Charm Spectroscopy from *B* factories

Jose Benitez (SLAC)

Representing the BABAR Collaboration

Charm 2010 Workshop

Beijing October 23, 2010

Contact: benitezj@slac.stanford.edu

Production of Charm Mesons at B-factories

■ B factories produce charm mesons directly from $c\bar{c}$ hadronization or from decays of B mesons.

Inclusive Production: $e^+e^- \rightarrow c\bar{c} \rightarrow D_{(s)}^{**} X$

Exclusive Production: $e^+e^- \rightarrow b\bar{b} \rightarrow BB$, $B \rightarrow D_{(s)}^{**}$ X

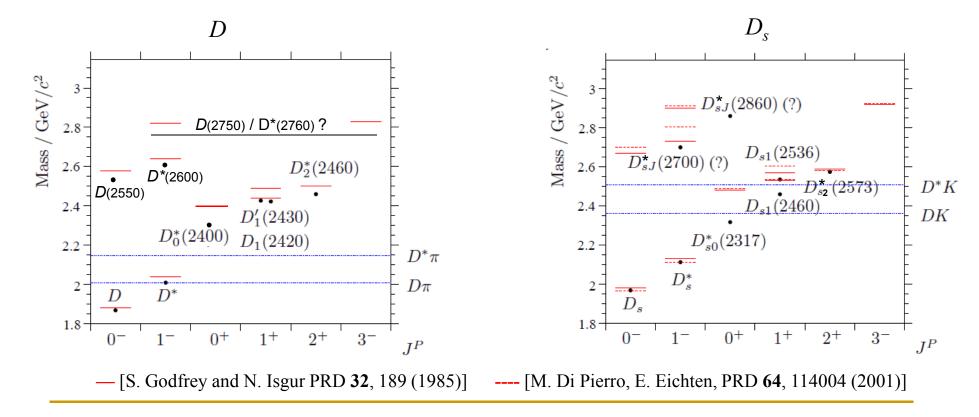
where $D_{(s)}^{**}$ can be some excited charm meson.

<u>_</u> ~	550	fb ⁻¹

→~700 Million cc̄

→~550 Million bb

 $\mathcal{L} \sim 1000 \text{ fb}^{-1}$

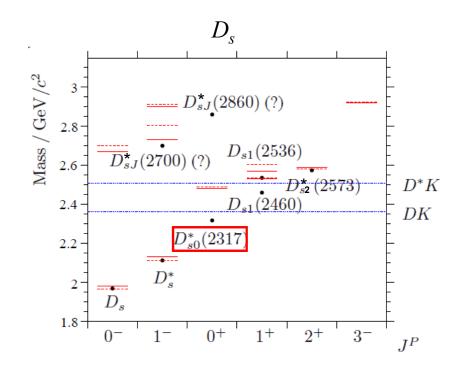

→~1300 Million cc̄

→~1000 Million bb

$e^+e^- \rightarrow$	Cross-section (nb)		
$b\overline{b}$	1.05		
$c\overline{c}$	1.30		
$S\overline{S}$	0.35		
$u\overline{u}$	1.39		
$d\overline{d}$	0.35		
$ au^+ au^-$	0.94		
$\mu^+\mu^-$	1.16		
e^+e^-	~ 40		

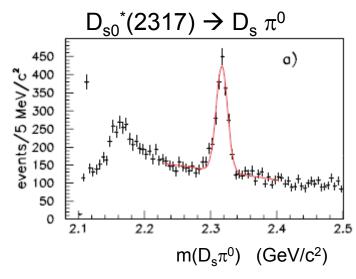
Predictions for the D and D_s states

- Predictions of the D and D_s mass eigenstates were performed since 1985 using QCD potential models.
- Recently (2001) the D_s spectrum predictions have been updated.
- The predicted masses of the excited states are generally in qualitative agreement with observations, however, for some states large quantitative differences exist.

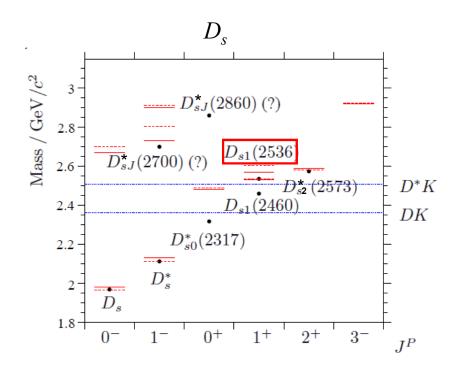

The History

First observations:

D		$\mathrm{D_{s}}$	
$\Box 1^{1}S_{0}:D$	Mark I 1975	$\square \ 1^1S_0$: D_s	CLEO 1983
$\Box 1^3S_1:D^*$	Mark I 1977	$\Box 1^3S_1: D_s^*$	TPC 1984
$\Box 1^3 P_1: D_I(2420)$	ARGUS1986	$\Box 1^{1}P_{1}: D_{sl}(2536)$	ARGUS1989
$\square 1^3 P_2: D_2^*(2460)$	TPS 1989	$\square 1^3 P_2: D_{s2}^*(2573)$	CLEO2 1994
$\Box 1^3 P_0: D_0^*(2400)$	BELLE 2004	$\square 1^3 P_1: D_{sl}(2460)$	CLEO2 2003
$\Box 1^{1}P_{1}$: $D_{I}(2430)$	BELLE 2004	$\Box 1^{3}P_{0}: D_{s0}^{*}(2317)$	BaBar 2003
$\square \ 2^1 S_0$: $D(2550)$	BaBar 2010	5	
$\square 2^3S_1: D^*(2600)$	BaBar 2010	$\square 2^3 S_1: D_s^*(2710)$	BaBar 2006
$\Box 1^{?}D_{?}:D(2750)$	BaBar 2010	$\square 1^{?}D_{?}: D_{s}^{*}(2860)$	BaBar 2006
$\Box 1^{?}D_{?}: D^{*}(2760)$	BaBar 2010	\square ????: $D_{\rm s}(3040)$	BaBar 2009


Recent studies of these states will be presented in this talk.

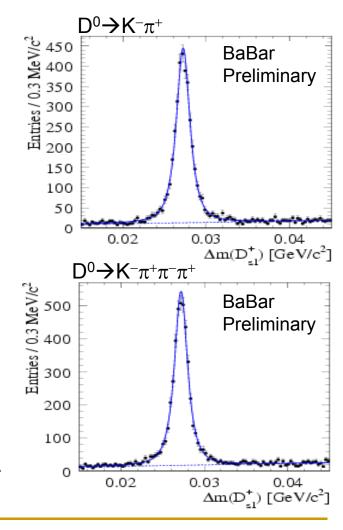
The $D_{s0}^{*}(2317)$


The $D_{s0}^*(2317)$

- In an inclusive study of the D_sπ⁰ system BaBar discovered the narrow D_{s0}*(2317) state (2003).
- The low unexpected mass of this state triggered many subsequent studies by both BaBar and BELLE including the following:
 - □ $B \rightarrow D_{s0}^*(2317) D$ [BELLE ~110 fb-1 Phys. Rev. Lett. 91, 262002 (2003)]
 - □ $D_{s0}^*(2317) \rightarrow D_s \pi^0$ inclusive [BELLE 87 fb⁻¹ Phys. Rev. Lett. 92, 012002 (2004)]
 - □ $B \rightarrow D_{s0}^{*}(2317) D^{(*)}$ [BaBar 113 fb⁻¹ Phys. Rev. Lett. 93, 181801 (2004)]
 - □ $B \rightarrow D_{s0}^*(2317) K$ [BELLE 140 fb⁻¹ Phys. Rev. Lett. 94, 061802 (2005)]

[BaBar 91 fb⁻¹ Phys. Rev. Lett. 90, 202001 (2003)]

Precision D_{s1}(2536) Parameters



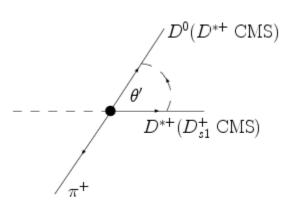
Precision D_{s1}(2536) Parameters

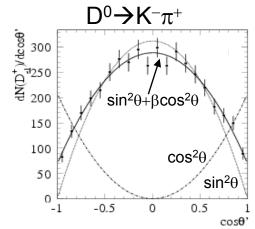
- Preliminary BaBar analysis using 384 fb⁻¹ [presented at ICHEP 2010].
- Inclusive reconstruction of $D_{s1}(2536)^+ \rightarrow D^{*+}K_S$ where $D^{*+} \rightarrow D^0 \pi^+$ and $D^0 \rightarrow K^- \pi^+$ or $K^- \pi^+ \pi^- \pi^+$
- Parameters determined from the mass difference $\Delta m = m(D^*K_S) m(D^*) m(K_S)$ resolution is about 0.26 MeV.
- Preliminary results:

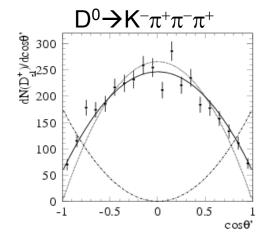
$$m(D_{s1}^{+}) = (2535.10 \pm 0.01 \pm 0.18) \text{ MeV}/c^{2}$$

 $\Gamma(D_{s1}^{+}) = (0.92 \pm 0.03 \pm 0.04) \text{ MeV}$

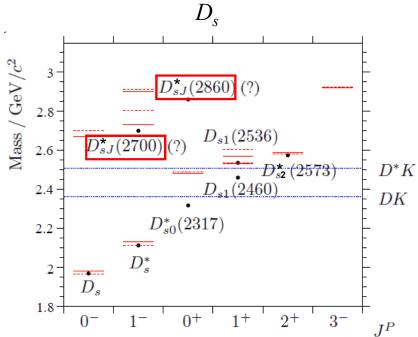
This is the first measurement of the $D_{s1}(2536)$ width.

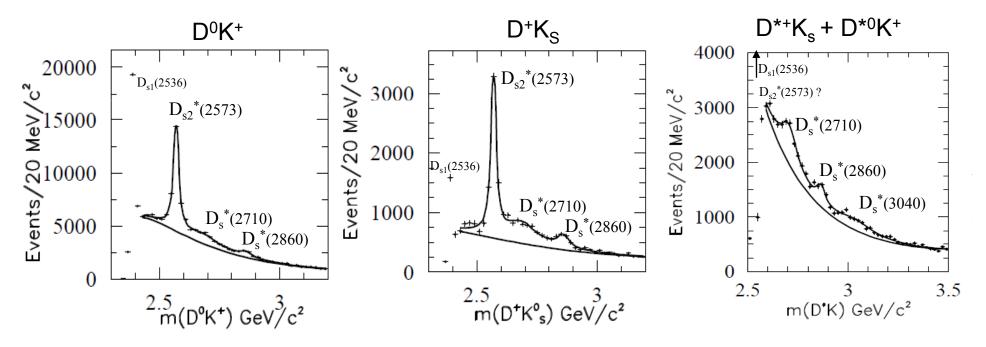



D_{s1}(2536) Angular Analysis


BaBar Preliminary

- Signal yield is extracted as a function of the helicity angle θ '.
- Angular distribution indicates un-natural spin-parity.
- Significant D-wave contribution is present in the decay.


J^P	$dN/d\cos heta'$	$\chi^2/NDF(K4\pi)$	$\chi^2/NDF(K6\pi)$
0+	forbid den	_	_
0-	$\propto \cos^2 heta'$	2142.7/19	2440.8/19
1-,2+,3-,	$\propto \sin^2 heta'$	103.2/19	108.8/19
$1^+, 2^-, 3^+, \dots$ (S-wave only)	const	392.1/19	425.1/19
$1^+, 2^-, 3^+, \dots (S, D_{\text{-wave}})$	$\propto (\sin^2 \theta' + \beta \cos^2 \theta')$	$24.9/18 \ (\beta = 0.23 \pm 0.03)$	$9.5/18 \ (\beta = 0.24 \pm 0.03)$


Inclusive Study of DK and D^*K Systems

Inclusive Study of DK and D^*K Systems

- The following channels have been analyzed:
 - □ D^0K^+ using $D^0 \rightarrow K^-\pi^+$
 - □ D^+K_S using $D^+ \rightarrow K^-\pi^+\pi^+$

 - □ $D^{*0}K^+$ using $D^{*0}\rightarrow D^0\pi^0$ ($D^0\rightarrow K^-\pi^+$)

[BABAR (470 fb⁻¹) Phys. Rev. D 80, 092003 (2009)]

Parameters of D_{sJ} Structures

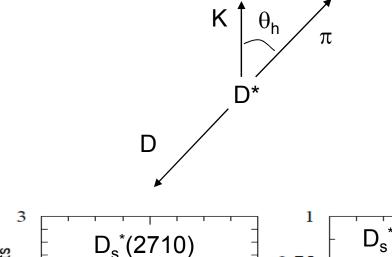
- The mass values of the D_s*(2710) and D_s*(2860) are close to those of the first radial excitation of the D_s* and L=2 excited states, respectively.
- The mass of the D_s(3040) is close to that of the second radial excitation predicted in Ref. [T. Matsuki etal., Eur. Phys. J. A 31, 701 (2007)]
- The ratios of the D*K over DK branching fractions have been determined.
- For the D_s*(2710) the ratio is consistent with the value predicted for the first radial excitation. [P. Colangelo etal., Phys.Rev. D 77, 014012 (2008)]

$$m(D_{s1}^*(2710)^+) = 2710 \pm 2_{\text{stat}} {\binom{+12}{-7}}_{\text{syst}} \text{ MeV}/c^2,$$

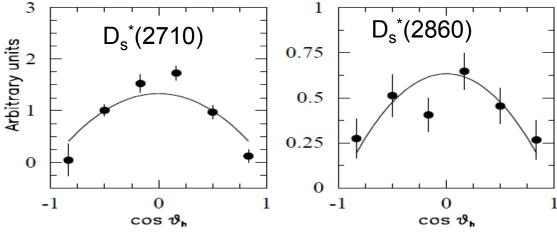
 $\Gamma = 149 \pm 7_{\text{stat}} {\binom{+39}{-52}}_{\text{syst}} \text{ MeV},$

$$m(D_{sJ}^*(2860)^+) = 2862 \pm 2_{\text{stat}} {\binom{+5}{-2}}_{\text{syst}} \text{ MeV}/c^2,$$

 $\Gamma = 48 \pm 3_{\text{stat}} \pm 6_{\text{syst}} \text{ MeV},$

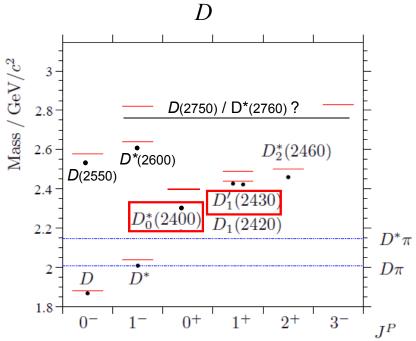

$$m(D_{sJ}(3040)) = 3044 \pm 8_{\text{stat}} {\binom{+30}{-5}}_{\text{syst}} \text{ MeV}/c^2,$$

 $\Gamma = 239 \pm 35_{\text{stat}} {\binom{+46}{-42}}_{\text{syst}} \text{ MeV}.$


$$\frac{\mathcal{B}(D_{s1}^*(2710)^+ \to D^*K)}{\mathcal{B}(D_{s1}^*(2710)^+ \to DK)} = 0.91 \pm 0.13_{\text{stat}} \pm 0.12_{\text{syst}},$$

$$\frac{\mathcal{B}(D_{sJ}^*(2860)^+ \to D^*K)}{\mathcal{B}(D_{sJ}^*(2860)^+ \to DK)} = 1.10 \pm 0.15_{\text{stat}} \pm 0.19_{\text{syst}}.$$

Angular Analysis of the D*K System

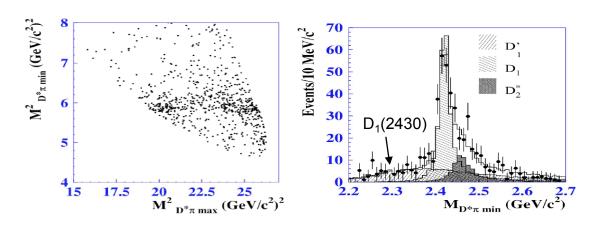

- The helicity angle θ_h defined by the Kaon and pion provides information about the quantum numbers of the resonances.
- For both the D_s*(2710) and D_s*(2860), the angular distribution is consistent with natural parity.
- For the D_s(3040) the angular distribution is not conclusive.

[BABAR (470 fb⁻¹) Phys. Rev. D 80, 092003 (2009)]

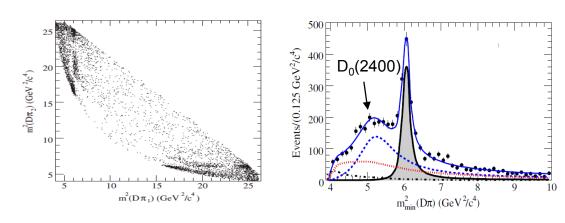
Exclusive Studies of Broad D States

Exclusive Studies of Broad D States

■ Parameters of the $D_1(2430)$ determined from a Dalitz plot analysis of B⁺ \rightarrow D^{*} $-\pi^+\pi^+$:

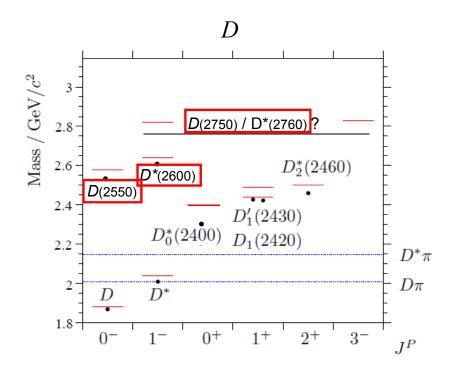

$$M_{D_1^{\prime}} = 2427 \pm 26 \pm 20 \pm 15 \text{ MeV}/c^2$$
,

$$\Gamma_{D_{1}^{0}} = 384_{-75}^{+107} \pm 24 \pm 70 \text{ MeV}.$$


The D_0 *(2400) was confirmed by BaBar and its parameters determined from a Dalitz plot analysis of B⁺ \rightarrow D⁻ π ⁺ π ⁺:

$$m_{D_0^{*0}} = (2297 \pm 8 \pm 5 \pm 19) \text{ MeV}/c^2$$

$$\Gamma_{D_0^{*0}} = (273 \pm 12 \pm 17 \pm 45) \text{ MeV},$$



[BELLE 60 fb⁻¹ Phys. Rev. D 69, 112002 (2004)]

[BaBar 350 fb-1 Phys. Rev. D 79, 112004 (2009)]

Inclusive Study of $D\pi$ and $D^*\pi$

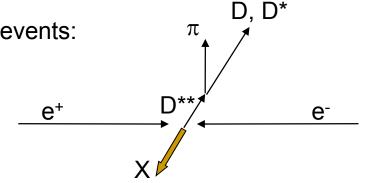
Inclusive Study of $D\pi$ and $D^*\pi$

• Analysis of $D\pi$ and $D^*\pi$ systems produced from $c\bar{c}$ events:

$$e^+e^- \to c\bar{c} \to D^{**}X \to D^{(*)}\pi X$$

X represents any additional system.

$$D^{**0} \to D^+\pi^- \\ K^-\pi^+\pi^+$$

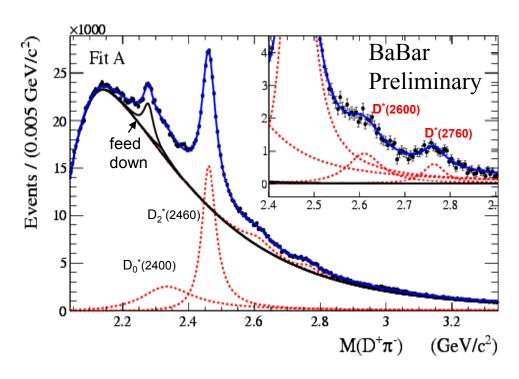

$$D^{**+} \to D^0 \pi^+$$

$$K^- \pi^+$$

•
$$D^{**0} \to D^{*+}\pi^-$$

$$D^{0}\pi^+$$

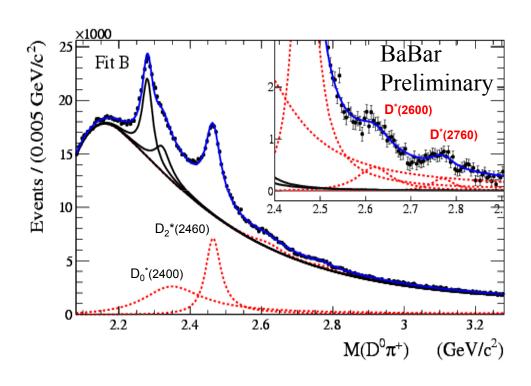
$$K^-\pi^+ \text{ or } K^-\pi^+\pi^-\pi^+$$


• The data set corresponds to about **10 times** more signal events than the previous study by the CDF collaboration.

[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]

BaBar Preliminary

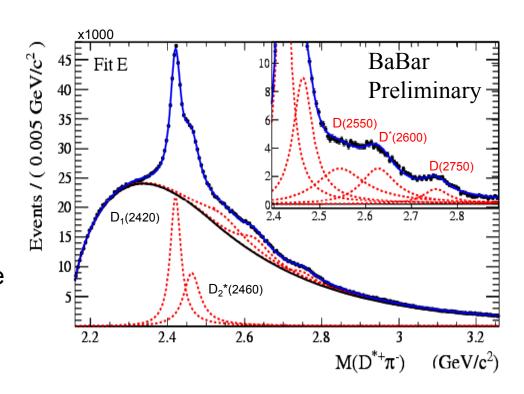
The $D^+\pi^-$ System


- The mass distribution of the D⁺π⁻ final state presents a prominent signal from the D₂*(2460) as well as two new structures at 2.60 GeV and 2.76 GeV.
- The peaking background at 2.30 GeV is due to $D_2^*(2460)$ and $D_1(2420)$ decaying to $D^*\pi$ where the slow pion is missing.
- The broad $D_0^*(2400)$ improves the fit quality, its parameters are floated within 2σ from the known values.
- The χ^2 /NDF of the fit is 281/242.

[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]

The $D^0\pi^+$ System

- To confirm the new signals, the $D^0\pi^+$ system is analyzed.
- In this channel the feed-down backgrounds are stronger and the signal statistics of this are smaller so the widths of all signals are fixed to the widths measured in the $D^+\pi^-$.
- The mass values obtained are a few MeV higher than in $D^+\pi^-$, consistent with being the isospin partners.
- The fit quality is $\chi^2/NDF=278/224$.

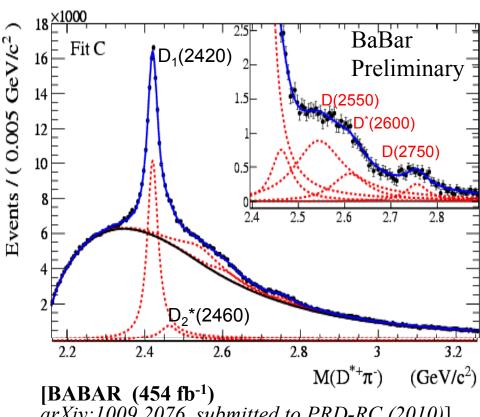

 $[BABAR (454 \text{ fb}^{-1})]$ arXiv:1009.2076, submitted to PRD-RC (2010)]

SLAC

19

The $D^{*+}\pi^{-}$ System

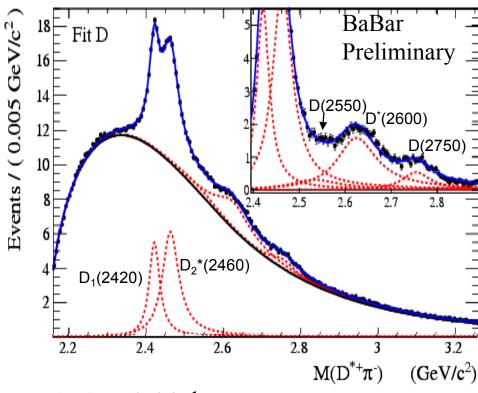
- The D*π system shows prominent signals of $D_1(2420)$ and $D_2^*(2460)$.
- In addition, there are new structures in the higher mass region. The region at 2.60 GeV is populated by two signals, while at 2.75 GeV there is a signal similar to the D*(2760) from D+π-.
- The parameters of the $D_2^*(2460)$ and $D^*(2600)$ are fixed to the ones from the $D^+\pi^-$.
- The fit quality is χ²/NDF=244/207.



[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]

BaBar Preliminary

$D^{*+}\pi^-$ with $|\cos\theta_H| > 0.75$


- The selection $|\cos(\theta_H)| > 0.75$ is applied to suppress the resonances with natural spin-parity ($dN/d\cos\theta_{H} \sim \sin^{2}\theta_{H}$).
- This fit allows to determine the parameters of the D(2550) under the assumption that the D*(2600) is the same signal observed in D+ π^- .
- The parameters of the $D_2*(2460)$ and D*(2600) are fixed to the values from D+π⁻.
- This fit also determines the parameters of the $D_1(2420)$.
- The fit quality is $\chi^2/NDF=214/205$.

arXiv:1009.2076, submitted to PRD-RC (2010)]

$D^{*+}\pi^-$ with $|\cos\theta_H| < 0.5$

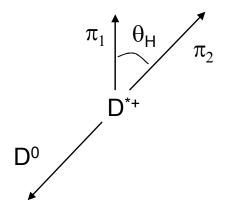
- The selection |cosθ_H|<0.5 is applied to favor the resonances with natural spin-parity.
- In this fit, the parameters of all signals, except the D(2750), are fixed to the values from the previous fits.
- This fit allows to observe clearly the D*(2600) signal and shows consistency in the fit model.
- The fit quality is $\chi^2/NDF=210/209$.

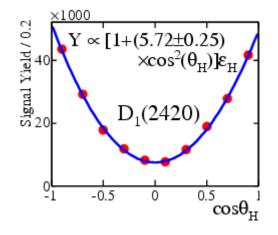
[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]

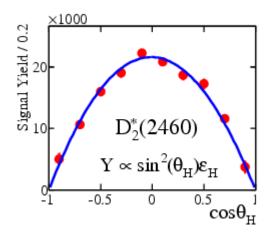
BaBar Preliminary

Resonance Parameters:

- The uncertainties on most parameters are dominated by systematic uncertainties.
- The systematic uncertainty includes the following sources: bin size and mass range of the histogram, errors on parameters fixed in the fits, Breit-Wigner shape of the new signals, a possible contribution from the D₁(2430), and background modeling.
- The significance of the new signals is estimated from the yield over its total uncertainty.

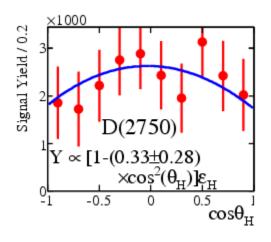

Resonance	Channel(Fit)	Efficiency (%)	Yield $(x10^3)$	Mass MeV/c^2	Width MeV	Significance
$D_1(2420)^0$	$D^{*+}\pi^{-}$ (C)		102.8±1.3±2.3	2420.1±0.1±0.8	31.4±0.5±1.3	
	$D^{*+}\pi^{-}$ (E)	1.09 ± 0.03	$214.6 \pm 1.2 \pm 6.4$	2420.1(fixed)	31.4(fixed)	
$D_2^*(2460)^0$	$D^{+}\pi^{-}$ (A)	1.29 ± 0.03	242.8±1.8±3.4	2462.2±0.1±0.8	50.5±0.6±0.7	
	$D^{*+}\pi^{-}$ (E)	1.12 ± 0.04	$136\pm 2\pm 13$	2462.2 (fixed)	50.5(fixed)	
$D(2550)^{0}$	$D^{*+}\pi^{-}$ (C)		$34.3 \pm 6.7 \pm 9.2$	$2539.4 \pm 4.5 \pm 6.8$	$130\pm12\pm13$	3.0σ
	$D^{*+}\pi^{-}$ (E)	1.14 ± 0.04	$98.4 \pm 8.2 \pm 38$	2539.4 (fixed)	130(fixed)	
$D^*(2600)^0$	$D^{+}\pi^{-}$ (A)	1.35 ± 0.05	26.0±1.4± 6.6	2608.7±2.4±2.5	93±6±13	3.9σ
	$D^{*+}\pi^{-}$ (D)		$50.2 \pm 3.0 \pm 6.7$	2608.7 (fixed)	93(fixed)	7.3σ
	$D^{*+}\pi^{-}$ (E)	1.18 ± 0.05	$71.4 \pm 1.7 \pm 7.3$	2608.7 (fixed)	93(fixed)	
$D(2750)^{0}$	$D^{*+}\pi^{-}$ (E)	1.23 ± 0.07	$23.5\pm2.1\pm5.2$	2752.4±1.7±2.7	71±6±11	4.2σ
$D^*(2760)^0$	$D^{+}\pi^{-}$ (A)	1.41 ± 0.09	11.3±0.8±1.0	$2763.3\pm2.3\pm2.3$	60.9±5.1±3.6	8.9σ
$D_2^*(2460)^+$	$D^{0}\pi^{+}$ (B)		$110.8 \pm 1.3 \pm 7.5$	$2465.4 \pm 0.2 \pm 1.1$	50.5(fixed)	
$D^*(2600)^+$	$D^{0}\pi^{+}$ (B)		$13.0 \pm 1.3 \pm 4.5$	2621.3±3.7±4.2	$93({ m fixed})$	2.8σ
$D^*(2760)^+$	$D^{0}\pi^{+}$ (B)		5.7±0.7±1.5	2769.7±3.8±1.5	60.9(fixed)	3.5σ


[BABAR (454 fb⁻¹) arXiv:1009.2076, submitted to PRD-RC (2010)]


BaBar Preliminary

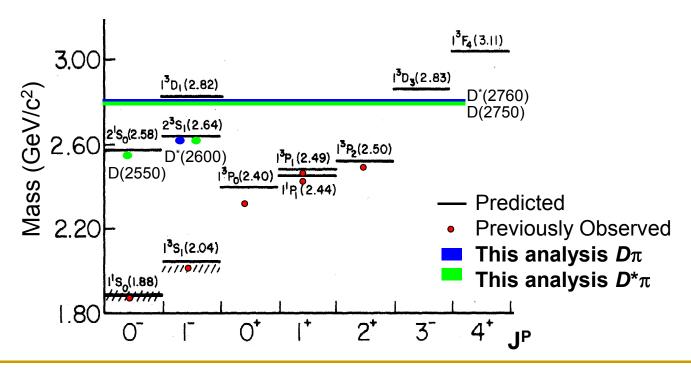
Angular Analysis of $D^{*+}\pi^-$

- The signal yields have been extracted as a function of $\cos \theta_{H}$.
- The $D_1(2420)$ shows a 1+Acos² θ_H distribution indicating unnatural spin-parity. The value for A indicates a significant Swave contribution in the decay.
- The $D_2^*(2460)$ shows a $\sin^2\theta_H$ distribution consistent with the natural spin-parity assignment.



Angular Analysis of $D^{*+}\pi^-$

- For the signal D(2550) a $\cos^2(\theta_H)$ distribution is obtained consistent with a $J^P=0^-$ value.
- For the signal $D^*(2600)$ a $\sin^2(\theta_H)$ distribution is obtained consistent with natural spin-parity.
- For the signal D(2750) the interpretation of the distribution is not conclusive.



Interpretation of the $D\pi$ and $D^*\pi$ Results

- The $D^*(2600)$ signal observed in $D\pi$ and $D^*\pi$ has a mass value and helicity distribution consistent with the first radial excitation of the $D^*(2010)$.
- Likewise, the D(2550) observed in $D^*\pi$ has a mass value and helicity distribution consistent with the first radial excitation of the D^0 .
- The D(2750) observed in $D^*\pi$ has mass value lower than the $D^*(2760)$ observed in $D^+\pi^-$. The helicity distribution is not conclusive. These two signals may be due to the four L=2 excited states.

Conclusions

- The B-factories have large potential for advancing the understanding of the charmed hadron spectrum. In this talk, recent studies of the D and $D_{\rm s}$ mesons have been presented.
- The spectroscopy of charmed mesons has revived in recent years (2009-2010) with the observations by the BaBar of new structures in the DK, D^*K , $D\pi$, and $D^*\pi$ systems. These studies find candidates for the radial and L=2 excited states of the D_s and D mesons.
- Precision measurements of the narrow L=1 $D_{\rm s}$ mesons are possible from the large Data sets. A first measurement of the $D_{\rm s1}(2536)$ decay width has been presented here.
- Charmed mesons obtained from B decays allow for the study of the broad L=1 states. However, updated studies of these decays are needed. In particular an analysis of $B^+ \rightarrow D^{*-}\pi^+\pi^+$ might provide much better parameter values for the $D_1(2430)$, and evidence for new the structures observed in the inclusive $D^{(*)}\pi$ analyses.