Semileptonic Decays of D and D_s

Results from CLEO-c and Prospects for BESIII

BESIII

Ron Poling University of Minnesota

Charm 2010 - October 22, 2010

A window on weak and strong physics

• Expt. meets LQCD <u>now</u>: $D \rightarrow K(\pi) ev$

$$\frac{d\Gamma(D \to K(\pi)ev)}{dq^2} = \frac{G_F^2 \left(V_{cs(d)}\right)^2 P_{K(\pi)}^3}{24\pi^3} \left| \left(f_+(q^2)\right)^2 \right|^2$$

Use theory for form factors Extract CKM parameters Use unitarity for CKM parameters, test QCD

 Expt. meets LQCD <u>future</u>: P→ V SL decays (3 hadronic form factors, no unquenched LQCD calculation yet)

Charm's supporting role...

- Use charm to beat down theoretical uncertainties in $|V_{ub}|$ and mixing
- UT angles vs. sides: inconsistency \Rightarrow New Physics

Topics for this talk:

- Tools and data samples: CLEO-c
- Analysis techniques for charm physics in e⁺e⁻ near threshold
- Inclusive D and D_s semileptonic decays
- Exclusive semileptonic decays
 - $D \rightarrow K(\pi) e v$
 - $D \rightarrow \eta e \nu, \eta' e \nu, \rho e \nu, K \pi e(\mu) \nu$
 - Exclusive D_s
- Comments and prospects for BESIII

CLEO-c at CESR-c

- Symmetric, single-ring, $e^+e^$ at $E_{\rm CM} \sim 4 {\rm ~GeV}$
 - CESR + wigglers
- Detector descended from CLEO II, CLEO III
 - Acceptance ~93% of 4π
 - Great tracking (0.6% @ 1 GeV) sc and CsI EM calorimeter (2% @ Quadrupoles 1 GeV, 5% @ 100 MeV)
 - Excellent K/π separation with dE/dx and RICH

Data Samples

- D^0 and D^{\pm} Physics: 818 pb⁻¹ at $E_{CM} = M[\psi(3770)]$
- D_s Physics: 602 pb⁻¹ at $E_{CM} = 4170$ MeV

Tools for Charm Decays near Threshold

$$\Delta E = E_D - E_{\text{Beam}}$$
$$M_{\text{BC}} = \sqrt{E_{\text{Beam}}^2 - p_D^2}$$

- Extremely clean
- ~20% of ψ(3770) events have a fully reconstructed D⁰ or D[±] hadronic decay
- Extended to $D_s D_s^*$ events at $E_{\rm CM}$ =4170 MeV

 $K^{-} \pi^{+} \pi^{+}$ vs. $K^{+} \pi^{-} \pi^{-}$

 $K^- e^+ v$ vs. $K^+ \pi^-$

Inclusive Semileptonic D and D_s Decays

- Measure SL branching fractions, widths, momentum spectra for verification that overall behavior aligns with expectations
- Insights on relations among modes? Possible implications for *B*
- Uses all CLEO-c open-charm data (818/pb at $\psi(3770)$ and 602/pb at E_{CM} =4170 MeV), just the cleanest tag for each of D^+ , D^0 and D_s

• Pick tag, find accompanying good track ($p \ge 200 \text{ MeV}/c$) ID'ed as e

Inclusive Electron Spectra

- Unfolding process extracts <u>true</u> *e* spectrum from <u>measured</u> π, *K* and *e* spectra using response matrices incorporating efficiencies, resolutions, mis-ID probabilities
- Wrong-sign candidates used for real-electron BG correction

 Extrapolate spectrum below cutoff (using measured exclusive BFs and ISGW2 model for excess) to get total SL yield

Results a	PRD 81, 052007 (2010)		
	Partial BF p ≥ 200 MeV/c	Full BF with extrapolation	Final BF with τ correction & systematics ↓
Tag mode	$B_{\text{trunc}}(e^+X)$ (%)	$B(e^+X)$ (%)	$B(Xe^+\nu_e)$ (%)
$ \frac{\bar{D}^0 \to K^+ \pi^-}{D^- \to K^+ \pi^- \pi^-} \\ D_s^- \to \phi \pi^- $	5.958 ± 0.084 14.863 ± 0.092 7.002 ± 0.361	6.460 ± 0.091 16.147 ± 0.100 7.525 ± 0.387	$6.46 \pm 0.09 \pm 0.11$ 16.13 \pm 0.10 \pm 0.29 6.52 \pm 0.39 \pm 0.15

$$\frac{\Gamma(D^+ \to Xe^+ v)}{\Gamma(D^0 \to Xe^+ v)} = 0.985 \pm 0.015 \pm 0.024$$

Charged and neutral *D* decays show expected isospin symmetry

 $\frac{\Gamma(D_s^+ \to Xe^+ v)}{\Gamma(D^0 \to Xe^+ v)} = 0.825 \pm 0.051 \pm 0.022$

Charm and charm-strange meson decay widths are different

- Voloshin (PLB 515, 74 (2001)): Charm/charm-strange SL width ratio can constrain B^+/B^0 differences in inclusive $|V_{ub}|$ determination
- Recent work (Ligeti *et al.*, Gambino and Kamenik): CLEO-c result limits Weak annihilation contribution to *B* decays to a few % or less

Charm 2010 - October 22, 2010 Ron Poling

Improved Measurement of D SL Decays to π and K

- Full CLEO-c $\psi(3770)$ sample
- Very clean: 3 D⁰ and 6 D⁺ tag modes
- Total of 1.15M *D* tags (~ 20% of $D\overline{D}$ events)
- Search single-tag events for semileptonic decay on the other side: detect hadron tracks and demand that what is missing is consistent with a single neutrino

$$U = E_{\rm miss} - c \left| \vec{P}_{\rm miss} \right| \approx 0$$

PRD 80, 032005 (2009)

Charm 2010 - October 22, 2010

Charm 2010 - October 22, 2010

Ron Poling

11

Measured Partial Rates

PRD 80, 032005 (2009)

Charm 2010 - October 22, 2010

Form Factor Representations

Simple Pole Model

(Lowest H^* dominates)

Modified Pole Model (additional poles)

Becirevic and Kaidalov PLB 478, 417 ('00)

Series Expansion

Becher and Hill PLB 633, 61 ('06)

$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2},t_{0}) \right]^{k}$$

$$z(q^{2},t_{0}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \qquad t_{\pm} = (m_{D} \pm m_{X})^{2}$$

Confront parameters extracted from data with theory predictions

Charm 2010 - October 22, 2010

Form Factor Results and Comparisons PRD 80, 032005 (2009)

- Isospin-conjugate modes agree within 1.4σ
- Solid line best fit to LQCD with modified pole model
 - Aubin et al., PRL 94, 011601 ('05); Bernard et al., PRD 80, 034026 ('09)
 - Inner bands give LQCD stat. uncert., outer band LQCD stat.+syst.

The LQCD uncertainty on $f_+^{\kappa}(0)$ was 10% (in 2005), now 2.5%!

The same LQCD technique can be used for $D \rightarrow \pi$ to further reduce the theory uncertainty on $f_+^{\pi}(0)$.

CLEO-c results consistent with LQCD, but more precise. $f_+^{K}(0)$: 1% vs 3%, $f_+^{\pi}(0)$: 3% vs. 10%

Charm 2010 - October 22, 2010 Ron Poling

From Bo Xin

The data determine $|V_{cs(d)}|f_+(0)$. To extract $|V_{cs(d)}|$, we combine the measured $|V_{cs(d)}|f_+(0)$ values using the Becher-Hill parameterization with (FNAL-MILC-HPQCD) for $f_+(0)$ CLEO-c: the most precise direct determination of $|V_{cs}| = \sigma(|V_{cs}|) / |V_{cs}| \sim 1.1\%(expt) \oplus 2.5\%(theory)$ CLEO - c $|V_{cs}|$

 (818 pb^{-1}) $0.963 \pm 0.009 \pm 0.006 \pm 0.024$ theory stat syst

CLEO-c: $\sigma(|V_{cd}|) / |V_{cd}| \sim 3.1\%$ (expt) $\oplus 10\%$ (theory) vN remains most precise determination

CLEO - c $|V_{cd}|$ $(818 \text{ pb}^{-1}) \qquad 0.234 \pm 0.007 \pm 0.002 \pm 0.025$ theory stat syst

Ron Poling

Charm 2010 - October 22, 2010

PDG [(Kev) LEP W→cs BESII [(Kev) CLEO-C +HPQCD 2010 0.5 1 * PDG2002

IV 1

- Toward a complete picture of SL charm decay
- Possible info on η/η' mixing, QCD anomalies in heavy meson decays to η'
- Search for surprises: $D \rightarrow \phi ev$ would reveal ω/ϕ mixing
- Two approaches:

Tagged

- Same 6 D⁺tag modes
- Select
 - $\eta \rightarrow \gamma \gamma$, $\eta \rightarrow \pi^+ \pi^- \pi^0$
 - $\eta' \rightarrow \pi^+ \pi^- \eta$
 - $\phi \rightarrow K^+ K^-$
- Add e^+ and select on U

"Generic Reconstruction"

- Select η/η'
- Event cuts to minimize missing particles
- Select e^+
- Require leftovers ~D
- Use $p_v \approx p_{miss}$ and select on $M_{\rm BC}$

CLEO-c Preliminary

$D \rightarrow \rho e v$

- Importance: $|V_{ub}|$
 - Grinstein/Pirjol PRD 70, 114005 ('04)
- No published measurements on Cabibbo-suppressed $P \rightarrow V$ FFs

$$\frac{d\Gamma(B \to \rho e v)/dq^2}{d\Gamma(B \to K^* l^+ l^-)/dq^2} \propto \frac{\left|V_{ub}^2\right|}{\left|V_{cb}^2\right|}$$

CLEO-c Preliminary

Need $D \rightarrow K^* ev$ and $D \rightarrow pev$ FFs

• 818/pb $\psi(3770)$, tagged analysis: measure and fit distribution of $U=E_{\text{miss}}$ - cp_{miss} (signal: two-sided CB, BG: generic $\psi(3770)$ MC)

Charm 2010 - October 22, 2010

$D \rightarrow \rho e v$ BF Results

	56/pb(%)	281/pb(%)	This work818/pb(%)
$D^0 \rightarrow \rho^- e^+ \nu$	0.19 ± 0.04 ± 0.01	0.158 ± 0.016 ± 0.009	0.177 ± 0.011 ± 0.010
$D^+ \rightarrow \rho^0 e^+ v$	0.21 ± 0.04 ± 0.01	0.236 ± 0.020 ± 0.012	0.217 ± 0.013 ± 0.011
$D^+ \rightarrow \omega e^+ \nu$	0.16 ^{+0.070} -0.06 [±] 0.01	$0.151 \pm 0.027 \pm 0.007$	0.182 ± 0.018 ±0.008

$$\Gamma(D^0 \to \rho^- e^+ \nu_e) = [4.29 \pm 0.27(\text{stat}) \pm 0.24(\text{syst})] \text{ ns}^{-1}$$

$$\Gamma(D^+ \to \rho^0 e^+ \nu_e) = [2.05 \pm 0.11 ({\rm stat}) \pm 0.90 ({\rm syst})] \ {\rm ns}^{-1}$$

$$\frac{\Gamma(D^0 \to \rho^- e^+ \nu_e)}{2\Gamma(D^+ \to \rho^0 e^+ \nu_e)} = 1.03 \pm 0.08$$

<u> $D \rightarrow \rho ev$ Form Factors</u>

$$\frac{d\Gamma(D^{+} \to \rho^{0}e^{+}\nu_{e}, \rho^{0} \to \pi^{+}\pi^{-})}{dq^{2}d\cos\theta_{\pi}d\cos\theta_{e}d\chi dm(\pi\pi)} = \frac{3}{8(4\pi)^{4}}G_{F}^{2}|V_{cd}|^{2}\frac{p_{\rho}^{0}q^{2}}{M_{D}^{2}}\mathcal{B}(\rho^{0} \to \pi\pi)\mathcal{B}\mathcal{W}^{2}(m(\pi\pi)) \times \\ \left\{ (1+\cos\theta_{e})^{2}\sin^{2}\theta_{\pi}|H_{+}(q^{2},m(\pi\pi))|^{2} + (1-\cos\theta_{e})^{2}\sin^{2}\theta_{\pi}|H_{-}(q^{2},m(\pi\pi))|^{2} + 4\sin^{2}\theta_{e}\cos^{2}\theta_{\pi}|H_{0}(q^{2},m(\pi\pi))|^{2} + 4\sin^{2}\theta_{e}\cos^{2}\chi H_{+}(q^{2},m(\pi\pi))H_{0}(q^{2},m(\pi\pi)) + 2\sin^{2}\theta_{e}\sin^{2}\theta_{\pi}\cos^{2}\chi H_{+}(q^{2},m(\pi\pi))H_{0}(q^{2},m(\pi\pi)) + 2\sin^{2}\theta_{\pi}\sin^{2}\theta_{\pi}\cos^{2}\chi H_{+}(q^{2},m(\pi\pi))H_{0}(q^{2},m(\pi\pi)) + 2\sin^{2}\theta_{\pi}\sin^{2}\theta_{\pi}\cos^{2}\varphi_{\pi}\cos^{2}\chi H_{+}(q^{2},m(\pi\pi))H_{0}(q^{2},m(\pi\pi)) + 2\sin^{2}\theta_{\pi}\sin^{2}\theta_{\pi}\cos^{2}\varphi_{\pi}\cos^{2}\chi H_{+}(q^{2},m(\pi\pi))H_{0}(q^{2},m(\pi\pi)) + 2\sin^{2}\theta_{\pi}\sin^{2}\varphi_{\pi}\cos^{2}\varphi_{\pi}\cos^{2}\varphi_{\pi}\cos^{2}\varphi_{\pi}\cos^{2}\varphi_{\pi}\cos^{2}\varphi_{\pi}\cos^$$

Fit decay rate in 4D to extract FF ratios

$$R_{V} = V(0) / A_{1}(0)$$
$$R_{2} = A_{2}(0) / A_{1}(0)$$

Charm 2010 - October 22, 2010

<u> $D \rightarrow \rho e \nu$ Form Factor Results</u>

CLEO-c Preliminary

 $R_V = 1.48 \pm 0.15 \pm 0.03$ $R_2 = 0.83 \pm 0.11 \pm 0.04$

First measurement of these ratios in Cabibbosuppressed mode

Charm 2010 - October 22, 2010

$D^+ \to K^- \pi^+ e^- v$ and $D^+ \to K^- \pi^+ \mu^- v$ PRD 81, 112001 (2010)

- 818/pb of ψ(3770) data tagged analysis with 6 D⁻ tag modes
- μ/*e* separation purely kinematic
- Measuring both µ and e provides sensitivity to mass-suppressed helicity amplitudes

Phase space ~91%

$D^+ \rightarrow K^- \pi^+ e^- v$ and $D^+ \rightarrow K^- \pi^+ \mu^- v$

PRD 81, 112001 (2010)

Form Factor Determination

• 5 kinematic variables

- $M(K\pi)$, $q^2 = M^2(l\nu)$, θ_V , θ_l , χ

- Model-independent extraction of 6 helicity-basis FFs $H_{+}^{2}(q^{2}), H_{-}^{2}(q^{2}), H_{0}^{2}(q^{2}),$ $H_{t}^{2}(q^{2}), H_{t}H_{0}(q^{2}), h_{0}H_{0}(q^{2})$
- Projective weighting technique
 - FOCUS: PLB 633, 183 (2006)
 - Distinguish contributions of FFs by characteristic decay-angle dists.
- Muons \rightarrow mass-suppressed FF
- Good agreement with SPD model (curves) for dominant FFs. Smaller *H_t* than expected from LQCD?

Exclusive D_s SL Decays

 $E_{\rm CM} = 4170 \text{ MeV} - \sim 0.9 \text{ nb of } D\overline{D}^*$

PRD 80, 052007 (2009) - 6 modes 310/pb

PRD 80, 052009 (2009) - partial update 600/pb

Extra γ complicates tag selection, but SL samples are still very clean

Include first measurements of exclusive D_s SL decays

Signal Mode	n^i	$n_{ m bkg}^i$	$\boldsymbol{\epsilon}_{\mathrm{SL}}^{i}$ (%)	B (%)	
$D_s^+ \rightarrow \eta e^+ \nu_e$	82.49	0.32	37.65 ± 0.27	$2.48 \pm 0.29 \pm 0.13$	
$D_s^+ \rightarrow \eta' e^+ \nu_e$	7.50	0.06	21.04 ± 0.22	$0.91 \pm 0.33 \pm 0.05$	
$D_s^+ \to K^0 e^+ \nu_e$	13.99	0.29	33.14 ± 0.26	$0.37 \pm 0.10 \pm 0.02$	
$D_s^+ \to K^{\star 0} e^+ \nu_e$	7.50	0.18	27.52 ± 0.23	$0.18 \pm 0.07 \pm 0.01$	
$\mathcal{B}(D_s^+ \to \phi ev) = (2$	3.36 ± 0.2	3 ± 0.13	$\mathcal{B}(D_s^+ -$	$\rightarrow f_0 ev \mathcal{B}(f_0 \rightarrow \pi^+ \pi^-)$	$=(0.20\pm0.03\pm0.01)\%$

Full analysis of 600/pb data sample coming soon

Charm 2010 - October 22, 2010

Parting comments...

- CLEO-c will soon complete analysis of what has been a unique data sample for charm physics
 - Rigorous tests of QCD theory in SL decays (as well as leptonic, hadronic) have been made. Experiment is ahead of theory <u>for now</u>
- The job is clearly not done
 - Statistics-limited results on Cabibbo-suppressed SL FF measurement. Many details even of Cabibbo-favored modes need greater statistics. Most D_s measurements are statistics limited
- Where do we go next?

BESIII

Parting comments...

- BESIII already has 910/pb of $\psi(3770)$ data, with a plan for ~4/fb total to be in hand within a year or two
- Precision physics is hard! Much work remains to be done, but much work is under way and powerful tools have been inherited from BESII and CLEO-c
- *D_s* poses special opportunies and challenges
 - Where to collect D_s data?
- Optimistic that BEPCII design luminosity will be achieved, that data samples >10/fb are in reach
- Beyond that, there will doubtless still be compelling charm physics for a future super facility....

