Overview of charmonium decays and production from NRQCD

Joan Soto

Departament d'Estructura i Constituents de la Matèria

Universitat de Barcelona

Systematic study of heavy quark-antiquark systems from QCD

Aim:

Systematic study of heavy quark-antiquark systems from QCD

- Charmonium ($c\bar{c}$)
- Bottomonium ($b\bar{b}$)
- B_c (b \bar{c})
- *t*-*t*

Aim:

Systematic study of heavy quark-antiquark systems from QCD

- Charmonium ($c\bar{c}$)
- Bottomonium ($b\bar{b}$)
- B_c (b \bar{c})
- *t*-*t*
- Also:
 - $\tilde{q}\bar{\tilde{q}}$, $\tilde{g}\bar{\tilde{g}}$

• Double-heavy baryons (QQq, Q = b, c, q = u, d, s)

•••

Effective Field Theories (EFTs)

Direct QCD calculations may be very complicated

- Direct QCD calculations may be very complicated
- Construct a new theory (the effective theory) involving only the relevant degrees of freedom for the particular energy region of interest

- Direct QCD calculations may be very complicated
- Construct a new theory (the effective theory) involving only the relevant degrees of freedom for the particular energy region of interest
 - Identify relevant degrees of freedom
 - Symmetries
 - Hierarchy of energy scales

- Direct QCD calculations may be very complicated
- Construct a new theory (the effective theory) involving only the relevant degrees of freedom for the particular energy region of interest
 - Identify relevant degrees of freedom
 - Symmetries
 - Hierarchy of energy scales
- The EFT gives equivalent physical results in the region where it holds

 $Q ar{Q}$ bound state , $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

 $Q\bar{Q}$ bound state , $m_Q >> \Lambda_{QCD}$, $\alpha_{\rm s}(m_Q) << 1$

• Heavy quarks move slowly v << 1

- $Q \bar{Q} \mbox{ bound state }$, $m_Q >> \Lambda_{QCD}$, $lpha_{
 m s}(m_Q) << 1$
 - Heavy quarks move slowly v << 1
 - ▲ Non-relativistic system → multiscale problem

 $Q \bar{Q}$ bound state , $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

 $\hfill \blacksquare$ Heavy quarks move slowly v << 1

- Non-relativistic system \rightarrow multiscale problem
 - $m_Q >> m_Q v >> m_Q v^2$
 - $m_Q >> \Lambda_{QCD}$

 $Q \bar{Q} \mbox{ bound state }$, $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

- $\hfill \blacksquare$ Heavy quarks move slowly v << 1
- Non-relativistic system \rightarrow multiscale problem
 - $m_Q >> m_Q v >> m_Q v^2$
 - $m_Q >> \Lambda_{QCD}$
- EFTs are useful (N. Brambilla, A. Pineda, JS and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005))

NRQCD

W.E. Caswell and G.P. Lepage, Phys. Lett. 167B, 437 (1986)G. T. Bodwin, E. Braaten and G. P. Lepage, Phys. Rev. D 51 (1995) 1125

$$\begin{split} m_Q &>> m_Q v , \quad m_Q v^2 , \quad \Lambda_{QCD} \\ \mathcal{L}_{\psi} &= \psi^{\dagger} \Biggl\{ i D_0 + \frac{1}{2m_Q} \mathbf{D}^2 + \frac{1}{8m_Q^3} \mathbf{D}^4 + \frac{c_F}{2m_Q} \boldsymbol{\sigma}.g \mathbf{B} + \\ &+ \frac{c_D}{8m_Q^2} \left(\mathbf{D}.g \mathbf{E} - g \mathbf{E}.\mathbf{D} \right) + i \frac{c_S}{8m_Q^2} \boldsymbol{\sigma}.\left(\mathbf{D} \times g \mathbf{E} - g \mathbf{E} \times \mathbf{D} \right) \Biggr\} \psi \end{split}$$

 c_F , c_D and c_S are short distance matching coefficients which depend on m_Q and μ (factorization scale)

NRQCD(Cont.)

$$\mathcal{L}_{\psi\chi} = \frac{f_1({}^1S_0)}{m_Q^2} O_1({}^1S_0) + \frac{f_1({}^3S_1)}{m_Q^2} O_1({}^3S_1) + \frac{f_8({}^1S_0)}{m_Q^2} O_8({}^1S_0) + \frac{f_8({}^3S_1)}{m_Q^2} O_8({}^3S_1),$$

$$O_1({}^1S_0) = \psi^{\dagger}\chi\,\chi^{\dagger}\psi , \quad O_1({}^3S_1) = \psi^{\dagger}\boldsymbol{\sigma}\chi\,\chi^{\dagger}\boldsymbol{\sigma}\psi, O_8({}^1S_0) = \psi^{\dagger}\mathrm{T}^a\chi\,\chi^{\dagger}\mathrm{T}^a\psi , \quad O_8({}^3S_1) = \psi^{\dagger}\mathrm{T}^a\boldsymbol{\sigma}\chi\,\chi^{\dagger}\mathrm{T}^a\boldsymbol{\sigma}\psi.$$

- The *f*s are short distance matching coefficients which depend on m_Q and μ (factorization scale)
- The *f*'s contain imaginary parts

- Spectroscopy Lattice NRQCD
- Inclusive decays

$$\Gamma(\chi_Q(nJS) \to LH) = \frac{2}{m_Q^2} \left(\operatorname{Im} f_1(^{2S+1}P_J) \times \frac{\langle \chi_Q(nJS) | O_1(^{2S+1}P_J) | \chi_Q(nJS) \rangle}{m_Q^2} + \operatorname{Im} f_8(^{2S+1}S_S) \langle \chi_Q(nJS) | O_8(^1S_0) | \chi_Q(nJS) \rangle \right),$$

NRQCD(Cont.)

Current precision:

- $\alpha_s^3(m_Q)$ for Im fs of d = 8 operators (S- and P-wave) (A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, (98))
- $\alpha_s^4(m_Q)$ for Im $f_1({}^3S_1)$ (P. B. Mackenzie and G. P. Lepage (81); J. M. Campbell, F. Maltoni, F. Tramontano (07))
- α² for Im f_{e.m.} of d = 10 operators (S- and P-wave) (N. Brambilla, E. Mereghetti and A. Vairo, (06); G. T. Bodwin and A. Petrelli (02); J. P. Ma and Q. Wang (02))
- α_s²(m_Q) for Im fs of d = 10 operators (S- and P-wave) (N. Brambilla,
 E. Mereghetti and A. Vairo (09); G. T. Bodwin and A. Petrelli (02); H. W. Huang, H.
 M. Hu and X. F. Zhang (97))
- $\alpha_s^3(m_Q)$ for Im fs of d = 10 (D-wave) (Z.-G. He, Y. Fan, K.-T. Chao (08,09); Y. Fan, Z.-G. He, Y.-Q. Ma, K.-T. Chao (09))

Matrix elements:

- From Data:
 - Color single matrix elements can be obtained from e.m. decays
 - Color octet ones from decays to light hadrons
 E.g. (Maltoni (00))

$$\langle \chi_{cJ} | \mathcal{O}_8(^3S_1) | \chi_{cJ} \rangle = (4.3 \pm 0.9) \times 10^{-3} \, GeV^3$$

- From Theory:
 - Color single matrix elements are related to wave functions at the origin

Matrix elements:

- From Theory:
 - Color octet matrix elements:
 - RG plus assumption that they are zero at the $m_Q v$ scale (BBL (94); Y. Fan, Z.-G. He, Y.-Q. Ma, K.-T. Chao (09))
 - pNRQCD weak coupling regime (Garcia i Tormo, JS (04,07))

 $\langle J/\psi | \mathcal{O}_8(^1S_0) | J/\psi \rangle \sim 0.0012 \, GeV^3 \,, \, \langle J/\psi | \mathcal{O}_8(^3P_0) | J/\psi \rangle \sim 0.0028 \, GeV^5$

• pNRQCD strong coupling regime (N. Brambilla, D. Eiras, A. Pineda, JS, A. Vairo (01)): related to wave functions at the origin plus a few universal parameters.

NRQCD(Cont.)

Matrix elements:

- From Theory:
 - Color octet matrix elements:
 - Lattice NRQCD (G. T. Bodwin, D. K. Sinclair, S. Kim (96,97,01,05))

$$\langle \chi_{cJ} | \mathcal{O}_8(^3S_1) | \chi_{cJ} \rangle = (4.6 \pm 2.5) \times 10^{-3} \, GeV^3$$

NRQCD(Cont.)

Theory vs. Experiment

Ratio	PDG09	PDG00	LO	NLO
$\frac{\Gamma_{\chi_{c0}\to\gamma\gamma}}{\Gamma_{\chi_{c2}\to\gamma\gamma}}$	4.9 ± 0.9	13± 10	pprox 3.75	pprox 5.43
$\begin{bmatrix} \frac{\Gamma_{\chi_{c2} \to \text{l.h.}} - \Gamma_{\chi_{c1} \to \text{l.h.}}}{\Gamma_{\chi_{c0} \to \gamma\gamma}} \end{bmatrix}$	440 ± 100	270± 20	≈ 347	pprox 383
$\left \begin{array}{c} \frac{\Gamma_{\chi_{c0} \to \text{l.h.}} - \Gamma_{\chi_{c1} \to \text{l.h.}}}{\Gamma_{\chi_{c0} \to \gamma\gamma}} \end{array} \right $	4000 ± 600	3500 ± 2500	\approx 1300	pprox 2781
$\begin{bmatrix} \frac{\Gamma_{\chi_{c0} \to \text{l.h.}} - \Gamma_{\chi_{c2} \to \text{l.h.}}}{\Gamma_{\chi_{c2} \to \text{l.h.}} - \Gamma_{\chi_{c1} \to \text{l.h.}}} \end{bmatrix}$	8.0 ± 0.9	12.1± 3.2	pprox 2.75	pprox 6.63
$\begin{bmatrix} \frac{\Gamma_{\chi_{c0} \to \text{l.h.}} - \Gamma_{\chi_{c1} \to \text{l.h.}}}{\Gamma_{\chi_{c2} \to \text{l.h.}} - \Gamma_{\chi_{c1} \to \text{l.h.}}} \end{bmatrix}$	9.0 ± 1.1	13.1±3.3	pprox 3.75	pprox 7.63

 $m_c = 1.5 \text{ GeV}$ and $\alpha_s(2m_c) = 0.245$ (G. T. Bodwin, based on A. Vairo (09))

Electromagnetic current:

$$\boldsymbol{j} = c_v(\mu)\psi^{\dagger}\boldsymbol{\sigma}\chi + \frac{d_v(\mu)}{6m_q^2}\psi^{\dagger}\boldsymbol{\sigma}\boldsymbol{D}^2\chi + \dots,$$

- **NLO** (R. Barbieri, R. Gatto, R. Kogerler, Z. Kunszt (75))
- NNLO (M. Beneke, A. Signer, V.A. Smirnov; A. Czarnecki, K. Melnikov (97))
- NNNLO, diagrams with quark loops, light and heavy (P. Marquard, J.H. Piclum, D. Seidel, M. Steinhauser (06,09))
- NLO plus relativistic corrections to all orders (G. T. Bodwin, H. S. Chung, J. Lee, C. Yu (08))

• The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled

• The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous

The scales m_Qv, m_Qv² and Λ_{QCD} are not disentangled → The counting is not homogeneous
 Solutions:

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v$

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v \longrightarrow$ pNRQCD, A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998)

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v \longrightarrow$ pNRQCD, A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998)
 - Mode decomposition

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v \longrightarrow$ pNRQCD, A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998)
 - Mode decomposition vNRQCD, M. E. Luke,
 A. V. Manohar and I. Z. Rothstein, Phys. Rev. D 61,
 074025 (2000)

pNRQCD

 $\Lambda_{QCD} \lesssim m_Q v^2$: weak coupling regime

$$\begin{split} \mathcal{L}_{\text{pNRQCD}} &= \int d^{3}\mathbf{r} \operatorname{Tr} \left\{ \mathbf{S}^{\dagger} \left(i\partial_{0} - h_{s}(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_{1}, \mathbf{S}_{2}, \mu) \right) \mathbf{S} + \\ &+ \mathbf{O}^{\dagger} \left(iD_{0} - h_{o}(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_{1}, \mathbf{S}_{2}, \mu) \right) \mathbf{O} \right\} \\ &+ V_{A}(r, \mu) \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{S} + \mathbf{S}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{O} \right\} + \\ &+ \frac{V_{B}(r, \mu)}{2} \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{O} + \mathbf{O}^{\dagger} \mathbf{Or} \cdot g \mathbf{E} \right\} \end{split}$$

 h_s , h_o = quantum mechanical hamiltonians with scale dependent potentials calculable in pertubation theory in $\alpha_s(m_Q v)$

pNRQCD (Cont.)

 $\Lambda_{QCD} \lesssim m_Q v$: strong coupling regime

$$L_{\text{pNRQCD}} = \int d^3 \mathbf{R} \int d^3 \mathbf{r} \ S^{\dagger} (i\partial_0 - h_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2)) S,$$

$$h_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2) = \frac{\mathbf{p}_1^2}{2m_Q} + \frac{\mathbf{p}_2^2}{2m_{Q'}} + V_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2),$$

$$V_s = V_s^{(0)} + \frac{V_s^{(1,0)}}{m_Q} + \frac{V_s^{(0,1)}}{m_{Q'}} + \frac{V_s^{(2,0)}}{m_Q^2} + \frac{V_s^{(0,2)}}{m_{Q'}^2} + \frac{V_s^{(1,1)}}{m_Q m_{Q'}},$$

All V_ss can be, and most of them have been, calculated on the lattice (G. S. Bali, Klaus Schilling, A. Wachter (97); Y. Koma, M. Koma, H. Wittig (06); Koma, M. Koma (06,09))

Lattice pNRQCD
Example: the $1/m_Q$ potential (N. Brambilla, A. Pineda, JS, A. Vairo, Phys. Rev. D63:014023,2001)

$$V^{(1)}(r) = -\frac{1}{2} \int_0^\infty dt \, t \, \langle\!\langle g \mathbf{E}_1(t) \cdot g \mathbf{E}_1(0) \rangle\!\rangle_c,$$

Example: the $1/m_Q$ potential (N. Brambilla, A. Pineda, JS, A. Vairo, Phys. Rev. D63:014023,2001)

$$V^{(1)}(r) = -\frac{1}{2} \int_0^\infty dt \, t \, \langle\!\langle g \mathbf{E}_1(t) \cdot g \mathbf{E}_1(0) \rangle\!\rangle_c,$$

Dashed : $V^{(1)}(r) = \frac{a}{r^2} + c$, Solid : $V^{(1)}(r) = \frac{a}{r} + c$

Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett. 97:122003,2006

Constraints on $V^{(1)}(r)$:

Constraints on $V^{(1)}(r)$:

• $r \ll 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim \alpha_{\rm s}^2(1/r)/r^2,$ from perturbation theory

Constraints on $V^{(1)}(r)$:

- $r \ll 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim \alpha_{\rm s}^2(1/r)/r^2$, from perturbation theory
- $r \gg 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim a \ln r + c$, from the QCD effective string theory (Guillem Perez-Nadal, JS, Phys.Rev.D79:114002,2009)

Constraints on $V^{(1)}(r)$:

- $r \ll 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim \alpha_{\rm s}^2(1/r)/r^2$, from perturbation theory
- $r \gg 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim a \ln r + c$, from the QCD effective string theory (Guillem Perez-Nadal, JS, Phys.Rev.D79:114002,2009)

pNRQCD (Cont.) 4 $m_{ps} + m_s$ 3 2 $2 m_{ps}$ $[V(r)-V(r_0)]r_0$ 1 0 -1 quenched $\kappa = 0.1575$ -2 -3 0.5 1 1.5 2 2.5 3 r/r₀

G.S. Bali at al. (TXL Collaboration), Phys. Rev. **D62**,(2000):054503

pNRQCD : weak coupling regime

pNRQCD : weak coupling regime

- Fixed order calculations:
 - Complete NNNLO calculation for the spectrum $(m_Q v^2 \gg \Lambda_{QCD})$ (B. A. Kniehl, A. A. Penin, V. A. Smirnov and M. Steinhauser (02), ; A. A. Penin and M. Steinhauser (02), ; A. V. Smirnov, V. A. Smirnov, M. Steinhauser (10))
 - NNNLO contributions to the wave function at the origin $(m_Q v^2 \gg \Lambda_{QCD})$ (Beneke, Kiyo (08,05), Beneke, Kiyo, Penin, Schuler (07), Beneke, Kiyo, Schuler (07,05))

pNRQCD : weak coupling regime

- Fixed order calculations:
 - Complete NNNLO calculation for the spectrum $(m_Q v^2 \gg \Lambda_{QCD})$ (B. A. Kniehl, A. A. Penin, V. A. Smirnov and M. Steinhauser (02), ; A. A. Penin and M. Steinhauser (02), ; A. V. Smirnov, V. A. Smirnov, M. Steinhauser (10))
 - NNNLO contributions to the wave function at the origin $(m_Q v^2 \gg \Lambda_{QCD})$ (Beneke, Kiyo (08,05), Beneke, Kiyo, Penin, Schuler (07), Beneke, Kiyo, Schuler (07,05))
- Renormalization Group resummations ($\ln(v)$):
 - Emphasized in vNRQCD (M. E. Luke, A. V. Manohar and
 - I. Z. Rothstein (99))
 - Implementation in pNRQCD (A. Pineda and JS (00); A. Pineda (01))

pNRQCD : weak coupling regime (Cont.)

- Hyperfine splitting at NNLL accuracy (Kniehl, Penin, Pineda, Smirnov, and Steinhauser (03))
 - $m_{J/\psi} m_{\eta_c(1S)} \sim 112 \pm 40 \, (\delta \alpha_s) \, \text{MeV}$ [Exp: 116.6 ± 1.0, MeV]
 - $m_{\Upsilon(1S)} m_{\eta_b(1S)} = 39 \pm 11 \,(\text{th}) \,^{+9}_{-8} \,(\delta \alpha_s) \,\,\text{MeV}$ [Exp: 69.6 ± 2.9 MeV]
- Ratio of vector/pseudoscalar electromagnetic widths at NNLL accuracy
 - $Q\bar{Q}$ propagator with static potential $\mathcal{O}(\alpha_s(\mu))$ (A. A. Penin, A. Pineda, V. A. Smirnov and M. Steinhauser (04))
 - $Q\bar{Q}$ propagator with static potential up to $\mathcal{O}(\alpha_{
 m s}^4(1/r))$ (Y. Kiyo, A. Pineda, A. Signer (10))

pNRQCD : weak coupling regime (Cont.)

$$\begin{split} \Gamma(\eta_b(1S) \to \gamma\gamma) &= 0.659 \pm 0.089 (\text{th.})^{+0.019}_{-0.018} (\delta\alpha_s) \pm 0.015 (\text{exp.}) \text{ keV} ,\\ &\to 0.54 \pm 0.15 \text{ keV} \end{split}$$

pNRQCD : strong coupling regime

 Factorization formulas for NRQCD matrix elements can be worked out (N. Brambilla, D. Eiras, A. Pineda, JS and A. Vairo, Phys. Rev. Lett.
 88, 012003 (2002); Phys. Rev. D 67, 034018 (2003))

$$\langle \Upsilon(n) | O_8({}^1S_0) | \Upsilon(n) \rangle = C_A \frac{|R_n(0)|^2}{2\pi} \left(-\frac{(C_A/2 - C_f)c_F^2 \mathcal{B}_1}{3m_Q^2} \right)$$

- $R_n(0)$, wave function at the origin
- $\mathcal{B}_1 \sim \Lambda^2_{QCD}$, independent of n
- c_F , short distance matching coefficient

pNRQCD : strong coupling regime

 Factorization formulas for NRQCD matrix elements can be worked out (N. Brambilla, D. Eiras, A. Pineda, JS and A. Vairo, Phys. Rev. Lett.
 88, 012003 (2002); Phys. Rev. D 67, 034018 (2003))

$$\langle \Upsilon(n) | O_8({}^1S_0) | \Upsilon(n) \rangle = C_A \frac{|R_n(0)|^2}{2\pi} \left(-\frac{(C_A/2 - C_f)c_F^2 \mathcal{B}_1}{3m_Q^2} \right)$$

- $R_n(0)$, wave function at the origin
- $\mathcal{B}_1 \sim \Lambda^2_{QCD}$, independent of n
- c_F , short distance matching coefficient
- New predictions can be put forward

$$\frac{\Gamma(\chi_{b0}(1P) \to \text{LH})}{\Gamma(\chi_{b1}(1P) \to \text{LH})} = \frac{\Gamma(\chi_{b0}(2P) \to \text{LH})}{\Gamma(\chi_{b1}(2P) \to \text{LH})} = 8.0 \pm 1.3,$$

pNRQCD: strong coupling regime (Cont.)

 The ratio of photon spectra in inclusive radiative decays (X. Garcia i Tormo, JS, Phys.Rev.Lett.96:111801,2006)

$$\frac{\frac{d\Gamma_n}{dz}}{\frac{d\Gamma_r}{dz}} = \frac{\langle \mathcal{O}_1({}^3S_1)\rangle_n}{\langle \mathcal{O}_1({}^3S_1)\rangle_r} \left(1 + \frac{C_1'\left[{}^3S_1\right]\left(z\right)}{C_1\left[{}^3S_1\right]\left(z\right)} \frac{1}{m_Q}\left(E_n - E_r\right)\right)$$

$$\frac{\langle \mathcal{O}_1({}^3S_1)\rangle_n}{\langle \mathcal{O}_1({}^3S_1)\rangle_r} = \frac{\Gamma\left(\Upsilon(n) \to e^+e^-\right)}{\Gamma\left(\Upsilon(r) \to e^+e^-\right)} \left[1 - \frac{\mathrm{Im}g_{ee}\left({}^3S_1\right)}{\mathrm{Im}f_{ee}\left({}^3S_1\right)} \frac{E_n - E_r}{m_Q}\right]$$

Practical Problem: None of the parameters above (m_Q, v , Λ_{QCD}) are directly accessible to experiment

Practical Problem: None of the parameters above (m_Q, v , Λ_{QCD}) are directly accessible to experiment

Given $\Upsilon(nS)$, $\psi(nS)$, which regime does it belong to ?

Practical Problem: None of the parameters above (m_Q, v , Λ_{QCD}) are directly accessible to experiment

Given $\Upsilon(nS)$, $\psi(nS)$, which regime does it belong to ?

• Proposal: the photon spectra in $\Upsilon(n)$, $\psi(nS) \rightarrow \gamma X$ will tell you (X. Garcia i Tormo and JS, (06))

Practical Problem: None of the parameters above (m_Q, v , Λ_{QCD}) are directly accessible to experiment

Given $\Upsilon(nS)$, $\psi(nS)$, which regime does it belong to ?

- Proposal: the photon spectra in $\Upsilon(n)$, $\psi(nS) \rightarrow \gamma X$ will tell you (X. Garcia i Tormo and JS, (06))
 - CLEO data for $\Upsilon(n) \to \gamma X$, n = 1, 2, 3 (D. Besson *et al.* [CLEO Collaboration], (05)) clearly suggest that n = 2, 3 are in the strong coupling regime.

Practical Problem: None of the parameters above (m_Q, v , Λ_{QCD}) are directly accessible to experiment

Given $\Upsilon(nS)$, $\psi(nS)$, which regime does it belong to ?

- Proposal: the photon spectra in $\Upsilon(n)$, $\psi(nS) \rightarrow \gamma X$ will tell you (X. Garcia i Tormo and JS, (06))
 - CLEO data for $\Upsilon(n) \to \gamma X$, n = 1, 2, 3 (D. Besson *et al.* [CLEO Collaboration], (05)) clearly suggest that n = 2, 3 are in the strong coupling regime.
- Proposal': the leptonic widths as well (J. L. Domenech Garret, M. A. Sanchis Lozano (08)), reach the same conclusions

Beyond inclusive decays

- Transitions
 - NRQCD OK, but provides little info.
 - pNRQCD OK:
 - Weak coupling: detailed study of magnetic dipole transitions (N. Brambilla, Y. Jia, A. Vairo (05)) $\Gamma(J/\psi \rightarrow \eta_c \gamma) = 1.5 \pm 1.0 \,\text{keV}$ [Exp. $1.7 \pm 0.4 \,\text{keV}$]
 - Hadronic EFTs incorporating heavy quark and chiral symmetry (R.Casalbuoni, A. Deandrea, N.Di Bartolomeo, F.Feruglio, R.Gatto, G. Nardulli (96), F. De Fazio (08))
- Decays to heavy-light meson pairs
 - NRQCD OK, but provides little info.
 - pNRQCD must be augmented.

Beyond inclusive decays

- Semi-inclusive and exclusive decays
 - NRQCD must be augmented: there are gluons of energy $\sim m_Q$ in the final state, which have been integrated out in NRQCD
 - Incorporate QCD factorization formulas, fragmentation functions, light cone distribution amplitudes,...
 - SCET (C. W. Bauer, S. Fleming, M. E. Luke (00)) is supposed to do it in an EFT framework

NRQCD+SCET

Let me focus on $\Upsilon(1S) \to X\gamma$

NRQCD+SCET

Let me focus on $\Upsilon(1S) \to X\gamma$

• Long standing discrepancies between QCD and experiment in the upper end point region of the spectrum $z = E_{\gamma}/2M \rightarrow 1$

NRQCD+SCET

Let me focus on $\Upsilon(1S) \to X\gamma$

• Long standing discrepancies between QCD and experiment in the upper end point region of the spectrum $z = E_{\gamma}/2M \rightarrow 1$

The upper end-point region:

- NRQCD factorization breaks down (the scales M(1-z) and $M\sqrt{1-z}$ play a rôle)
- Collinear degrees of freedom become relevant
- Shape functions must be introduced
- Color octet contributions become LO

Combining NRQCD and SCET:

Combining NRQCD and SCET:

 Factorization formulas have been proved (S. Fleming and A. K. Leibovich, Phys. Rev. Lett. 90 (03) 032001; Phys. Rev. D 67 (03) 074035)

Combining NRQCD and SCET:

- Factorization formulas have been proved (S. Fleming and A. K. Leibovich, Phys. Rev. Lett. 90 (03) 032001; Phys. Rev. D 67 (03) 074035)
- Large (Sudakov) logs have been resummed
 - Color octet (C. W. Bauer, C. W. Chiang, S. Fleming,
 A. K. Leibovich and I. Low, Phys. Rev. D 64 (01) 114014)
 - Color singlet (S. Fleming and A. K. Leibovich, Phys. Rev. D 70 (04) 094016)

Factorization formula:

$$\frac{d\Gamma^e}{dz} = \sum_{\omega} H(M,\omega,\mu) \int dk^+ S(k^+,\mu) \operatorname{Im} J_{\omega}(k^+ + M(1-z),\mu)$$

Factorization formula:

$$\frac{d\Gamma^e}{dz} = \sum_{\omega} H(M,\omega,\mu) \int dk^+ S(k^+,\mu) \operatorname{Im} J_{\omega}(k^+ + M(1-z),\mu)$$

Combining pNRQCD and SCET

Factorization formula:

$$\frac{d\Gamma^e}{dz} = \sum_{\omega} H(M,\omega,\mu) \int dk^+ S(k^+,\mu) \operatorname{Im} J_{\omega}(k^+ + M(1-z),\mu)$$

Combining pNRQCD and SCET

 Color octet shape functions have been calculated (X. Garcia i Tormo and J. Soto, Phys. Rev. D 69 (2004) 114006)

The calculation is reliable for:

- $z \leq 0.9$ (from $1 GeV \leq M(1-z)$)
- $z \gtrsim 0.7$ (from $(1-z) \ll 1$)

Production

- Except for the case of e.m. production at threshold, production processes involve gluons of energy $\sim m_Q$
- NRQCD must be supplemented with additional factorization formulas
- Proposal for inclusive production (BBL (04))

$$\sigma(H) = \sum_{n} \frac{F_n(\mu)}{m_Q^{d_n-4}} \langle 0|\mathcal{O}_n^H(\mu)|0\rangle,$$

 $F_n(\mu)$ short distance matching coefficient

$$\mathcal{O}_n^H = \chi^{\dagger} \mathcal{K}_n \psi \left(\sum_X \sum_{m_J} |H + X\rangle \langle H + X| \right) \psi^{\dagger} \mathcal{K}'_n \chi$$

Production

- See Bodwin's talk for:
 - Status of factorization proofs
 - Production at hadron colliders
 - Production at electron-proton colliders
- Next:
 - Production at $e^+ e^-$ colliders
 - Charmonium production in bottomonium decays
- Remark:
 - Standard factorization formulas give results in terms of universal functions (FF, LCDA,...)
 - NRQCD factorization formulas give results in terms of universal numbers (NRQCD matrix elements)

Inclusive double $c\overline{c}$ **production at Belle**

Belle (02)

 $\sigma(e^+e^- \to J/\psi + c\bar{c} + X)/(e^+e^- \to J/\psi + X) = 0.59^{+0.15}_{0.13} \pm 0.12. \quad [\text{Th.}: \sim 0.1]$

Th. : pQCD+CS Cho, Leibovich (96); Baek, Ko, Lee, Song (97); Yuan, Qiao, Chao (97)). Belle (09) confirms this figure

- Theoretical progress in $\sigma(e^+e^- \rightarrow J/\psi + c\bar{c} + X)$
 - NLO calculation of the color-singlet contribution large ($K \sim 1.8$) (Zhang and Chao (07); Gong and Wang (09))
 - Two photon contribution small (Liu, He, Chao (03))
 - Direct relativistic corrections (He, Fan, Chao (07))
 - LO color octet contributions (Liu, He, Chao (04))
 - NLO color octet contributions large ($K \sim 1.9$) (Zhang, Ma, Wang, Chao (09))

Inclusive double $c\bar{c}$ **production at Belle**

- Theoretical progress in $\sigma(e^+e^- \rightarrow J/\psi + X(\operatorname{non} c\overline{c}))$
 - LO color-octet contribution (Wang (03))
 - NLO color-singlet contribution (Ma, Zhang, Chao (08); Gong, Wang (09))
 - Relativistic corrections to CS (He, Fan, Chao (09))

Putting all together

$$\sigma(e^+e^- \to J/\psi + c\bar{c} + X)/(e^+e^- \to J/\psi + X)|_{\text{Th.}} \sim 0.50$$

 No obvious discrepancy anymore, but theoretical uncertainties large
Exclusive double charmonium production at B-factories

Belle(04) $\sigma(e^+e^- \to J/\psi + \eta_c) \times B_{>2} = 25.6 \pm 2.8 \pm 3.4 \,\text{fb}.$

Babar(05) $\sigma(e^+e^- \to J/\psi + \eta_c) \times B_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1} \text{ fb.}$

Th.: 2.3 - 5.5 fb. (Liu, He, Chao (02); Braaten, Lee (03); Hagiwara, Kou, Qiao (03)), LO NRQCD in α_s and v (color octet suppressed by v^4)

- Theoretical progress:
 - NLO in α_s is large ($K \sim 2$) (Zhang, Gao, Chao (05); Gong, Wang (07))
 - NRQCD higher order (in v) matrix elements determined through a potential model (Bodwin, Kang, Lee (06))
 - Relativistic corrections + NLO in α_s seem to be OK with Exp. (Bodwin, Chung, Kang, Kim, Lee, Yu (06); He, Fan, Chao (07))
 - Detailed error analysis (Bodwin, Chung, Kang, Lee, Yu (07))

$$\sigma(e^+e^- \to J/+\eta_c) = 17.6^{+8.1}_{-6.7} \,\text{fb.}$$

Bottomonium decays to charmonium

• $\Upsilon(1S) \to J/\psi + X$

CLEO(04) $B(\Upsilon(1S) \to J/\psi + X) = (6.4 \pm 0.4 \pm 0.6) \times 10^{-4}$

- LO color-octet (Cheung, Keung, Yuan (96); Napsuciale (97)) $B\sim 2.5-2.1\times 10^{-4}$
- LO color-singlet ($\Upsilon(1S) \rightarrow J/\psi + c\bar{c} + g$) (Lie, Xie, Wang (00)) $B \sim 5.9 \times 10^{-4}$, recently corrected to $B \sim 2.3 - 8.3 \times 10^{-5}$ (He, Wang (09)), e.m. contribution also small.
- NLO color-singlet ($\Upsilon(1S) \to J/\psi + gg(ggg)$) (He, Wang (09)) $B \sim 3.2 - 0.9 \times 10^{-4}$
- Spectrum at $z \rightarrow 1$, LO color-singlet + SCET (Leibovich, Liu (07)); LO e.m. and LO color-octet + SCET (Liu (09))

Bottomonium decays to charmonium

- $\eta_b(1S) \rightarrow \eta_c$, $\chi_c + X$, LO (He, Li (09))
- $\Upsilon(1S) \rightarrow c + \bar{c} + X$, LO, invariant mass distribution (Chung, Kim, Lee (08))
- $\Upsilon(1S) \rightarrow c + \bar{c}$, two charm jets, LO+ NLO in α_s , CS+CO (Zhang, Chao (08))
- $\eta_b(1S) \rightarrow J/\psi J/\psi$, NLO in α_s (v^0), (Gong, Jia, Wang (08)), proposed as a discovery mode (Jia (06); Braaten, Fleming, Leibivich (01)). Analysis LC formalism vs. NRQCD (Sun, Hao, Qiao (10))
- $\eta_b, \chi_b \to D\bar{D}$, combine NRQCD, pNRQCD and SCET (Azevedo, Long, Mereghetti (09))

 There has been a great activity in the NRQCD approach during the last years

- There has been a great activity in the NRQCD approach during the last years
- Important discrepancies with experiment have been resolved

- There has been a great activity in the NRQCD approach during the last years
- Important discrepancies with experiment have been resolved
- Does the expansion in $\alpha_{\rm s}(m_Q)$ and v^2 converge?

- There has been a great activity in the NRQCD approach during the last years
- Important discrepancies with experiment have been resolved
- Does the expansion in $\alpha_{\rm s}(m_Q)$ and v^2 converge?

Thank You