Charm Spectroscopy from *B* factories

Jose Benitez (SLAC) Representing the **BABAR** Collaboration

Charm 2010 Workshop

Beijing October 23, 2010

Contact: benitezj@slac.stanford.edu

Production of Charm Mesons at B-factories

B factories produce charm mesons directly from *cc̄* hadronization or from decays of *B* mesons.

Inclusive Production: $e^+e^- \rightarrow c\bar{c} \rightarrow D_{(s)}^{**} X$ Exclusive Production: $e^+e^- \rightarrow b\bar{b} \rightarrow B\bar{B}, B \rightarrow D_{(s)}^{**} X$ where $D_{(s)}^{**}$ can be some excited charm meson.

$e^+e^- \rightarrow$	Cross-section (nb)		
$b\bar{b}$	1.05		
$c\overline{c}$	1.30		
$S\overline{S}$	0.35		
$u\overline{u}$	1.39		
$d\overline{d}$	0.35		
$\tau^+ \tau^-$	0.94		
$\mu^+\mu^-$	1.16		
e^+e^-	~ 40		

Charm Spectroscopy from B-factories

Predictions for the *D* and D_s states

- Predictions of the *D* and *D*_s mass eigenstates were performed since 1985 using QCD potential models.
- Recently (2001) the D_s spectrum predictions have been updated.
- The predicted masses of the excited states are generally in qualitative agreement with observations, however, for some states large quantitative differences exist.

SLAC

3

Charm Spectroscopy from B-factories

The History

First observations:

D		$D_{ m s}$
$\Box 1^{1}S_{0}: D$	Mark I 1975	$\Box 1^{1}S_{0}: D_{s}$
$\Box 1^{3}S_{1}:D^{*}$	Mark I 1977	$\Box 1^{3}S_{1}: D_{s}^{*}$
$\square 1^{3}P_{1}: D_{I}(2420)$	ARGUS1986	$\square 1^{1}P_{1}: D_{gl}(2536)$
$\square 1^{3}P_{2}: D_{2}^{*}(2460)$	TPS 1989	$\square 1^{3}P_{2}; D_{2}^{*}(2573)$
$\square 1^{3}P_{0}: D_{0}^{*}(2400)$	BELLE 2004	$= 1^{3}P_{2}: D_{s2}(2460)$
$\square 1^{1}P_{1}: D_{I}(2430)$	BELLE 2004	$= 1^{3} D \cdot D^{*(2217)}$
$\square 2^{1}S_{0}: D(2550)$	BaBar 2010	$\square 1^{3}P_{0} D_{s0} (2317)$
$\square 2^{3}S_{1}: D^{*}(2600)$	BaBar 2010	$\square 2^{3}S_{1}: D_{s}(2710)$
$\square 1^{?}D_{2}: D(2750)$	BaBar 2010	$\square 1^{?}D_{?}: D_{s}^{*}(2860)$
$\square 1^{?}D_{?}: D^{*}(2760)$	BaBar 2010	$\square ???_{?}: D_{s}(3040)$

CLEO 1983 TPC 1984 **ARGUS1989** CLEO2 1994 CLEO2 2003 BaBar 2003 BaBar 2006 BaBar 2006 BaBar 2009

Recent studies of these states will be presented in this talk.

Charm Spectroscopy from B-factories

The $D_{s0}^{*}(2317)$

The $D_{s0}^{*}(2317)$

- In an inclusive study of the D_sπ⁰ system BaBar discovered the narrow D_{s0}*(2317) state (2003) [*BaBar 91 fb-1* Phys. Rev. Lett. 90, 242001 (2003)].
- The low unexpected mass of this state triggered many subsequent studies by both BaBar and BELLE including the following:
 - □ $B \rightarrow D_{s0}^{*}(2317) D$ [BELLE ~110 fb⁻¹ Phys. Rev. Lett. 91, 262002 (2003)]
 - □ $D_{s0}^{*}(2317) \rightarrow D_{s}\pi^{0}$ inclusive [BELLE 87 fb⁻¹ Phys. Rev. Lett. 92, 012002 (2004)]
 - □ $B \rightarrow D_{s0}^{*}(2317) D^{(*)}$ [BaBar 113 fb⁻¹ Phys. Rev. Lett. 93, 181801 (2004)]
 - □ $B \rightarrow D_{s0}^{*}(2317) K$ [BELLE 140 fb⁻¹ Phys. Rev. Lett. 94, 061802 (2005)]

Charm Spectroscopy from B-factories

Precision $D_{s1}(2536)$ Parameters

Precision D_{s1}(2536) Parameters

- Preliminary BaBar analysis using 384 fb⁻¹ [presented at ICHEP 2010].
- Inclusive reconstruction of $D_{s1}(2536)^+ \rightarrow D^{*+}K_S$ where $D^{*+} \rightarrow D^0 \pi^+$ and $D^0 \rightarrow K^- \pi^+$ or $K^- \pi^+ \pi^- \pi^+$
- Parameters determined from the mass difference $\Delta m = m(D^*K_S) - m(D^*) - m(K_S)$ resolution is about 0.26 MeV.
- Preliminary results:

$$\begin{split} m(D_{s1}^+) &= (2535.10 \pm 0.01 \pm 0.18) \,\mathrm{MeV}/c^2 \\ \Gamma(D_{s1}^+) &= (0.92 \pm 0.03 \pm 0.04) \,\mathrm{MeV} \end{split}$$

• This is the first measurement of the $D_{s1}(2536)$ width.

Charm Spectroscopy from B-factories

8

D_{s1}(2536) Angular Analysis

BaBar Preliminary

• Signal yield is extracted as a function of the helicity angle θ '.

 Angular distribution indicates un-natural spin-parity.

 Significant *D*-wave contribution is present in the decay.

J^P	$dN/d\cos heta'$	$\chi^2/NDF(K4\pi)$	$\chi^2/NDF(K6\pi)$
0+	forbidden	-	-
0-	$\propto \cos^2 heta'$	2142.7/19	2440.8/19
$1^-, 2^+, 3^-, \ldots$	$\propto \sin^2 heta'$	103.2/19	108.8/19
$1^+, 2^-, 3^+, \dots (S$ -wave only)	const	392.1/19	425.1/19
$1^+, 2^-, 3^+, \dots$ (S-, D-wave)	$\propto (\sin^2 heta' + eta \cos^2 heta')$	$24.9/18 \ (\beta = 0.23 \pm 0.03)$	$9.5/18~(\beta = 0.24 \pm 0.03)$

Charm Spectroscopy from B-factories

Inclusive Study of DK and D^*K Systems

Inclusive Study of DK and D^*K Systems

- The following channels have been analyzed:
 - $\Box \quad \mathsf{D}^{0}\mathsf{K}^{+} \text{ using } \mathsf{D}^{0} \xrightarrow{} \mathsf{K}^{-}\pi^{+}$
 - □ D^+K_S using $D^+ \rightarrow K^-\pi^+\pi^+$
 - $\Box \quad \mathsf{D}^{*+}\mathsf{K}_{\mathsf{S}} \text{ using } \mathsf{D}^{*+} \rightarrow \mathsf{D}^{0}\pi^{+}, \ \mathsf{D}^{+}\pi^{0} \quad (\mathsf{D} \rightarrow \mathsf{K}^{-}\pi^{+}, \ \mathsf{K}^{-}\pi^{+}\pi^{-}, \pi^{+}, \ \mathsf{D}^{+} \rightarrow \mathsf{K}^{-}\pi^{+}\pi^{+})$
 - □ $D^{*0}K^+$ using $D^{*0} \rightarrow D^0\pi^0$ ($D^0 \rightarrow K^-\pi^+$)

[BABAR (470 fb⁻¹) Phys. Rev. D 80, 092003 (2009)]

Charm Spectroscopy from B-factories

Parameters of D_{sJ} Structures

- The mass values of the D_s*(2710) and D_s*(2860) are close to those of the first radial excitation of the D_s* and L=2 excited states, respectively.
- The mass of the D_s(3040) is close to that of the second radial excitation predicted in Ref. [T. Matsuki etal., Eur. Phys. J. A 31, 701 (2007)]
- The ratios of the D*K over DK branching fractions have been determined.
- For the D_s*(2710) the ratio is consistent with the value predicted for the first radial excitation. [P. Colangelo etal., Phys.Rev. D 77, 014012 (2008)]

$$m(D_{s1}^{*}(2710)^{+}) = 2710 \pm 2_{\text{stat}} (^{+12}_{-7})_{\text{syst}} \text{ MeV}/c^{2},$$

$$\Gamma = 149 \pm 7_{\text{stat}} (^{+39}_{-52})_{\text{syst}} \text{ MeV},$$

$$m(D_{sJ}^{*}(2860)^{+}) = 2862 \pm 2_{stat}(^{+5}_{-2})_{syst} \text{ MeV}/c^{2},$$

 $\Gamma = 48 \pm 3_{stat} \pm 6_{syst} \text{ MeV},$

$$m(D_{sJ}(3040)) = 3044 \pm 8_{\text{stat}} (^{+30}_{-5})_{\text{syst}} \text{ MeV}/c^2,$$

$$\Gamma = 239 \pm 35_{\text{stat}} (^{+46}_{-42})_{\text{syst}} \text{ MeV}.$$

$$\frac{\mathcal{B}(D_{s1}^*(2710)^+ \to D^*K)}{\mathcal{B}(D_{s1}^*(2710)^+ \to DK)} = 0.91 \pm 0.13_{\text{stat}} \pm 0.12_{\text{syst}},$$

$$\frac{\mathcal{B}(D_{sJ}^*(2860)^+ \to D^*K)}{\mathcal{B}(D_{sJ}^*(2860)^+ \to DK)} = 1.10 \pm 0.15_{\text{stat}} \pm 0.19_{\text{syst}}.$$

Charm Spectroscopy from B-factories

Angular Analysis of the D^{*}K System

- The helicity angle θ_h defined by the Kaon and pion provides information about the quantum numbers of the resonances.
- For both the D_s^{*}(2710) and D_s^{*}(2860), the angular distribution is consistent with natural parity.
- For the D_s(3040) the angular distribution is not conclusive.

[BABAR (470 fb⁻¹) Phys. Rev. D 80, 092003 (2009)]

Charm Spectroscopy from B-factories

Jose Benitez SLAC

13

Exclusive Studies of Broad D States

Exclusive Studies of Broad D States

■ Parameters of the $D_1(2430)$ determined from a Dalitz plot analysis of B⁺→D^{*-} $\pi^+\pi^+$:

> $M_{D'_1^0} = 2427 \pm 26 \pm 20 \pm 15 \text{ MeV}/c^2,$ $\Gamma_{D'_1^0} = 384^{+107}_{-75} \pm 24 \pm 70 \text{ MeV}.$

[BELLE 60 fb⁻¹ Phys. Rev. D 69, 112002 (2004)]

• The $D_0^*(2400)$ was confirmed by BaBar and its parameters determined from a Dalitz plot analysis of B⁺ \rightarrow D⁻ $\pi^+\pi^+$:

$$m_{D_0^{*0}} = (2297 \pm 8 \pm 5 \pm 19) \text{ MeV}/c^2$$

 $\Gamma_{D_0^{*0}} = (273 \pm 12 \pm 17 \pm 45) \text{ MeV},$

[BaBar 350 fb⁻¹ Phys. Rev. D 79, 112004 (2009)]

Charm Spectroscopy from B-factories

Inclusive Study of $D\pi$ and $D^*\pi$

Inclusive Study of $D\pi$ and $D^*\pi$

• Analysis of $D\pi$ and $D^*\pi$ systems produced from $c\overline{c}$ events:

$$e^+e^- \to c\bar{c} \to D^{**}X \to D^{(*)}\pi X$$

X represents any additional system.

- The following channels are reconstructed:

 - $D^{**+} \rightarrow D^0 \pi^+ \overset{L}{}_{K^-} \pi^+$

•
$$D^{**0} \to D^{*+}\pi^{-}$$

 ${}^{L}D^{0}\pi^{+}$
 ${}^{L}K^{-}\pi^{+} \text{ or } K^{-}\pi^{+}\pi^{-}\pi^{+}$

• The data set corresponds to about **10 times** more signal events than the previous study by the CDF collaboration.

 e^+

[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]

D, D*

π

The $D^+\pi^-$ System

- The mass distribution of the $D^+\pi^$ final state presents a prominent signal from the $D_2^*(2460)$ as well as two new structures at 2.60 GeV and 2.76 GeV.
- The peaking background at 2.30 GeV is due to D₂*(2460) and D₁(2420) decaying to D*π where the slow pion is missing.
- The broad D₀^{*}(2400) improves the fit quality, its parameters are floated within 2σ from the known values.
- The χ^2 /NDF of the fit is 281/242.

[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]

Charm Spectroscopy from B-factories

The $D^0\pi^+$ System

- To confirm the new signals, the D⁰π⁺ system is analyzed.
- In this channel the feed-down backgrounds are stronger and the signal statistics of this are smaller so the widths of all signals are fixed to the widths measured in the D⁺π⁻.
- The mass values obtained are a few MeV higher than in D⁺π⁻, consistent with being the isospin partners.
- The fit quality is χ^2 /NDF=278/224.

[**BABAR** (454 fb⁻¹) *arXiv:1009.2076, submitted to PRD-RC (2010)*]

Charm Spectroscopy from B-factories

The $D^{*+}\pi^{-}$ System

- The D*π system shows prominent signals of D₁(2420) and D₂*(2460).
- In addition, there are new structures in the higher mass region. The region at 2.60 GeV is populated by two signals, while at 2.75 GeV there is a signal similar to the D*(2760) from D+π⁻.
- The parameters of the D₂*(2460) and D*(2600) are fixed to the ones from the D⁺π⁻.
- The fit quality is χ^2 /NDF=244/207.

[**BABAR (454 fb**⁻¹) *arXiv:1009.2076, submitted to PRD-RC (2010)*]

Charm Spectroscopy from B-factories

$D^{*+}\pi^{-}$ with $|\cos\theta_{\rm H}| > 0.75$

- The selection |cos(θ_H)|>0.75 is applied to suppress the resonances with natural spin-parity (dN/dcosθ_H ~ sin²θ_H).
- This fit allows to determine the parameters of the D(2550) under the assumption that the D^{*}(2600) is the same signal observed in D⁺ π^{-} .
- The parameters of the $D_2^*(2460)$ and $D^*(2600)$ are fixed to the values from $D^+\pi^-$.
- This fit also determines the parameters of the D₁(2420).
- The fit quality is χ^2 /NDF=214/205.

Charm Spectroscopy from B-factories

BaBar

Preliminary

$D^{*+}\pi^{-}$ with $|\cos\theta_{\rm H}| < 0.5$

- The selection $|\cos\theta_{H}| < 0.5$ is applied to favor the resonances with natural spin-parity.
- In this fit, the parameters of all signals, except the D(2750), are fixed to the values from the previous fits.
- This fit allows to observe clearly the D^{*}(2600) signal and shows consistency in the fit model.
- The fit quality is χ^2 /NDF=210/209.

arXiv:1009.2076, submitted to PRD-RC (2010)]

Charm Spectroscopy from B-factories

Jose Benitez **SLAC**

18

Fit D

Resonance Parameters:

- The uncertainties on most parameters are dominated by systematic uncertainties.
- The systematic uncertainty includes the following sources: bin size and mass range of the histogram, errors on parameters fixed in the fits, Breit-Wigner shape of the new signals, a possible contribution from the D₁(2430), and background modeling.
- The significance of the new signals is estimated from the yield over its total uncertainty.

\mathbf{R} esonance	$\operatorname{Channel}(\operatorname{Fit})$	Efficiency (%)	Yield $(x10^3)$	Mass MeV/c^2	Width MeV	Significance
$D_1(2420)^0$	$D^{*+}\pi^{-}(C)$		$102.8 \pm 1.3 \pm 2.3$	$2420.1 \pm 0.1 \pm 0.8$	$31.4 \pm 0.5 \pm 1.3$	
	$D^{*+}\pi^{-}$ (E)	1.09 ± 0.03	$214.6 \pm 1.2 \pm 6.4$	2420.1(fixed)	31.4(fixed)	
$D_2^*(2460)^0$	$D^{+}\pi^{-}(A)$	1.29 ± 0.03	$242.8 \pm 1.8 \pm 3.4$	$2462.2 \pm 0.1 \pm 0.8$	$50.5 \pm 0.6 \pm 0.7$	
	$D^{*+}\pi^{-}(E)$	1.12 ± 0.04	$136 \pm 2 \pm 13$	2462.2(fixed)	50.5(fixed)	
$D(2550)^{0}$	$D^{*+}\pi^{-}(C)$		$34.3 \pm 6.7 \pm 9.2$	$2539.4 \pm 4.5 \pm 6.8$	$130 \pm 12 \pm 13$	3.0σ
	$D^{*+}\pi^{-}(E)$	1.14 ± 0.04	$98.4 \pm 8.2 \pm 38$	2539.4(fixed)	130(fixed)	
$D^{*}(2600)^{0}$	$D^{+}\pi^{-}(A)$	1.35 ± 0.05	$26.0\pm1.4\pm$ 6.6	$2608.7 \pm 2.4 \pm 2.5$	$93 \pm 6 \pm 13$	3.9σ
	$D^{*+}\pi^{-}(D)$		$50.2 \pm 3.0 \pm 6.7$	2608.7(fixed)	93(fixed)	7.3σ
	$D^{*+}\pi^{-}$ (E)	1.18 ± 0.05	$71.4 \pm 1.7 \pm 7.3$	2608.7(fixed)	93(fixed)	
$D(2750)^{0}$	$D^{*+}\pi^{-}(E)$	1.23 ± 0.07	$23.5 \pm 2.1 \pm 5.2$	$2752.4 \pm 1.7 \pm 2.7$	$71 \pm 6 \pm 11$	4.2σ
$D^{*}(2760)^{0}$	$D^{+}\pi^{-}(A)$	1.41 ± 0.09	$11.3 \pm 0.8 \pm 1.0$	$2763.3 \pm 2.3 \pm 2.3$	$60.9 \pm 5.1 \pm 3.6$	8.9σ
$D_2^*(2460)^+$	$D^0\pi^+$ (B)		$110.8 \pm 1.3 \pm 7.5$	$2465.4 \pm 0.2 \pm 1.1$	50.5(fixed)	
$D^{*}(2600)^{+}$	$D^{0}\pi^{+}(B)$		$13.0 \pm 1.3 \pm 4.5$	$2621.3 \pm 3.7 \pm 4.2$	93(fixed)	2.8σ
$D^{*}(2760)^{+}$	$D^{0}\pi^{+}$ (B)		$5.7 \pm 0.7 \pm 1.5$	$2769.7 \pm 3.8 \pm 1.5$	60.9(fixed)	3.5σ

[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]

Angular Analysis of $D^{*+}\pi^-$

- The signal yields have been extracted as a function of $\cos\theta_{\rm H}$.
- The D₁(2420) shows a 1+Acos²θ_H distribution indicating unnatural spin-parity. The value for A indicates a significant S-wave contribution in the decay.
- The $D_2^*(2460)$ shows a $\sin^2\theta_H$ distribution consistent with the natural spin-parity assignment.

Charm Spectroscopy from B-factories

Angular Analysis of $D^{*+}\pi^-$

- For the signal D(2550) a cos²($\theta_{\rm H}$) distribution is obtained consistent with a J^P=0⁻ value.
- For the signal $D^*(2600)$ a sin²(θ_H) distribution is obtained consistent with natural spin-parity.
- For the signal D(2750) the interpretation of the distribution is not conclusive.

Charm Spectroscopy from B-factories

Interpretation of the $D\pi$ and $D^*\pi$ Results

- The $D^*(2600)$ signal observed in $D\pi$ and $D^*\pi$ has a mass value and helicity distribution consistent with the first radial excitation of the $D^*(2010)$.
- Likewise, the D(2550) observed in $D^*\pi$ has a mass value and helicity distribution consistent with the first radial excitation of the D^0 .
- The D(2750) observed in $D^*\pi$ has mass value lower than the $D^*(2760)$ observed in $D^+\pi^-$. The helicity distribution is not conclusive. These two signals may be due to the four L=2 excited states.

Charm Spectroscopy from B-factories

Conclusions

- The *B*-factories have large potential for advancing the understanding of the charmed hadron spectrum. In this talk, recent studies of the *D* and *D*_s mesons have been presented.
- The spectroscopy of charmed mesons has revived in recent years (2009-2010) with the observations by the BaBar of new structures in the *DK*, D^*K , $D\pi$, and $D^*\pi$ systems. These studies find candidates for the radial and L=2 excited states of the D_s and D mesons.
- Precision measurements of the narrow L=1 D_s mesons are possible from the large Data sets. A first measurement of the $D_{s1}(2536)$ decay width has been presented here.
- Charmed mesons obtained from *B* decays allow for the study of the broad L=1 states. However, updated studies of these decays are needed. In particular an analysis of $B^+ \rightarrow D^{*-}\pi^+\pi^+$ might provide much better parameter values for the $D_1(2430)$, and evidence for new the structures observed in the inclusive $D^{(*)}\pi$ analyses.