

OPEN CHARM and CHARMONIUM STATES from EFFECTIVE FIELD THEORIES Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < < \land \bigtriangledown > \triangleright •

CONTENTS

- Intro: Salient features of QCD
- Goldstone boson scattering off $D^{(\star)}$ -mesons
- Symmetry tests in charmonium transitions
- Summary & outlook

2

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < \land \bigtriangledown >

Introduction

LIMITS of QCD

• light quarks: $\mathcal{L}_{QCD} = \bar{q}_L \, i D \!\!\!/ q_L + \bar{q}_R \, i D \!\!\!/ q_R + \mathcal{O}(m_q / \Lambda_{QCD})$

- -L- and R-handed quarks decouple \Rightarrow chiral symmetry
- spontaneous chiral symmetry breaking \Rightarrow pseudo-Goldstone bosons
- pertinent EFT \Rightarrow chiral perturbation theory (CHPT)
- heavy quarks: $\mathcal{L}_{\rm QCD} = \bar{Q}_f \, iv \cdot D \, Q_f + \mathcal{O}(\Lambda_{\rm QCD}/m_Q)$

- independent of quark spin and flavor \Rightarrow SU(2) spin and SU(2) flavor symmetries

- pertinent EFT \Rightarrow heavy quark effective field theory

• heavy-light systems:

- heavy hadrons act as matter fields coupled to light pions
- combine CHPT and HQEFT

Donoghue, Wise, Yan, ...

Goldstone boson scattering off $D^{(\star)}$ -mesons

Guo, Krewald, M., Phys. Lett. B **665** (2008) 157 Guo, Hanhart, Krewald, M., Phys. Lett. B **666** (2008) 251 Guo, Hanhart, M., Eur. Phys. J. A **40** (2009) 171 Cleven, Guo, Hanhart, M., arXiv:1009.3804 [hep-ph]

EFFECTIVE LAGRANGIAN for $\phi D o \phi D$

- Goldstone boson octet (π, K, η) scatters off *D*-meson triplet (D^0, D^+, D_s^+)
- multi-scale/multi-faceted problem:
 - light particles, chiral symmetry \rightarrow chiral expansion in (p, m_q)
 - heavy particles, heavy quark symmetry ightarrow expansion in $1/m_c$
 - isospin-violation ightarrow strong = quark mass difference $m_d
 eq m_u$

 \rightarrow electromagnetic = quark charge difference $q_u \neq q_d$

- 16 channels with different total strangeness and isospin
 - some are perturbative
 - some are non-perturbative, require resummation \rightarrow possible molecules

• Effective Lagrangian at NLO:

$$egin{split} \mathcal{L} &= \mathcal{L}^{(1)} + \mathcal{L}^{(2)} \ \mathcal{L}^{(1)} &= \mathcal{D}_{\mu} D \mathcal{D}^{\mu} D^{\dagger} - \overset{\circ}{M}_{D}^{2} D D^{\dagger} \ \mathcal{L}^{(2)}_{ ext{str.}} &= Dig(-h_{0} \langle \chi_{+}
angle - h_{1} ilde{\chi}_{+} + h_{2} \langle u_{\mu} u^{\mu}
angle - h_{3} u_{\mu} u^{\mu} ig) ar{D} \ &+ \mathcal{D}_{\mu} Dig(h_{4} \langle u^{\mu} u^{
u}
angle - h_{5} \{u^{\mu}, u^{
u}\} - h_{6} [u^{\mu}, u^{
u}] ig) \mathcal{D}_{
u} ar{D} \end{split}$$

- -drop terms with flavor traces (large N_C suppressed)
- $-fix h_1$ from *D*-meson mass differences (incl. em effects)
- -fix h_3 from $D_{s0}^{\star}(2317)$ mass (as DK molecule)
- h_{5} varied within natural range, $h_{5} \in [-1,+1]/M_{D}^{2}$

SCATTERING AMPLITUDE

• Chiral expansion

$$\begin{split} T(s,t,u) &= T^{(1)}(s,t,u) + T^{(2)}(s,t,u) \\ &= \frac{C_0}{4F^2}(s-u) + \frac{2C_1}{3F^2}h_1 + \frac{2C_{35}}{F^2}H_{35}(s,t,u) \end{split}$$

 $-C_0, C_1, C_{35}$: channel-dependent Clebsch-Gordan coeffs

• Unitarization: iteration of the fundamental bubble

$$T(s) = V(s) [1 - G(s) \cdot V(s)]^{-1}$$

– once-subtracted dispersive representation
 Oller, M. (2001)

- subtraction constant to fit mass of the $D^{\star}_{s0}(2317)$ at LO

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < / ∇ > \triangleright •

RESULTS for $\phi D \rightarrow \phi D$ etc

• Width of the $D_{s0}^{\star}(2317)$ in the molecular picture

$$\Rightarrow \left| \Gamma(D_{s0}^{\star}(2317)^+ \to D_s^+ \pi^0) = (180 \pm 110) \, \text{keV} \right| \text{ testable prediction}$$

- uncertainty from exp. input and variation of h_5

note: much smaller in quark models (a few keV)

• expectation for the scattering length for DK(I = 0) in the molecular picture:

$$a_{DK}^{I=0} = -g_{ ext{eff}}^2 \Delta_{DK} = -rac{1}{2\sqrt{\mu_{DK}arepsilon}} \simeq 1\, ext{fm}$$

no data, but first lattice investigations at varying quark masses
 Liu, Lin, Orginos, PoS LATTICE2008:112,2008

QUARK MASS DEPENDENCE

• predictions: channels with no poles

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < < \land \bigtriangledown > |

QUARK MASS DEPENDENCE cont'd

• *predictions:* channels with poles \rightarrow resonances or molecular states

a pair of poles above thr.

$$a_{D\pi}^{(0,1/2)}=0.35(1)$$
 fm

a bound states below thr. $D^{*}_{s0}(2317)$

$$a_{DK}^{(1,0)} = -0.93(5)$$
 fm

 \Rightarrow lattice test of the molecular nature

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < / ∇ > \triangleright •

NATURE of the $D_{s1}(2460)$

- Nature of the $D_{s1}(2460)$: $M_{D_{s1}(2460)} M_{D_{s0}^*(2317)} \simeq M_{D^*} M_D$
- \Rightarrow most likely a $D^{\star}K$ molecule (if the $D^{\star}_{s0}(2317)$ is DK)
- \Rightarrow study Goldstone boson scattering off D- and D^{\star} -mesons
- Use heavy meson chiral perturbation theory

Wise, Falk et al., Caslabuoni et al., ...

$$egin{aligned} H_v &= rac{1+
ot\!\!\!/}{2} \left[
ot\!\!\!\!/_v + i P_v \gamma_5
ight] \ P &= \left(D^0, D^+, D^+_s
ight) \,, \ V_\mu &= \left(D^{*0}_\mu, D^{*+}_\mu, D^{*+}_{s,\mu}
ight) \end{aligned}$$

- T-matrix:
- Unitarization (as before) \rightarrow find poles in the complex plane

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < \land \bigtriangledown \lor \lor \lor \lor \lor

KAON MASS DEPENDENCE

• Mass and binding energy: $M_{
m mol} = M_K + M_H - \epsilon$

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < < \land \bigtriangledown \lor \triangleright \triangleright •

Symmetry tests in charmonium transitions

Guo, Hanhart, M., Phys. Rev. Lett. **103** (2009) 082003
Guo, Hanhart, Li, M., Zhao, Phys. Rev. D **82** (2010) 034025
Guo, Hanhart, Li, M., Zhao, arXiv:1008.3632 [hep-ph]
Guo, Hanhart, M., Phys. Rev. Lett. **105** (2010) 162001

CHARMONIUM TRANSITIONS

• consider charmonium transitions with emission of one neutral pion or one η between *S* and *P*-wave states: *SS*, *SP*, *PP*

- analysis combining HQEFT and CHPT for most transitions possible
- $\mathcal{B}(\psi' \to J/\psi\pi^0)/\mathcal{B}(\psi' \to J/\psi\eta)$ long believed a fine probe for m_u/m_d loffe, Voloshin, Donoghue, ...

BASIC INGREDIENTS

- QCD multipole expansion:
- \Rightarrow soft gluon dominance/hadronization

 $\lambda_{
m glue} \gg \langle r
angle_{
m quarkonium}$

Gottfried (1978), Voloshin (1979), ...

- Non-multipole (coupled-channel) effects:
- \Rightarrow intermediate meson loops
- \Rightarrow two-step OZI-violating process
 - Lipkin (1987), Lipkin, Tuan (1989), ...

EFFECTIVE LAGRANGIAN

Casalbuoni et al., Mehen, Yan et al., ...

• Leading order effective Lagrangian:

$$egin{split} \mathcal{L}_{ ext{eff}} &= \mathcal{L}_{SS} + \mathcal{L}_{SP} + \mathcal{L}_{PP} \ \mathcal{L}_{SS} &= rac{A}{4} \left[\langle J' \sigma^i J^\dagger
angle - \langle J^\dagger \sigma^i J'
angle
ight] \partial^i \left(\chi_-
ight)_{aa} \ \mathcal{L}_{SP} &= rac{i}{4} C \left[\langle ec{\chi}^\dagger \cdot ec{\sigma} J'
angle + \langle J' ec{\sigma} \cdot ec{\chi}^\dagger
angle
ight] \left(\chi_-
ight)_{aa} \ \mathcal{L}_{PP} &= i rac{\gamma}{2} \epsilon^{ijk} \langle \chi'^i \chi^{j\dagger}
angle \partial^k \left(\chi_-
ight)_{aa} \end{split}$$

• Building blocks:

$$egin{aligned} &J=ec\psi\cdotec\sigma+\eta_c\ &\chi^i=\sigma^j\left(-\chi^{ij}_{c2}-rac{1}{\sqrt{2}}\epsilon^{ijk}\chi^k_{c1}+rac{1}{\sqrt{3}}\delta^{ij}\chi_{c0}
ight)+h^i_c\ \end{aligned}$$
 heavy fields $&U=\exp(i\sqrt{2}\phi/F_\pi),\ U=u^2,\ \chi_-=u\chi^\dagger u-u^\dagger\chi u^\dagger$ light fields

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < \land \bigtriangledown \lor \lor \lor \lor \lor

LEADING ORDER TRANSITIONS

- all transitions break SU(2) or SU(3) flavor \rightarrow sensitive to quark mass differences
- virtual photons can be shown to be absent at leading order
- transitions at leading order (LO):

$$\begin{array}{ll} \psi' \rightarrow J/\psi \pi^0 & i6A\epsilon^{ijk} \varepsilon^i(\psi') \varepsilon^j(J/\psi) q^k B_{du} \\ \psi' \rightarrow J/\psi \eta & i(8/\sqrt{3}) A\epsilon^{ijk} \varepsilon^i(\psi') \varepsilon^j(J/\psi) q^k B_{sl} \\ \psi' \rightarrow h_c \pi^0 & 6C \vec{\varepsilon}(\psi') \cdot \vec{\varepsilon}(h_c) B_{du} \\ \eta'_c \rightarrow \chi_{c0} \pi^0 & 6\sqrt{3} C B_{du} \\ \chi'_{c0} \rightarrow \chi_{c1} \pi^0 & -2\sqrt{6} i\gamma \vec{\varepsilon}(\chi_{c1}) \cdot \vec{q} B_{du} \\ \chi'_{c1} \rightarrow \chi_{c1} \pi^0 & -i3\gamma \epsilon^{ijk} \varepsilon^i(\chi'_{c1}) \varepsilon^j(\chi_{c1}) q^k B_{du} \\ \chi'_{c1} \rightarrow \chi_{c2} \pi^0 & 3\sqrt{2} i\gamma \varepsilon^i(\chi'_{c1}) \varepsilon^{ij}(\chi_{c2}) q^j B_{du} \\ \chi'_{c2} \rightarrow \chi_{c2} \pi^0 & -i6\gamma \epsilon^{ijk} \varepsilon^{il}(\chi'_{c2}) \varepsilon^{jl}(\chi_{c2}) q^k B_{du} \\ h'_c \rightarrow h_c \pi^0 & -i6\gamma \epsilon^{ijk} \varepsilon^i(h'_c) \varepsilon^j(h_c) q^k B_{du} \end{array}$$

 $B_{du} \sim (m_d - m_u), \ B_{sl} \sim (m_s - m_l) \ \ [m_l = (m_d + m_u)/2]$

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < < \land \bigtriangledown > \triangleright •

INCLUSION of CHARMED MESON LOOPS

- consider intermediate charmed mesons
- power counting scheme: 3 parameters
 - q momentum of the soft pion/eta
 - δ strength of SU(2)/SU(3) breaking
 - v heavy quark velocity, $v\simeq 0.5$

	SS	SP	PP
tree level	$q\delta$	δ	$q\delta$
loops	$qrac{1}{oldsymbol{v}}\delta$	$rac{q^2}{v^3 M_D^2} \delta$	$qrac{1}{v^3}\delta$

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < / ∇ > \triangleright •

GOOD NEWS and BAD NEWS I

• bad news first:

charmed meson loops dominate $\psi'
ightarrow J/\psi \pi^0\left(\eta
ight)$ transitions

 $ullet v = \sqrt{(2M_{ar D}-M_{ar \psi})/M_{ar D}pprox 0.53)}$

• results (coupling g from $D^*
ightarrow D\pi$):

$$egin{aligned} \Gamma(\psi' o J/\psi \pi^0) &= (4.8 \pm 2.5) \cdot 10^{-2} g_2^2 (g_2')^2 \ \mathrm{keV} \ \Gamma(\psi' o J/\psi \eta) &= (4.3 \pm 2.3) \cdot 10^{-1} g_2^2 (g_2')^2 \ \mathrm{keV} \ &\Rightarrow \boxed{R_{\pi^0/\eta}^{\mathrm{loop}} = 0.11 \pm 0.06 \ [0.04 \pm 0.003]} \end{aligned}$$

 \Rightarrow need higher order calculation in $v~(1/m_c)$ to achieve the necessary precision for the extraction of m_u/m_d

GOOD NEWS and BAD NEWS II

• and now the good news:

charmed meson loops suppressed in $\psi'
ightarrow h_c \pi^0$ and $\eta'_c
ightarrow \chi_{c0} \pi^0$

$$\frac{1}{v^3} \frac{\vec{q}_{\pi}^2}{m_D^2} \simeq 0.02 \ [0.1] \quad \text{for} \quad \psi' \to h_c \pi^0 \ [\eta'_c \to \chi_{c0} \pi^0]$$

\Rightarrow predictions:

ullet relative prediction from the tree graphs [accuracy $\sim \mathcal{O}(m_\pi/\Lambda_\chi,\Lambda_{
m QCD}/m_c)$]:

$$\frac{\Gamma\left(\eta_c' \to \chi_{c0} \pi^0\right)}{\Gamma\left(\psi' \to h_c \pi^0\right)} = 5.86 \pm 0.94 \Rightarrow \boxed{\Gamma\left(\eta_c' \to \chi_{c0} \pi^0\right) = 1.5 \pm 0.3_{\exp} \pm 0.2_{\mathrm{th}} \,\mathrm{keV}}$$
$$\Rightarrow \text{ testable prediction (\overline{P}ANDA at FAIR)}$$

• absolute prediction using $m_u/m_d = 0.47 \pm 0.08$ Leutwyler 2010

 $\Gamma \left(\psi' \to h_c \pi^0
ight) = (0.9 \pm 0.6) \tilde{C}^2 \text{ keV}$ cf $\Gamma (\psi' \to h_c \pi^0) = 0.26 \pm 0.05 \text{ keV}$ BES-III, PRL 105 (2010)

TESTING the LOOPS in PP TRANSITIONS

Note: $-\chi'_{c2}$ identified with Z(3930) Belle (2006)

– mass of χ'_{c1} from quark model predictions

 \Rightarrow more testable predictions

... and EVEN BETTER NEWS

- Consider bottomonium transitions: $\Upsilon(4S) \rightarrow h_b \pi^0(\eta)$
- Loops are suppressed for two reasons:

 $\star ec{q}^2/(v^3 M_B^2) \simeq 0.6~(0.2)$ $\star M_{B^0} - M_{B^+} = 0.33 \pm 0.06~{
m MeV} \ll m_d - m_u$

due to strong & em interference

Guo, Hanhart, M., JHEP 0809 (2008) 136

 $\Rightarrow r = \frac{m_d - m_u}{m_d + m_u} \frac{m_s + \hat{m}}{m_s - \hat{m}} \text{ can be extracted with an accuracy of about 23 \%}$

• by-product: $\Upsilon(4S) \to h_b \eta$ is a nice channel to search for the h_b (sizeable bf $\sim 10^{-3}$)

 \Rightarrow possible to measure at LHCb

SUMMARY & OUTLOOK

• Charm-strange mesons as DK resp. D^*K molecules

- unitarized CHPT at next-to-leading order
- * various tests proposed for this scenario (exp., lattice)
- Charmonium transitions with emission of a neutral pion or eta
 - * charmed meson loops must be considered
 - many tests of the loop scenario

 \rightarrow see talk by Qiang Zhao on Saturday

 $\star m_u/m_d$ best from $\Upsilon(4S) o h_b \pi^0\left(\eta
ight)$

Need to improve theoretical framework, more connection to lattice QCD

\Rightarrow golden times with BEPCII & FAIR ahead

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < < < > ∇ > ∇ • • •

RESULTS for the SCATTERING LENGTHS

(S,I)	Channel	LO	NLO	UChPT	CUChPT	Lattice
(-1,0)	$D\bar{K} \rightarrow D\bar{K}$	0.36	0.31(2)	0.96(20)		
(-1,1)	$D\bar{K} \rightarrow D\bar{K}$	-0.36	-0.41(2)	-0.22(2)		-0.23(4)
$\left(0,\frac{1}{2}\right)$	$D\pi \to D\pi$	0.24	0.23(0)	0.36(1)	0.35(1)	
	$D\eta ightarrow D\eta$	0	-0.09(1)	-0.08(1)	0.19(9) + i0.02(2)	
	$D_s \bar{K} \to D_s \bar{K}$	0.36	0.31(6)	1.10(57)	-0.60(53) + i0.77(15)	
$\left(0,\frac{3}{2}\right)$	$D\pi \to D\pi$	-0.12	-0.12(0)	-0.10(1)		-0.16(4)
(1,0)	$DK \to DK$	0.72	0.67(4)	-1.47(20)	-0.93(5)	
	$D_s\eta \to D_s\eta$	0	0.00(10)	0.02(10)	-0.33(4) + i0.05(1)	
(1,1)	$D_s\pi \to D_s\pi$	0	-0.005	-0.005	-0.0003(4)	0.00(1)
	$DK \to DK$	0	-0.054	-0.049	-0.04(6) + i0.29(11)	
$(2,\frac{1}{2})$	$D_s K \to D_s K$	-0.36	-0.41(6)	-0.23(5)		-0.31(2)

- parameter-free predictions \rightarrow agreement wit LQCD (where available)
- in most channels, sizeable unitarization effects

EFFECTIVE LAGRANGIAN for $\phi D^{\star} \rightarrow \phi D^{\star}$

• Effective Lagrangian at NLO:

$$egin{split} \mathcal{L} &= \mathcal{L}^{(1)} + \mathcal{L}^{(2)} \ \mathcal{L}^{(1)} &= -i \mathrm{Tr}[ar{H}_a v_\mu D^\mu H_b] + g_\pi \mathrm{Tr}[ar{H}_a H_b \gamma_
u \gamma_5] u^
u_{ba} \ &+ rac{\lambda}{m_Q} \mathrm{Tr}[ar{H}_a \sigma_{\mu
u} H_a \sigma^{\mu
u}] \end{split}$$

$$-~g_{\pi}$$
 from $D^{\star}
ightarrow D\pi$ decay, $~g_{\pi}=0.30\pm0.08$

– spin-splitting $\Delta=m_{V^*}-m_P=-8rac{\lambda}{m_Q}$ from phys. masses

 $(-\mathcal{L}^{(2)}[H_v,U])$ with LECs $h_1,...,h_5$ as before

Open charm and ... from EFTs – Ulf-G. Meißner – CHARM2010, IHEP, Beijing, Oct. 21, 2010 · O < < < > > > > • •

PION MASS DEPENDENCE

• Mass and binding energy

 \Rightarrow different in strength from a quark-antiquark state

28