \mu^+ \nu$ (All Phys.Lett. B:637,32-38)

the backgrounds

• And

$$D^{+} \rightarrow (K^{-}\pi^{+}) \mu^{+} \nu$$

Is the Key to it all
FOCUS $D^{+} \rightarrow (K^{-}\pi^{+}) \mu^{+} \nu$

- Cabibbo-favored
- Important background in other modes
- Very little excited mode feed-down
- FOCUS Cerenkov separates K/pi/e well
- Long lifetime = large vertex separation
- In principle, well understood decay but
 - FOCUS found a surprise...

FOCUS saw discrepancies in the data

 $\frac{d^2\Gamma}{d\cos\theta_V d\cos\theta_\ell} \propto \{(1+\cos\theta_\ell)^2\Gamma_+ + (1-\cos\theta_\ell)^2\Gamma_-\}\sin^2\theta_V + 4\sin^2\theta_\ell\cos^2\theta_V\Gamma_0$ Prefers W spin along muon,e
Prefer L_z=0

FOCUS BR Measurements

FOCUS Form Factors $D^+ \to \overline{K}^{*0} \mu^+ \nu$

$$H_{\pm}(q^{2}) = (M_{D} + m_{K\pi})A_{1}(q^{2}) \mp 2 \frac{M_{D}K}{M_{D} + m_{K\pi}}V(q^{2}) \qquad H_{t}(q^{2}) \text{ has } m_{\mu}^{2} \text{ factor, set} = 0$$

$$H_{0}(q^{2}) = \frac{1}{2m_{K\pi}\sqrt{q^{2}}} \left[(M_{D}^{2} - m_{K\pi}^{2} - q^{2})(M_{D} + m_{K\pi})A_{1}(q^{2}) - 4 \frac{M_{D}^{2}K^{2}}{M_{D} + m_{K\pi}}A_{2}(q^{2}) \right] \qquad \text{Tried in fit, no sensitivity}$$

$$A_{i}(q^{2}) = \frac{A_{i}(0)}{1 - q^{2}/M_{A}^{2}}, (M_{A} = 2.5 \text{ GeV}/c^{2}) \qquad V(q^{2}) = \frac{V(0)}{1 - q^{2}/M_{V}^{2}}, (M_{V} = 2.1 \text{ GeV}/c^{2})$$

Fit to
$$\boxed{r_{v} = \frac{V(0)}{A_{1}(0)}} \qquad r_{2} = \frac{A_{2}(0)}{A_{1}(0)} \qquad \text{and S-wave parameters, } A \text{ and } \delta$$

(common – vary generated parameters in Montecarlo
 by using agreement with reconstructed distributions and data)
 Pioneered by D.M. Schmidt for E691 K*ev analysis: NIM A 328 (1993)

1st find S-wave with PDG r's,

3 bins in $\cos\theta_{V}$, 3 in $\cos\theta_{\ell}$, 3 in χ and 4 in $m_{K\pi}$ **S-wave term Breaks symmetry** 5 bins in $\cos\theta_{V}$, 5 in $\cos\theta_{\ell}$, 3 in $|\chi|$ and 3 in q^{2}/q_{max}^{2}

FOCUS Form Factors

Cuts similar to previous, some change to get uniform acceptance, one extra

OoM – Charm vertex outside of target and silicon by $1\sigma_{\scriptscriptstyle Vertex}$

Cut on $q^2 < 0.2 \text{ GeV}^2/c^2$

Goodness of fit issue

2000 right sign 10 GeV/c² KR rong sign Systematic Checks 1500 S-wave – varied cuts 1000 events 35 fits – Sample Variance 500 $A = 0.330 \pm 0.022 \pm 0.015$ Form Factor (3 sources) Varied Cuts 1) $\delta = 0.68 \pm 0.07 \pm 0.05$ 1.20.8 1.0 2) Split sample M(Kπ), GeV/c² 1000 \pm (stat) \pm (sys) $P_D, DD, m_{K\pi} (0.9 \, GeV / c^2)$ £0.0 ₩ 3) Vary MC input 600 events Right sign – Wrong sign Charm Backgrounds $r_{V} = 1.504 \pm 0.057 \pm 0.039$ 400 $-2 < \frac{A_3(0)}{A_1(0)} < 2$ 200 $r2 = 0.875 \pm 0.049 \pm 0.064$ 0.0 0.2 0.4 0.6 0.8 1.0 q^2/q^2_{max} Charm Phys.Lett.B544:89-96, 2002 Background

r's are flat, feeling m_?

FOCUS Form Factors $D^+ \to \overline{K}^{*0} \mu^+ \nu$

Non-Parametric test to look at single pole dominance ansatz (esp choice for s-wave) - Build up bin-wise transform of form factors

- Transform back from data to get projections, then fit using SPD model

 $\int |A|^2 d\chi = \frac{q^2 - m_\ell^2}{8} \left(\left\{ (1 + \cos \theta_\ell)^2 |BW|^2 |H_+(q^2)|^2 + (1 - \cos \theta_\ell)^2 |BW|^2 |H_-(q^2)|^2 \right\} \sin^2 \theta_V$

+ $2\sin^2\theta_{\ell}\cos^2\theta_{V}|BW|^2H_0^2(q^2)$ + $8\sin^2\theta_{\ell}\cos\theta_{V}H_0(q^2)h_0(q^2)\operatorname{Re}\{A_{S}e^{-i\delta}BW\})$ Monte Carlo Data

Challenges at low q² persist even in the latest CLEO-c results

FOCUS Form Factors $D_S^+ \rightarrow \phi \mu^+ \nu$

Similar to K* (should be similar via SU(3)), but S-wave not apparent here (< 5% at least) -Data (Histogram) compared to fit + ccbar Bkgnd (dots) and just ccbar Bkgnd (dashed)

Phys.Lett.B586:183-190,2004

March towards $D^0 \rightarrow K^- \mu^+ v$

- With the K* analisysis done, we were ready to tackle the neutral D pseuoscalar decays
 - The dream was to compare to LQCD, E687
 - K* feed-down important to know
- Problem! We didn't agree with CLEO result:

Phys. Rev. Lett. 89, 222001, 2002

 $\frac{D^+ \to \overline{K}^{*0} e^+ v}{D^+ \to \overline{K}^0 e^+ v} = 0.99 \pm 0.16$

Previous (E687 muon) result compared D⁰ and D⁺: 0.62 ± 0.11 (Phys. Lett. B 364, 127, 1995)

- Problem! PDG results (incl. 2003 partial update) looked very interesting (diff at 99% CL) $\Gamma(D^+ \to \overline{K}^0 e^+ v) - \Gamma(D^0 \to \overline{K}^- e^+ v) = -25 \pm 9.7 \text{ ns}^{-1}$
- So we decided to measure $D^+ \rightarrow \overline{K}^{*0} \mu^+ \nu$

$$D^+ \to \overline{K}{}^0 \mu^+ \nu$$

March towards $D^0 \rightarrow K^- \mu^+ \nu$

And there is better agreement between D⁰ and D⁺

$$\Gamma(D^+ \to \overline{K}^0 \mu^+ \upsilon) - \Gamma(D^0 \to \overline{K}^- \mu^+ \upsilon) = 11 \pm 11 \, \text{ns}^{-1}$$

FOCUS Form Factors

- Use D* tag to get cleaner signal, help close kinematics
 - In $K\mu$ CM frame D, ν solutions on a cone D, $\nu_{\text{(cone)}}$
 - Boost cone to lab, compare D direction
 - Choose best χ^2 , cut on CL of agreement

- Two techniques for fitting
 - Non-parametric deconvolution (remember K*?)
 - Only for $D^0 \to K^- \mu^+ \nu$
 - Discrete transform
 - Fit only to parameterized function $D^0 \rightarrow K^- \mu^+ v \& \pi^- \mu^+ v$
 - Use for BR too

π

Κ

(picture from speakers thesis...very dusty)

FOCUS Form Factors $D^0 \rightarrow K^- \mu^+ \nu \& \pi^- \mu^+ \nu$

Backgrounds are more challenging for the pion mode, similar to B-> π lv in Babar/Belle

FOCUS Form Factors (&BR) $D^0 \rightarrow K^- \mu^+ \nu \& \pi^- \mu^+ \nu$

$$\frac{\Gamma(D^0 \to \pi^- \mu^+ \nu)}{\Gamma(D^0 \to K^- \mu^+ \nu)} = 0.074 \pm 0.008 \pm 0.007$$
$$\frac{\left|\frac{V_{cd}}{V_{cd}}\right|^2}{\left|\frac{f_{\pm}^{\pi}(0)}{e^{K_{c}(0)}}\right|^2} = 0.037 \pm 0.004 \pm 0.004$$

 $\frac{\Gamma(D^0 \to \pi^- e^+ \nu)}{\Gamma(D^0 \to K^- e^+ \nu)} = 0.082 \pm 0.003$ (My calculations from the CLEO – c Paper) $\frac{\left|\frac{V_{cd}}{V_{cs}}\right|^2 \left|\frac{f_+^{\pi}(0)}{f_+^{K}(0)}\right|^2}{\left|\frac{f_+^{\pi}(0)}{f_+^{K}(0)}\right|^2} = 0.041 \pm 0.002$

FOCUS last Semileptonic BR

Phys.Lett. B:637,32-38, 2005

$$\frac{D^+ \to \rho \mu^+ \nu}{D^+ \to \overline{K}^{*0} \mu^+ \nu} = 0.041 \pm 0.006 \pm 0.004$$

Tour de-force in the Background Est Did w/constraints and w/o (many)

 $\frac{D^+ \to \rho \mu^+}{D^+ \to \overline{K}^{*0} \mu^+}$

Decay Mode	Total Yield	Yield in signal region		
$D^+ \to \rho^0 \mu^+ \nu$	320 ± 44	282		
$D^+ \to K^- \pi^+ \mu^+ \nu$	68^{a}	44		
$D^+ \to K^0_S \mu^+ \nu$	7 ± 6	0		
D_s^+ modes total	179 ± 40	101		
$D^+ \to \omega \mu^+ \nu$	51 ± 22	10		
Muon Mis-Id	550 ± 44	263		
Combinatoric	233 ± 50	99		

Systematics : different event selections, alternative fit methods, consistency of results between split samples, varying input parameters

PDG fit to e mode: 0.039 +/- 0.007 My estimate from CLEO-c e modes from HQL2010 & PRD 81:112001, 2010 = 0.042 +/- 0.003

Rare Charm Decays

Potential FCNC Decays are Suppressed

Box Diagrams are Smallish for Charm

No Top Quuark in the loop

Short Distance

Rare Decay Results from FOCUS $D^+_{(S)} \rightarrow (\pi, K)^{\pm} \mu^{\mp} \mu^+$

Decay Mode	Dual Bootstrap	Sensitivity	Sys. Error	Result W/sys	Single Cut(w/sys)	Previous (E791)
D ⁺ ⇔K⁺µ⁺µ⁻	9.1x10 ⁻⁶	7.5x10 ⁻⁶	7.5%	9.2x10 ⁻⁶	12x10 ⁻⁶	44x10 ⁻⁶
D ⁺ ⇔K⁻μ⁺μ⁺	13x10 ⁻⁶	4.8x10 ⁻⁶	7.5%	13x10 ⁻⁶	12x10 ⁻⁶	120x10 ⁻⁶
D ⁺ ⇔π⁺μ⁺μ⁻	8.8x10 ⁻⁶	7.6x10 ⁻⁶	7.5%	8.8x10 ⁻⁶	7.4x10 ⁻⁶	15x10 ⁻⁶
D ⁺ ⇔π⁻μ⁺μ⁺	4.9x10 ⁻⁶	5.6x10 ⁻⁶	7.5%	4.8x10 ⁻⁶	5.2x10 ⁻⁶	17x10 ⁻⁶
D _s ⁺ ⇔K⁺μ⁺μ⁻	3.3x10 ⁻⁵	3.3x10 ⁻⁵	27.5%	3.6x10 ⁻⁵	3.8x10 ⁻⁵	1.4x10 ⁻⁴
D _s ⁺ ⇔K ⁻ μ ⁺ μ ⁺	1.3x10 ⁻⁵	2.1x10 ⁻⁵	27.5%	1.3x10 ⁻⁵	2.0x10 ⁻⁵	1.8x10 ⁻⁴
D _s ⁺ ⇔π ⁺ μ ⁺ μ ⁻	2.4x10 ⁻⁵	3.1x10⁻⁵	27.5%	2.6x10 ⁻⁵	1.8x10⁻⁵	1.4x10 ⁻⁴
D _s ⁺ ⇔π ⁻ μ ⁺ μ ⁺	2.6x10 ⁻⁵	2.3x10 ⁻⁵	27.5%	2.9x10 ⁻⁵	2.2x10 ⁻⁵	0.8x10 ⁻⁴

(E687)

Dominated by PDG rate to normalizing mode ²¹

Situation almost the same as in 2003

FOCUS Round-UP

- We had some pioneering results
 - S-wave in the K* mode
 - Running comparison to LQCD
 - Non-parametric and cone-closure techniques
 - Remember that our results built up over time as we learned more about the realities of the higher statistics environment
- Our results seem to have held up well
 - There's still an opportunity to improve many FOCUS results, 13 years after data taking ended
- Apologies to others experiments I left out
 - (And for not mentioning the K* width measurement)
 - And experiments that never got a chance to run...