Charm Mixing and Strong Phases at Threshold

David Asner

4th International Workshop on Charm Physics, Beijing, China

Introduction Formalism Experimental results Summary and outlook

Proudly Operated by Battelle Since 1965

- Running near $c\overline{c}$ threshold produces quantum correlated D^0 and \overline{D}^0 :
 - $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$ [C = -1] OR $e^+e^- \rightarrow \gamma^* \rightarrow D^0\overline{D}^0\gamma$ [C = +1]
 - At $\psi(3770)$, same-CP final states forbidden; opposite-CP states enhanced
 - Tagging the CP of one D identifies the CP of other D.
 - Unique access to amplitude ratios, phases, & charm mixing.
 - Exploit interference effects in time-integrated rates.

Correlated amplitudes
$$\Gamma_{ij}^2 = \left| \left\langle i \mid D^0 \right\rangle \left\langle j \mid \overline{D^0} \right\rangle \mp \left\langle j \mid D^0 \right\rangle \left\langle i \mid \overline{D^0} \right\rangle \right|^2$$

- D⁰ strong phases are necessary inputs for
 - Charm mixing studies at *B*-factories, CDF, FOCUS
 - CKM studies at B-factories and LHCb

rates.
Sabibbo-
sppressed]
$$\langle i | \overline{D}^0 \rangle$$

US $\langle i | D^0 \rangle$
[Cabibbo-
favored]

Action at a distance!

• CLEO-c $\psi(3770)$ measurements of strong phases in $D^0 \rightarrow K^+\pi^- K^+\pi^-\pi^0 K^+\pi^-\pi^+\pi^- K_{S,L}{}^0h^+h^-$ (h = K or π)

David Asner, Pacific Northwest National Laboratory

Charm Mixing (no CPV)

- Flavor eigenstates $(D^0, \overline{D^0}) \neq$ mass eigenstates (D_1, D_2) .
- Mixing characterized by $x = \frac{\Delta M}{\Gamma}$ and $y = \frac{\Delta \Gamma}{2\Gamma}$
- $y = (0.73 \pm 0.14)\%$:
 - Direct lifetime measurements:
 - Compare K^+K^- and $\pi^+\pi^-$ with $K^-\pi^+$.
 - Time-dependent Dalitz analysis of K⁰_sπ⁺π⁻ and K⁰_sK⁺K⁻
 - Intermediate CP-eigenstates give y.
 - Interference between CP+ and CP- gives x.
- $y' = y \cos \delta_{K\pi} x \sin \delta_{K\pi} = (0.48 \pm 0.23)\%$
 - Time-dependent wrong-sign rate $D^0 \rightarrow K^+\pi^-$:
 - Interfering DCS and mixing amplitudes modulate exponential decay time.
 - Ambiguity from strong phase:

David Asner, Pacific Northwest National Laboratory

Charm 2010, IHEP, Beijing, China

 $rac{\left\langle K^{-}\pi^{+}\left|\overline{D^{0}}
ight
angle
ight
angle }{\left\langle K^{-}\pi^{+}\left|D^{0}
ight
angle
ight
angle }=$

 $D_{1,2} = \frac{D^0 \pm D^0}{\sqrt{2}}$

~0.06

 $r_{K\pi}e$

 $\delta_{K\pi}$ connects

measurements

of y and y'

Quantum-Correlations Overview: $\psi(3770)$

David Asner, Pacific Northwest National Laboratory

- Interference with mixed amplitudes vanishes for C = -1
 - Exclusive rates probe bare amplitudes and strong phases directly.
- Inclusive rates come from summing exclusive rates.
 - Dependence on y appears in the sum.
 - Interference between unmixed and mixed+DCS amplitudes.

Charm 2010, IHEP, Beijing, China

 $y \propto -2\sum A_i^2 r_i \cos \delta_i$

Extracting Physical Parameters from Yields

DT rate ~ $A_i^2 A_j^2 [1 + r_i^2 r_j^2 - 2 r_i r_j \cos(\delta_i + \delta_j)]$

- For some final states, we know r and δ : reference points for interference
 - *CP* eigenstates: r=1 and $\delta=0$ or π sensitive to $\cos\delta$ of the other side.
 - Semileptonic: r=0 sensitive to A^2 and r^2 of the other side.
 - To probe sinδ, need to interfere with a final state with $\delta ≠ 0$ or π.
- Use CP-tagged exclusive rates to extract:

 $R_{WS} = \Gamma(D^0 \to K^+ \pi^-) / \Gamma(D^0 \to K^- \pi^+)$ = $r_{K\pi}^2 + r_{K\pi} y' + (x^2 + y^2) / 2$

- $\underline{\operatorname{cosd}}_{\underline{K\pi}}$: reconstruct K^+K^- (*CP*+) with $K^-\pi^+ \Rightarrow K^-\pi^+$ must come from D_1 (*CP*-). rate $\propto B_{KK}(1+y)B_{K\pi} |1+re^{-i\delta}|^2 \approx B_{KK}B_{K\pi}(1+2r\cos\delta+R_{WS}+y)$
- **<u>Y</u>**: reconstruct K^+K^- (*CP*+) with semileptonic \Rightarrow SL must come from D_1 (*CP*-).
 - Semileptonic width independent of *CP*, but total width depends on *CP*.

$$n_{e/KK} / n_{KK(ST)} = B_e \Gamma / \Gamma_1 \approx B_e (1+y)$$

Mixing/amplitude/phase parameters from double ratios of yields:

$$y + 2r\cos\delta \approx \frac{n(f,\bar{f})}{4n(f)} \left[\frac{n(CP-)}{n(CP-,f)} - \frac{n(CP+)}{n(CP+,f)} \right] \qquad y \approx \frac{n(f,l)}{4n(f)} \left[\frac{n(CP-)}{n(CP-,l)} - \frac{n(CP+)}{n(CP+,l)} \right]$$

David Asner, Pacific Northwest National Laboratory

Experimental Technique

- Single tag: fully reconstruct one D
- Double tag: reconstruct both D^0 and \overline{D}^0
 - Both D^0 and $\overline{D^0}$ fully reconstructed.

$$M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$$

Pair-produced D^0 and \overline{D}^0

ST
$$X \leftarrow \overline{D} \quad D \rightarrow i$$

DT $j \leftarrow \overline{D} \quad D \rightarrow i$

Clean event environment, very low backgrounds

Or one missing particle (v or K⁰_L):

40 $K^{+}\pi^{-}vs.$ $K_{L}^{0}\pi^{0}$ (CLEO-c) 10 $0^{0}2$, $GeV^{1/2}/c^{4}$ Use detector hermeticity and beam parameters to infer missing mass.

David Asner, Pacific Northwest National Laboratory

Update: Strong Phase in $D^0 \rightarrow K\pi$ $\delta_{\kappa_{\pi}}$

- Previous publication: PRL 100, 221801 (2008) / PRD 78, 012001 (2008).
 - Dataset: 281 pb⁻¹ at $\psi(3770) = 1$ million *C*-odd D^0D^0
 - First meas. of strong phase between CF $A(D^0 \rightarrow K^-\pi^+)$ and DCS $A(D^0 \rightarrow K^+\pi^-)$.
 - Standard fit: $\cos \delta = 1.03^{+0.31}_{-0.17} \pm 0.06$
 - н. mixing meas.]

CLEO

Extended fit: $\cos \delta = 1.10 \pm 0.35 \pm 0.07$ [Incl. external $x \sin \delta = (4.4^{+2.7}_{-1.8} \pm 2.9) \times 10^{-3}$

Type	Final States
Flavored	$K^{-}\pi^{+}, K^{+}\pi^{-}$
S_+	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, K^0_L\pi^0$
S_{-}	$K^0_S\pi^0,K^0_S\eta,K^0_S\omega$
e^{\pm}	Inclusive $Xe^+\nu_e, Xe^-\bar{\nu}_e$

New today: preliminary update with full CLEO-c dataset

- 818 pb⁻¹ at $\psi(3770) = 3$ million *C*-odd D^0D^0 .
- Additional final states.
 - Includes direct measurements of $r_{K\pi}^2$ and $\sin \delta_{K\pi}$.

Not yet in **HFAG** average

David Asner, Pacific Northwest National Laboratory

Final States $\left[\delta_{\mathrm{K}\pi} \right]$

- Single tags for all fully-reconstructed modes except $K^{0}{}_{c}\pi^{+}\pi^{-}$.
- Double tags for almost all combinations of modes.
 - Like-sign and opposite-sign.
 - At most one missing particle (K^{0}_{l} or v).
 - Except for Kev vs. $K^{0}_{l}\pi^{0}$ (2 missing particles).
- 261 yield measurements
 - K^0 _s $\pi^+\pi^-$ from PRD 80, 032002 (2009)

~3000

CP-tagged Kπ

 $\rightarrow cos\delta_{K\pi}$

CP+

K⁻*K*⁺

CP-

 $K^{0}{}_{S}\pi^{0}$

Flavored

hadronic

 $K^{-}\pi^{+}$

David Asner, Pacific Northwest National Laboratory

~1400 *K*⁰_sπ⁺π⁻ vs. *K*π

 $\rightarrow sin\delta_{\kappa_{\pi}}$

Mixed

 $K^{0}{}_{S}\pi^{+}\pi^{-}$ (bin 0)

Semilep

K⁻*e*⁺v

Fit Parameters

- 51 fit parameters (3.5x TQCA-I)
- Number of DD pair and 21 branching fractions (8 for $K^0_{S}\pi^+\pi^-$)
 - $\mathcal{B}(K^{-}\mu^{+}\nu)$, $\mathcal{B}(K^{0}_{\mu}\eta)$, $\mathcal{B}(K^{0}_{\mu}\pi^{0}\pi^{0})$ will be new CLEO-c measurements.
- We fit for all non-trivial r and $\cos\delta$ and $\sin\delta$ (9 fit parameters each), plus mixing parameters y and x^2 .
 - ST yield f ~ Br ~ $1 + r_f^2 + 2 y r_f \cos \delta_f$
 - DT yield f/g ~ 1 + $r_f^2 r_g^2$ 2 $r_f \cos \delta_f r_g \cos \delta_g$ 2 $r_f \sin \delta_f r_g \sin \delta_g$
 - DT yield f/gbar ~ $r_f^2 + r_g^2 2 r_f \cos \delta_f r_g \cos \delta_g + 2 r_f \sin \delta_f r_g \sin \delta_g$
 - r = 0Semileptonic:
 - CP+: $r = 1, \delta = \pi$
 - CP-: $r = 1, \delta = 0$
- Main focus is on $\delta_{K\pi}$, with secondary focus on y.

David Asner, Pacific Northwest National Laboratory Charm 2010, IHEP, Beijing, China

$K^0{}_S\pi^+\pi^-$ and $K^0{}_L\pi^+\pi^-$

- CLEO-c has studied strong phases in $D \rightarrow K^0{}_{S}\pi^+\pi^-$
 - Main tool: CP tagging, analogous to Kπ.

Phys.Rev.D80:032002,2009 arXiv:0903.1681

• For multibody modes, must also account for coherence:

- Measure yields in 8 Dalitz plot bins against $CP/K\pi/SL/K_{0s}\pi^{+}\pi^{-}$ tags:
 - Use missing mass technique for $K^0 \perp \pi^+ \pi^-$. Single tags for $K^0 \parallel \pi^+ \pi^-$ only, not $K^0 \perp \pi^+ \pi^-$.
- Each bin treated as separate decay mode with its own *R*cosδ and *R*sinδ.
 - Bins with $\delta \sim 0$ or π act like *CP* eigenstates.
 - Statistics roughly equal to sum of all other (pure) *CP* eigenstates.
 - Bins with δ ~ $\pm \pi/2$ allows measurement of $sin \delta_{K\pi^{\cdot}}$
 - Include Rcoso and Rsino as free parameters in fit.

David Asner, Pacific Northwest National Laboratory

 $K^{0}_{S}\pi^{+}\pi^{-}\& K^{0}_{L}\pi^{+}\pi^{-}$

Not identical – 180° phase difference for Doubly Cabibbo suppressed amplitudes
 David Asner, Pacific Northwest National Laboratory
 Charm 2010, IHEP, Beijing, China

CP tagged $K^0 s \pi^+ \pi^-$

 $K^{0}s\pi^{+}\pi^{-}vs$ CP-even tag

• Not identical – CP-odd K⁰_S ρ not in CP-odd tag, CP-even $\pi\pi$ S,D-wave not in CP-even tag David Asner, Pacific Northwest National Laboratory Charm 2010, IHEP, Beijing, China

Semi-Muonic Decays

- CLEO muon chambers inefficient below 1 GeV.
- Instead, use kinematics to separate $D^0 \rightarrow K^-\mu^+\nu$ from backgrounds using missing energy and momentum.
 - Main background: $D^0 \rightarrow K^-\pi^+\pi^0$
 - Roughly doubles semileptonic statistics.

David Asner, Pacific Northwest National Laboratory

*K*µv vs. *K*π

 $[\delta_{K\pi}]$

CLEO-c

Preliminary

Primary background: mis-ID $K\pi$ flavor in RS decays.

Semi-Muonic Decays

- Dramatically reduced by requiring kaon to be in Cherenkov counter acceptance.
 - S/(S+B) goes from 50% to 97%.
- Combined *Kev/Kuv* relative uncertainty ~25%.
- Unlike with incoherent D^0 , wrong-sign gives r^2 , not R_{ws} .

 $R_{WS} = \Gamma(D^0 \rightarrow K^+\pi^-) / \Gamma(D^0 \rightarrow K^-\pi^+)$ $= r_{\kappa\pi}^2 + r_{\kappa\pi}y' + (x^2 + y^2)/2$

Mixing effects cancel in the interference term

Semi-Electronic Decays $[\delta_{K\pi}]$ CLEO-c Preliminary

Kev vs. Kπ

David Asner, Pacific Northwest National Laboratory

Kev vs. $K_L \pi^0 [\delta_{K\pi}]$

- Doubles the number of *Kev* vs. *CP*+
- Technique for two missing particles:
 - Used at B-factories for semileptonic decays

Paar/Brower: NIM A 421, 411 (1999) BaBar: PRL 97, 211801 (2006) Belle: PLB 648, 139 (2007)

- Kinematic constraints on v and K_L^0 define two cones for D^0 and D^0 .
- If cones intersect, then $0 < x_D^2 < 1$.

David Asner, Pacific Northwest National Laboratory

Other Yield Measurements $[\delta_{K\pi}]$

External Measurements $[\delta_{K\pi}]$

		0		٨	(07)
Parameter	Value (%)	Source		Averag	se (%)
y_{CP}		HFAG		$1.107 \pm$	= 0.217
\overline{x}	$1.9^{+3.2}_{-3.3} \pm 0.4 \pm 0.4$	CLEO II.V $[47]$		0.419 ± 0	.211 [41]
	$0.80 \pm 0.29 \pm 0.17$	Belle $[48]$			
	$0.16 \pm 0.23 \pm 0.12 \pm 0.08$	BABAR			
y	$-1.4 \pm 2.4 \pm 0.8 \pm 0.4$	CLEO II.V $[47]$		0.456 ± 0	.186 [41]
	$0.33 \pm 0.24 \pm 0.15$	Belle $[48]$			
	$0.57 \pm 0.20 \pm 0.13 \pm 0.07$	BABAR			
			С	orrelation	Coefficients
r^2	0.364 ± 0.017	Belle [50]	1	-0.834	+0.655
y'	$0.06^{+0.40}_{-0.39}$			1	-0.909
x'^2	$0.018\substack{+0.021\\-0.023}$				1
r^2	$0.303 \pm 0.016 \pm 0.010$	BABAR $[51]$	1	-0.87	+0.77
y'	$0.97 \pm 0.44 \pm 0.31$			1	-0.94
x'^2	$-0.022\pm0.030\pm0.021$				1
r^2	0.304 ± 0.055	CDF	1	-0.971	+0.923
y'	0.85 ± 0.76			1	-0.984
x'^2	-0.012 ± 0.035				1
r^2	0.333 ± 0.011	Average	1	-0.848	+0.701
y'	0.48 ± 0.23			1	-0.942
x'^2	0.002 ± 0.012				1

David Asner, Pacific Northwest National Laboratory

Systematic Uncertainties $[\delta_{K\pi}]$

- Mixing/amplitude/phase parameters determined from double ratios.
 - Reduces effect of correlated uncertainties.
- Efficiency systematic uncertainties (correlated) determined with missing mass technique.

Source	Uncertainty $(\%)$	Scheme
Track finding	0.3	per track
K^{\pm} hadronic interactions	0.5	per K^{\pm}
K_S^0 finding, flight signif. & mass cuts	0.94	per K_S^0
π^0 finding	2.0	$\mathrm{per}\;\pi^0$
η finding	4.0	per η
dE/dx and RICH	0.1	per π^{\pm} PID cut
dE/dx and RICH	0.1	per K^{\pm} PID cut
EID	0.4	per e^{\pm}

- Other correlated uncertainties: modeling of ISR and FSR, ΔE cut, mass cuts, vetoes on extra tracks/showers O(1%) each. $\Delta E = E_{cand} - E_{beam}$
- Uncorrelated uncertainties: yield fit variations, sideband subtractions
- In the end, statistical uncertainties dominate.

David Asner, Pacific Northwest National Laboratory

- 51 free parameters
 - *N*_{DD}, 21 branching fractions
 - 24 amplitude/phase parameters for $K_{s}^{0}\pi^{+}\pi^{-}$
 - 5 Kπ and mixing parameters
- Fit performed with and without external measurements of y, x, y' (same as in HFAG May 2010 avg)

- Statistical uncertainties on y and $r_{K\pi}cos\delta_{K\pi}$ (w/o ext. meas.) 3x smaller than 2008 analysis.
 - Estimated impact on HFAG average: σ(y) reduced by ~10%
 - First direct measurements of $r_{K\pi}^2$ and $\sin \delta_{K\pi}$
- Preliminary systematic uncertainties

Parameter	Previous: PDG, HFAG, or CLEO	Fit: no ext. meas.	Fit: with ext. y, x, y'	-
y (10 ⁻²)	0.79 ± 0.13	3.0 ± 2.0 ± 1.2	0.635 ± 0.118	Average of y and
x ² (10 ⁻³)	0.037 ± 0.024	1.5 ± 2.0 ± 0.9	0.022 ± 0.017	$y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$
<i>r_{Kπ}</i> ² (10 ⁻³)	3.32 ± 0.08	4.12 ± 0.92 ± 0.23	3.32 ± 0.08	
cosδ _{Kπ}	1.10 ± 0.36	0.98 ^{+0.27} -0.20 ± 0.08	1.15 ± 0.16 ± 0.12	
sinδ _{Kπ}		-0.04 ± 0.49 ± 0.08	$0.55 + 0.36_{-0.40} \pm 0.08$	
$\delta_{K\pi}$ (°) [derived]	22 ⁺¹¹ -12 ⁺⁹ -11	0 ± 22 ± 6	15 ⁺¹¹ - ₁₇ ± 7	

David Asner, Pacific Northwest National Laboratory

- Published result using 818 pb⁻¹ of ψ(3770) data
 - [PRD 80, 031105(R) (2009)]
- Similar formalism for Kπ, except now include coherence factors (R) for multi-body decay as free parameters.

Typ	be Final states		
Flavo	ored $K^{\mp}\pi^{\pm}, K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}, K^{\mp}\pi^{\pm}\pi^{0}$		
CP -even $K^+K^-, \pi^+\pi^-, K_S^0\pi^0\pi^0, K_L^0\pi^0, K_L^0\omega$			
$CP\text{-odd} \qquad K^0_S \pi^0, K^0_S \omega, K^0_S \phi, K^0_S \eta, K^0_S \eta'$			
	total CP-tagged ~3200 vs. $K^+\pi^-\pi^+\pi^-$		
	events ~4700 vs. $K^+\pi^-\pi^0$		

From like-sign DT rates of $K^+\pi^-\pi^0$ vs. $K^+\pi^-\pi^0$ $K^+\pi^-\pi^+\pi^-$ vs. $K^+\pi^-\pi^+\pi^-$ ~ (1 - R^2)

- 41 DT yield measurements.
- No single tags estimate from external branching fractions.

David Asner, Pacific Northwest National Laboratory

Combining $K^-\pi^+$ and $K^-\pi^+\pi^0/K^-\pi^+\pi^-\pi^+$

- K⁺π⁻π⁰/K⁺π⁻π⁺π⁻ analysis includes δ_{Kπ} as external input.
- But there is also independent sensitivity to $\delta_{K\pi}$.

Parameter	Mixing constrained	Mixing unconstrained
$R_{K\pi\pi^0}$	0.84 ± 0.07	$0.78^{+0.11}_{-0.25}$
$\delta_D^{K\pi\pi^0}$ (°)	227^{+14}_{-17}	239^{+32}_{-28}
$R_{K3\pi}$	$0.33\substack{+0.26\\-0.23}$	$0.36\substack{+0.24\\-0.30}$
$\delta_D^{K3\pi}$ (°)	114_{-23}^{+26}	118^{+62}_{-53}
x (%)	0.96 ± 0.25	$-0.8^{+2.9}_{-2.5}$
$y \ (\%)$	0.81 ± 0.16	$0.7^{+2.4}_{-2.7}$
$\delta_D^{K\pi}$	$-151.5\substack{+9.6\\-9.5}$	-130_{-28}^{+38}

• In particular, $\delta(K^+\pi^-\pi^0/K^+\pi^-\pi^+\pi^-) \neq 0$ or $\pi \Rightarrow K^+\pi^- vs$. $K^+\pi^-\pi^0/K^+\pi^-\pi^+\pi^- DTs$ have enhanced sensitivity to $\sin \delta_{K\pi}$.

Final St	ates		Time-Integrated Rate ($\times A_i^2 A_i^2$)	
	i	Ţ	$1 + r_i^2 r_j^2 - 2 r_i r_j \cos(\delta_i + \delta_j)$	$\cos(\delta_i + \delta_j) = \cos\delta_i - \sin\delta_i \sin\delta_i$
Exclusive	i	j	$r_i^2 + r_j^2 - 2 r_i r_j \cos(\delta_i - \delta_j)$	
Inclusive	i	X	1 + r_i^2 + 2 y $r_i \cos \delta_i$	No sensitivity to $\sin \delta_i$ when $\sin \delta_j \sim 0$

• Combined analysis of $K^+\pi^-$ and $K^+\pi^-\pi^0/K^+\pi^-\pi^+\pi^-$ in progress.

David Asner, Pacific Northwest National Laboratory

Summary and Outlook

Quantum-correlated CLEO-c dataset has yielded direct determinations of amplitudes and strong phases in D^0 decays.

 $D^{0} \rightarrow K^{+}\pi^{-} K^{+}\pi^{-}\pi^{0} K^{+}\pi^{-}\pi^{+}\pi^{-} K_{S,L}^{0}h^{+}h^{-}$

- All measurements are statistics-limited.
- Already significant impact on charm mixing and CKM studies.
- BES-III has exceeded CLEO's $\psi(3770)$ integrated luminosity.
 - Should be able to improve on CLEO-c results. <u>n.b. CLEO-c analysis</u>
 - Eventually:
 - Competitive measurements of mixing parameters.
 - Use $C = +1 D^0 D^0 \gamma$ from higher-energy data.
 - Orthogonal sensitivity to mixing parameters and strong phases.
 - Access to CP violation.
- Super *B*-factories: radiative return to $\psi(3770)$?
 - Also gives boosted D^0D^0 pairs—time dependent analysis is sensitive to x.
- Many more possibilities to explore!

David Asner, Pacific Northwest National Laboratory Charm 2010, IHEP, Beijing, China

See talk by Jim Libby

relies on RICH detector

HFAG: New Charm Mixing Average with CLEO-c

David Asner, Pacific Northwest National Laboratory

BACKUP

CESR & CLEO

- 1979–2008, symmetric e^+e^- collisions @ $\int s = 2-12$ GeV.
 - Last 5 years: CESR-c/CLEO-c, √s ~ 4 GeV
- Good for flavor physics (weak interaction):
 - Threshold production: clean events
 - $e^+e^- \rightarrow \gamma^*$: initial state w/ known energy and quantum numbers.
 - Hermetic detector with excellent particle ID.
- Contributions to HEP for 30+ years
 - "Small" collaboration:~20 institutions, < 250 authors.
 - Over 500 papers.
- Relevance of flavor to LHC era:
 - New Physics constraints from flavor are much higher than TeV scale.
 - NP that solves hierarchy problem must have non-trivial flavor structure.

David Asner, Pacific Northwest National Laboratory

Purity of Initial State

- C+ contamination of initial C- state (not expected, cf. A. Petrov):
 - $e^+e^- \rightarrow \gamma D^0 \overline{D^0}$ is C+, but photon must be radiated from
 - D^0 or $\overline{D^0}$
 - ψ(3770)
 - virtual D* intermediate state.
 - ISR, FSR, bremsstrahlung photons do not flip C eigenvalue.
- Allow fit to determine C+ fraction.
 - Include same-CP double tags (CP±/CP±).
 - Allowed decay only for C+.
 - All yields consistent with zero.
 - Fit each yield to sum of C- and C+ contributions.
 - Results (from 2008 publication): $C + / C = -0.001 \pm 0.023$.
 - No evidence for *C*+.
 - Other results unchanged.

Charm Mixing (no CPV)

$$i\frac{\partial}{\partial t} \begin{pmatrix} D\\ \overline{D} \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12}\\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} D\\ \overline{D} \end{pmatrix} \text{ where } H_{11} = M_{11} - i\frac{\Gamma_{11}}{2} \text{ etc...}$$

• $H_{12}, H_{21} \neq 0 \Rightarrow$ flavor eigenstates $(D^0, \overline{D^0}) \neq$ mass eigenstates (D_1, D_2) .

- Standard Model predictions for x and y have large uncertainties.
- But measurements of x and y can constrain New Physics models.

David Asner, Pacific Northwest National Laboratory