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Threshold Charm Production

 Running near cc threshold produces quantum correlated D0 and D0:

 e e ψ(3770) D0D0 [C = 1]    OR    e e γ* D0D0γ  [C = 1]

 At ψ(3770), same-CP final states forbidden; opposite-CP states enhanced

 Tagging the CP of one D identifies the CP of other D.

 Unique access to amplitude ratios, phases, & charm mixing.

 Exploit interference effects in time-integrated rates.

 D0 strong phases are necessary inputs for

 Charm mixing studies at B-factories, CDF, FOCUS

 CKM studies at B-factories and LHCb

 CLEO-c ψ(3770) measurements of strong phases in

D0 K π K π π0 K π π π KS,L
0h h
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Charm Mixing (no CPV)

 Flavor eigenstates (D0, D0) mass eigenstates (D1, D2).

 Mixing characterized by 

 y = (0.73 ± 0.14)%:

 Direct lifetime measurements:

 Compare K K and π π with K π .

 Time-dependent Dalitz analysis of
K0

Sπ π and K0
SK K

 Intermediate CP-eigenstates give y.

 Interference between CP+ and CP gives x.

 y’ = y cosδKπ x sinδKπ (0.48 ± 0.23)%

 Time-dependent wrong-sign rate D0 K π :

 Interfering DCS and mixing amplitudes modulate
exponential decay time.

 Ambiguity from strong phase:
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Quantum-Correlations Overview: (3770)

e e γ* D0D0

C = 1

Forbidden by

CP conservation

CP+ CP+

CP− CP−

Maximal enhancement CP+ CP−

Forbidden if no mixing K−π+ K−π+

Interference of

CF with DCS (gives cosδKπ)

K−π+ CP±

CP± K−π+

Single Tags Unaffected

CP±

K−π+

SL

X

Quantum correlations

are seen in data!ψ(3770)



Quantum-Correlated Decay Rates: (3770)

 Evaluating

with                          gives

 Interference with mixed amplitudes vanishes for C = 1

 Exclusive rates probe bare amplitudes and strong phases directly.

 Inclusive rates come from summing exclusive rates.

 Dependence on y appears in the sum.

 Interference between unmixed and mixed+DCS amplitudes.

Charm 2010, IHEP, Beijing, ChinaDavid Asner, Pacific Northwest National Laboratory 5

2
00002 |||| DiDjDjDiij

ire
Di

Di

0

0

Final States Time-Integrated Rate ( x Ai
2Aj

2 )

Exclusive

i j 1 + ri
2 rj

2 2 rirj cos(δi δj)

i j ri
2 + rj

2 2 rirj cos(δi δj)

Inclusive i X 1 + ri
2 + 2 y ricosδi

Same as incoherent decay

No y dependence

Anti-symmetric

wavefunction

i

iii rAy cos2 2

Selected references:

Goldhaber & Rosner, PRD 15, 1254 (1977)

Bigi & Sanda, PLB 171, 320 (1986)

Xing, PRD 55, 196 (1997)

Gronau, Grossman, Rosner, 

PLB 508, 37 (2001)

Atwood & Petrov, PRD 71, 054032 (2005)

Asner & Sun, PRD 73, 034024 (2006);

PRD 77, 019901(E) (2008)



 For some final states, we know r and δ:  reference points for interference

 CP eigenstates: r=1 and δ=0 or π — sensitive to cosδ of the other side.

 Semileptonic: r=0 — sensitive to A2 and r2 of the other side.

 To probe sinδ, need to interfere with a final state with δ ≠ 0 or π.

 Use CP-tagged exclusive rates to extract:

 cosδKπ: reconstruct K K (CP+) with K π K π must come from D1 (CP ).

 y: reconstruct K K (CP+) with semileptonic SL must come from D1 (CP ).
 Semileptonic width independent of CP, but total width depends on CP.

 Mixing/amplitude/phase parameters from double ratios of yields:

Extracting Physical Parameters from Yields
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RWS = Γ(D0 K+π )/Γ(D0 K π )

= rKπ
2 + rKπy’ + (x2+y2)/2

DT rate ~ Ai
2Aj

2 [ 1 + ri
2 rj

2 2 rirj cos(δi δj) ]



Experimental Technique

 Single tag: fully reconstruct one D

 Double tag: reconstruct both D0 and D0

 Both D0 and D0 fully reconstructed.

 Or one missing particle (ν or K0
L):

 Use detector hermeticity and beam

parameters to infer missing mass.

Pair-produced D0 and D0
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D DX i

D Dj i

ST

DT

22 || DbeamBC pEM

Clean event environment,

very low backgrounds

D0 K π

(CLEO-c)

K π vs. 

KL
0π0 

(CLEO-c)



Update: Strong Phase in D0 K δKπ] 

 Previous publication: PRL 100, 221801 (2008) / PRD 78, 012001 (2008).

 Dataset: 281 pb-1 at ψ(3770) = 1 million C-odd D0D0

 First meas. of strong phase between CF A(D0 K π ) and DCS A(D0 K π ).

 Standard fit:

 Extended fit:

 New today: preliminary update with full CLEO-c dataset

 818 pb-1 at ψ(3770) = 3 million C-odd D0D0.

 Additional final states.

 Includes direct measurements of rKπ
2 and sinδKπ.
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Effect of δKπ (2008)

on HFAG average

[ Incl. external

mixing meas. ]

Not yet in

HFAG average



Final States   δKπ]

 Single tags for all fully-

reconstructed modes except 

K0
Sπ π .

 Double tags for almost all 

combinations of modes.

 Like-sign and opposite-sign.

 At most one missing 

particle (K0
L or ν).

 Except for Keν vs. K0
Lπ

0

(2 missing particles).

 261 yield measurements

 K0
Sπ π from PRD 80, 

032002 (2009)

Charm 2010, IHEP, Beijing, ChinaDavid Asner, Pacific Northwest National Laboratory 9

Flavored 
hadronic

CP CP Semilep Mixed

K π K K K0
Sπ

0 K e ν K0
Sπ π (bin 0)

K π π π K0
Sη K e ν K0

Sπ π (bin 1)

K0
Sπ

0π0 K0
Sω K μ ν K0

Sπ π (bin 2)

K0
Lπ

0 K0
Lπ

0π0 K μ ν K0
Sπ π (bin 3)

K0
Lη K0

Sπ π (bin 4)

K0
Lω New in update K0

Sπ π (bin 5)

K0
Sπ π (bin 6)

K0
Sπ π (bin 7)

~3000

CP-tagged Kπ

cosδKπ

~1400 K0
Sπ π vs. Kπ

sinδKπ

~3500

CP-tagged Klν

y

~30 WS Klν vs. Kπ

rKπ
2



Fit Parameters

 51 fit parameters (3.5x TQCA-I)

 Number of DD pair and 21 branching fractions (8 for K0
S )

 B(K ), B(K0
L ), B(K0

L
0 0) will be new CLEO-c measurements.

 We fit for all non-trivial r and cos and sin (9 fit parameters each), 

plus mixing parameters y and x2.

 ST yield f ~ Br ~    1 + rf
2 + 2 y rfcos f

 DT yield f/g ~       1 + rf
2 rg

2 – 2 rfcos f rgcos g – 2 rfsin f rgsin g

 DT yield f/gbar ~       rf
2 + rg

2 – 2 rfcos f rgcos g + 2 rfsin f rgsin g

 Semileptonic:       r = 0

 CP+:                     r = 1, = 

 CP-:                     r = 1, = 0

 Main focus is on , with secondary focus on y.
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K0
Sπ+π− and K0

Lπ+π−

 CLEO-c has studied strong phases in D → K0
Sπ π

 Main tool: CP tagging, analogous to Kπ.

 For multibody modes, must also account for coherence:

 Measure yields in 8 Dalitz plot bins against CP/Kπ/SL/K0
Sπ π tags:

 Use missing mass technique for K0
Lπ+π−. Single tags for K0

Sπ+π− only, not K0
Lπ+π−.

 Each bin treated as separate decay mode with its own Rcosδ and Rsinδ.

 Bins with δ ~ 0 or π act like CP eigenstates.

 Statistics roughly equal to sum of all other (pure) CP eigenstates.

 Bins with δ ~ ±π/2 allows measurement of sinδKπ
.

 Include Rcosδ and Rsinδ as free parameters in fit.

coherence

factor

average

strong

phase

Phys.Rev.D80:032002,2009

arXiv:0903.1681



K0
Sπ+π− & K0

Lπ+π−
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K0
Sπ+π− vs flavor tag K0

Lπ+π− vs flavor tag

M2( + -) M2( + -)

M2(K0
L -)

M2(K0
L +)M2(K0

S +)

M2(K0
S -)M2(K0

S +)

M
2
(K

0
S

-)

M
2
(K

0
L

-)

M2(K0
L +)

 Not identical – 180o phase difference for Doubly Cabibbo suppressed amplitudes



CP tagged K0
Sπ+π−
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K0
Sπ+π− vs CP-even tag K0

Sπ+π− vs CP-odd tag

M2( + -) M2( + -)

M2(K0
S -)

M2(K0
S +)M2(K0

S +)

M2(K0
S -)M2(K0

S +)

M
2
(K

0
S

-)

M
2
(K

0
S

-)

M2(K0
S +)

 Not identical – CP-odd K0
S not in CP-odd tag, CP-even S,D-wave not in CP-even tag
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Semi-Muonic Decays

 CLEO muon chambers inefficient below 1 GeV.

 Instead, use kinematics to separate D0 K μ ν from backgrounds 
using missing energy and momentum.

 Main background: D0 K π π0

 Roughly doubles semileptonic statistics.

U = Emiss |Pmiss|

|Pmiss|

CLEO-c

Preliminary



Semi-Muonic Decays   δKπ]

 Wrong-sign uses similar technique, but 

300x lower yield.

 Primary background: mis-ID Kπ flavor in RS 

decays.

 Dramatically reduced by requiring kaon to 

be in Cherenkov counter acceptance.

 S/(S+B) goes from 50% to 97%.

 Combined Keν/Kμν relative uncertainty 

~25%.

 Unlike with incoherent D0, wrong-sign 

gives r2, not RWS.

 Mixing effects cancel in the interference 

term
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CLEO-c

Preliminary

RWS = Γ(D0 K+π )/Γ(D0 K π )

= rKπ
2 + rKπy’ + (x2+y2)/2

U = Emiss |Pmiss|

Right-sign

Wrong-sign

Kμν vs. Kπ



Semi-Electronic Decays  δKπ]

Charm 2010, IHEP, Beijing, ChinaDavid Asner, Pacific Northwest National Laboratory 16

CLEO-c

Preliminary

U = Emiss |Pmiss|

Right-sign

Wrong-sign

Keν vs. Kπ

U = Emiss |Pmiss|

Right-sign

Wrong-sign

Kμν vs. Kπ
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Keν vs. KLπ0 δKπ]

 Doubles the number of Keν vs. CP

 Technique for two missing particles:

 Used at B-factories for semileptonic decays

 Kinematic constraints on ν and K0
L define two cones for D0 and D0.

 If cones intersect, then 0 < xD
2 < 1.

CLEO-c 

Preliminary

Signal

Paar/Brower: NIM A 421, 411 (1999)

BaBar: PRL 97, 211801 (2006)

Belle: PLB 648, 139 (2007)



Other Yield Measurements   δKπ]

 Fully-reconstructed single tags:

 Fit beam-constrained mass
distribution.

 Fully-reconstructed double tags:

 Two fully-reconstructed STs

 Count events in 2D MBC plane.

 Exclusive Keν DTs:

 One fully-reconstructed ST

 Plus one K and one e candidate

 Fit U distribution

 K0
L {π

0, η, ω, π0π0} DTs:

 One fully-reconstructed ST

 Plus {π0, η, ω, π0π0} candidate

 Compute missing mass-squared

 Signal peaks at M2(K0).
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22 || DbeamBC pEM

K π vs. 

KL
0π0 

Keν vs. 

KS
0π0 

U = Emiss |Pmiss|



External Measurements δKπ]
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Systematic Uncertainties   δKπ]

 Mixing/amplitude/phase parameters determined from double ratios.

 Reduces effect of correlated uncertainties.

 Efficiency systematic uncertainties (correlated) determined with 

missing mass technique.

 Other correlated uncertainties: modeling of ISR and FSR, ΔE cut, 

mass cuts, vetoes on extra tracks/showers O(1%) each.

 Uncorrelated uncertainties: yield fit variations, sideband subtractions

 In the end, statistical uncertainties dominate.
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beamcand EEE



Fit Results   δKπ]

 51 free parameters

 NDD, 21 branching fractions

 24 amplitude/phase parameters 

for K0
Sπ π

 5 Kπ and mixing parameters

 Fit performed with and without 

external measurements of y, x, y’ 

(same as in HFAG May 2010 avg)
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 Statistical uncertainties on y and 

rKπcosδKπ (w/o ext. meas.) 3x 
smaller than 2008 analysis.

 Estimated impact on HFAG 

average: σ(y) reduced by ~10%

 First direct measurements of rKπ
2

and sinδKπ

 Preliminary systematic uncertainties

Parameter
Previous: PDG, 

HFAG, or CLEO
Fit: no ext. meas. Fit: with ext. y, x, y’

y (10-2) 0.79 ± 0.13 3.0 ± 2.0 ± 1.2 0.635 ± 0.118

x2 (10-3) 0.037 ± 0.024 1.5 ± 2.0 ± 0.9 0.022 ± 0.017

rKπ
2 (10-3) 3.32 ± 0.08 4.12 ± 0.92 ± 0.23 3.32 ± 0.08

cosδKπ 1.10 ± 0.36 0.98 +0.27
-0.20 ± 0.08 1.15 ± 0.16 ± 0.12

sinδKπ --- -0.04 ± 0.49 ± 0.08 0.55 +0.36
-0.40 ± 0.08

δKπ (°) [derived] 22 +11
-12

+9
-11 0 ± 22 ± 6 15 +11

-17 ± 7

CLEO-c

Preliminary

Average of y and

y’ = y cosδKπ x sinδKπ

(now limited by sinδKπ)



Strong Phase in D0 K and K

 Published result using 818 pb-1 of ψ(3770) data

 [ PRD 80, 031105(R) (2009) ]

 Similar formalism for Kπ, except now include coherence factors (R) 

for multi-body decay as free parameters.

 41 DT yield measurements.

 No single tags — estimate from external branching fractions.
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total CP-tagged     ~3200 vs. K π π π

events            ~4700 vs. K π π0

From like-sign DT rates of

K π π0 vs. K π π0

K π π π vs. K π π π

~ ( 1 – R2 )



Combining K and K /K

 K π π0/K π π π analysis 

includes δKπ as external 

input.

 But there is also 

independent sensitivity 

to δKπ .

 In particular, δ(K π π0/K π π π ) ≠ 0 or π

K π vs. K π π0/K π π π DTs have enhanced sensitivity to sinδKπ.

 Combined analysis of K π and K π π0/K π π π in progress.
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Final States Time-Integrated Rate ( x Ai
2Aj

2 )

Exclusive

i j 1 + ri
2 rj

2 2 rirj cos(δi δj)

i j ri
2 + rj

2 2 rirj cos(δi δj)

Inclusive i X 1 + ri
2 + 2 y ricosδi

cos(δi δj) =

cosδi cosδj sinδi sinδj

No sensitivity to sinδi when sinδj ~ 0



Summary and Outlook

 Quantum-correlated CLEO-c dataset has yielded direct 

determinations of amplitudes and strong phases in D0 decays.

D0 K π K π π0 K π π π KS,L
0h h

 All measurements are statistics-limited.

 Already significant impact on charm mixing and CKM studies.

 BES-III has exceeded CLEO’s ψ(3770) integrated luminosity.

 Should be able to improve on CLEO-c results.

 Eventually:

 Competitive measurements of mixing parameters.

 Use C=+1 D0D0 from higher-energy data.

 Orthogonal sensitivity to mixing parameters and strong phases.

 Access to CP violation.

 Super B-factories: radiative return to ψ(3770)?

 Also gives boosted D0D0 pairs—time dependent analysis is sensitive to x.

 Many more possibilities to explore!
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See talk by

Jim Libby

n.b. CLEO-c analysis 

relies on RICH detector 



HFAG: New Charm Mixing Average with CLEO-c 
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Parameter HFAG:FPCP2010 HFAG:CHARM2010

y (10-2) 0.79 ± 0.13 0.83 ± 0.13

x (10-2) 0.59 ± 0.20 0.55 +0.12
-0.13

rKπ
2 (10-3) 3.32 ± 0.08 3.32 ± 0.08 

δKπ (°) 27.6 +11.2
-12.2 31.0 +10.7

-12.2

Surprising? 

Large impact on 
x uncertainty 



BACKUP



CESR & CLEO

 1979—2008, symmetric e e collisions @

√s = 2—12 GeV.

 Last 5 years: CESR-c/CLEO-c, √s ~ 4 GeV

 Good for flavor physics (weak interaction):

 Threshold production: clean events

 e e γ*: initial state w/ known energy and 

quantum numbers.

 Hermetic detector with excellent

particle ID.

 Contributions to HEP for 30+ years

 ―Small‖ collaboration:

~20 institutions, < 250 authors.

 Over 500 papers.

 Relevance of flavor to LHC era:

 New Physics constraints from flavor

are much higher than TeV scale.

 NP that solves hierarchy problem must

have non-trivial flavor structure.
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Purity of Initial State
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 C contamination of initial C state (not expected, cf. A. Petrov):

 e e γD0D0 is C , but photon must be radiated from

 D0 or D0

 ψ(3770)

 virtual D* intermediate state.

 ISR, FSR, bremsstrahlung photons do not flip C eigenvalue.

 Allow fit to determine C fraction.

 Include same-CP double tags (CP±/CP±).

 Allowed decay only for C+.

 All yields consistent with zero.

 Fit each yield to sum of C and C contributions.

 Results (from 2008 publication): C /C = 0.001 ± 0.023. 

 No evidence for C .  

 Other results unchanged.



Charm Mixing (no CPV)

 H12,H21 0 flavor eigenstates (D0, D0) mass eigenstates (D1, D2).

 Mixing characterized by

 Standard Model predictions for x and y have large uncertainties.

 But measurements of x and y can constrain New Physics models.
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11 12 11
11 11

21 22

 where  etc...
2

H HD D
i H M i

H HD Dt

 and  
2

M
x y

2

00

2,1

DD
D

[ A. Zupanc ]No mixing

in SU(3) limit



Likelihood Contours   δKπ]

 Improved likelihood behavior 

over 2008 publication:

 Previous nonlinearities from use 

of RWS to derive rKπ
2

 Solved by our new independent 

measurement of rKπ
2

(WS Klν vs. Kπ) 

 Will give more robust averages 

with other experiments (HFAG)

Charm 2010, IHEP, Beijing, ChinaDavid Asner, Pacific Northwest National Laboratory 30

CLEO-c

Preliminary

New prelim. results – statistics only

2008 publication

RWS = Γ(D0 K+π )/Γ(D0 K π )

= rKπ
2 + rKπy’ + (x2+y2)/2

(no ext. meas.)


