Theoretical review on the prospect for new physics in charm sector

Gilad Perez

Weizmann Institute

The 4th Int. Workshop on Charm Physics:

Charm 2010

Friday, October 22, 2010

Outline

Brief introduction, importance of up flavor physics.

Model independent information (effective field theory).

Charm physics & alignment models.

• $D - \overline{D}$ mixing, the connection with tFCNC.

Model dependent information: (MFV, SUSY, RS).

The potential of
$$D^0 \to \mu^+ \mu^-$$
.

Conclusions.

Friday, October 22, 2010

SM way to induce flavor conversion & CPV is unique.

> SM way to induce flavor conversion & CPV is unique.

SM way to induce flavor conversion & CPV is unique.

SM way to induce flavor conversion & CPV is unique.

Absence (?) of deviation from SM predictions implies severe bound on new physics (NP).

• Most of precise information involves K, B mesons, linked to down type FCNC.

Output the severe hierarchy problem is induced by the top sector, which is indeed extended in most of natural NP models.

What do we know about New Phys. flavor sector, model independently?

Generic bounds via effective theory

- $\Delta F = 2$ processes among the cleanest.
- In the SM proceed at loop and highly suppressed.
- To leading order beyond the SM:

$$\frac{\left(\bar{q}_i q_j\right)\left(\bar{q}_i q_j\right)}{\Lambda_{\rm NP}^2}$$

Generic bounds via effective theory

- $\Delta F = 2$ processes among the cleanest.
- In the SM proceed at loop and highly suppressed.
- To leading order beyond the SM:

$$\frac{\left(\bar{q}_i q_j\right)\left(\bar{q}_i q_j\right)}{\Lambda_{\rm NP}^2}$$

What are the bounds on $\Lambda_{\rm NP}$

for different flavor transitions?

Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci. (10)

Operator	Bounds on	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L\gamma^\mu s_L)^2$	1	$.1 \times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	3	0.7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci. (10)

	Operator	Bounds on .	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
<u> </u>		Re	Im	Re	Im	
X	$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(ar{s}_R d_L)(ar{s}_L d_R)$	1.8×10^4	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
($(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
($(ar{b}_Rd_L)(ar{b}_Ld_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(\bar{b}_L \gamma^\mu s_L)^2$	1	$.1 imes 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
($(ar{b}_Rs_L)(ar{b}_L s_R)$	3	$.7 \times 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{t}_L \gamma^\mu u_L)^2$					

Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci. (10)

	Operator	Bounds on /	A in TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
	$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
TT INCOME	$(ar{c}_R u_L)(ar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(ar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
SS	$(ar{b}_R d_L)(ar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(ar{b}_L \gamma^\mu s_L)^2$	1.	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.	7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{t}_L \gamma^\mu u_L)^2$					

D-system falls only behind the K-one

Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci. (10)

	Operator	Bounds on A	Λ in TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
	$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
8	$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
TT INCOME	$(ar{c}_R u_L)(ar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(ar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
SS	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(ar{b}_L \gamma^\mu s_L)^2$	1.	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.	7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
	$(ar{t}_L \gamma^\mu u_L)^2$?		?	?

D-system falls only behind the K-one

Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci. (10)

			• • • • • • • • • • • • • • • • • • • •			
	Operator	Bounds on Λ	in TeV $(c_{ij} = 1)$	Bounds on c	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
	$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
T Internet	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
	$(ar{b}_L \gamma^\mu s_L)^2$	1.1	$\times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	2	0	1.3	$\times 10^{-5}$	Δm_{B_s}
	$(ar{t}_L\gamma^\mu u_L)^2$ -		CNC linked		?	?
			$\Delta C = 2$			
	D-syste	and the the test and the test and tes	stay tuned!	nd th	e K-one	
			stay tuned.			AF = 2 setus

Friday, October 22, 2010

Safe 201

Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci. (10)

Friday, October 22, 2010

Huge recent progress in measurement of mass splitting & CP violation (CPV) in the *D* system:

System parameters roughly determined (HFAG):

$$x = (1.00 \pm 0.25) \times 10^{-2},$$

$$y = (0.77 \pm 0.18) \times 10^{-2},$$

$$1 - |q/p| = +0.06 \pm 0.14,$$

$$\phi = -0.05 \pm 0.09,$$

Huge recent progress in measurement of mass splitting & CP violation (CPV) in the *D* system:

System parameters roughly determined (HFAG):

Huge recent progress in measurement of mass splitting & CP violation (CPV) in the *D* system:

System parameters roughly determined (HFAG):

$$x = (1.00 \pm 0.25) \times 10^{-2},$$

$$y = (0.77 \pm 0.18) \times 10^{-2},$$

$$1 - |q/p| = +0.06 \pm 0.14,$$

$$\phi = -0.05 \pm 0.09,$$

Absence of *D* CPV
a SM victory!

SM: D system is controlled by 2 gen' physics \Rightarrow CP conserving

> Bottom contribution is down by: $\mathcal{O}\left(\frac{m_c^2}{m_b^2} \times \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*}\right) = 10^{-4} \text{ (see talk by Lenz)}$

The power of CPV in the D system

The power of CPV in the D system

$$\begin{split} y_{12} &\equiv |\Gamma_{12}|/\Gamma, \qquad x_{12} \equiv 2|M_{12}|/\Gamma, \qquad \phi_{12} \equiv \arg(M_{12}/\Gamma_{12}). \\ x_{12}^{\text{NP}} &\lesssim x_{12}^{\text{exp}} \sim 0.012, \qquad x_{12}^{\text{NP}} \sin \phi_{12}^{\text{NP}} \lesssim x_{12}^{\text{exp}} \sin \phi_{12}^{\text{exp}} \sim 0.0022, \end{split}$$

If x is due to NP then it missed a chance to revealed itself in $\mathcal{O}(1)$ CPV. $|x_{12}^{NP}/x|$ Gedalia, et. al (09).

The power of CPV in the D system

$$\begin{split} y_{12} &\equiv |\Gamma_{12}|/\Gamma, \qquad x_{12} \equiv 2|M_{12}|/\Gamma, \qquad \phi_{12} \equiv \arg(M_{12}/\Gamma_{12}). \\ x_{12}^{\text{NP}} &\lesssim x_{12}^{\text{exp}} \sim 0.012, \qquad x_{12}^{\text{NP}} \sin \phi_{12}^{\text{NP}} \lesssim x_{12}^{\text{exp}} \sin \phi_{12}^{\text{exp}} \sim 0.0022, \end{split}$$

If x is due to NP then it missed a chance to revealed itself in $\mathcal{O}(1)$ CPV. $|x_{12}^{NP}/\mathbf{x}|$ Gedalia, et. al (09). 1.0 0.8 Nocpu No (,o, 0.6 see later 0.4 0.2 GMFV LMFV $\sin 2\sigma_D \qquad \phi_{12}^{\rm NP} = 2\sigma_D$ -1.0-0.50.5 1.0

Friday, October 22, 2010

What do we conclude ?

Physics

Sort and list Nobel Prizes and Nobel Laureat

What do we conclude ?

Resulting bounds are too strong to allow for generic TeV-scale

NP - tension with solving the fine tuning problem.

http://nobelprize.org/nobel_prizes/physics/laureates/2008/

What do we conclude ?

Resulting bounds are too strong to allow for generic TeV-scale

NP - tension with solving the fine tuning problem.

Hint for underlying structure of microscopic laws of nature.

http://nobelprize.org/nobel_prizes/physics/laureates/2008/

Page 1 of 1

What kind of NP survives?

Flavor blind/universal NP, for sure, but then cancellation of top

divergencies looks like a miracle.

What kind of NP survives?

Flavor blind/universal NP, for sure, but then cancellation of top

divergencies looks like a miracle.

• Maybe NP flavor structure is controlled by SM one, minimal flavor violation (MFV) => more exciting then guessed, see later ...

What kind of NP survives?

Flavor blind/universal NP, for sure, but then cancellation of top

divergencies looks like a miracle.

• Maybe NP flavor structure is controlled by SM one, minimal flavor violation (MFV) => more exciting then guessed, see later ...

uFCNC data, a crucial test of alignment

Down type flavor violation can be shut off via alignment, where anarchic NP is diagonal in the down mass basis.

Yasmin & Gilad Perez <jasgilperez@gmail.com>

Your Holiday Inn Express (R) Reservation Confirmation - SOMMA LOMBARDO, ITALY: 67442015

Holiday Inn Express Reservations <HolidayInnExpress@reservations.ihg.com> Reply-To: HolidayInnExpress@reservations.ihg.com

Mon, Feb 15, 2010 at 2:35 PM

To: jasgilperez@gmail.com

Thank you for choosing Holiday Inn Express. Here is your reservation information.

Reservation Questions: 180 945 3716

Reservation Information

Your confirmation number is 67442015 **Reservation Resources** Add to Calendar Modify/Cancel Reservation View All Reservations Make Another Reservation Guest Name: **View Account**

careful domino allignment to reference your reservation. **Priority Club Rewards:** Your Priority Club Rewards number applies to this reservation.

Friday, October 22, 2010

MR GILAD PEREZ

uFCNC data, a crucial test of alignment

Oown type flavor violation can be shut off via alignment, where anarchic NP is diagonal in the down mass basis.

Operator	Bounds on .	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	$.1 \times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	3	$.7 imes 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work ?

Operator	Bounds on .	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	$.1 imes 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_R s_L) (\bar{b}_L s_R)$	3	$.7 imes 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work ?

Operator	Bounds on A	A in TeV $(c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(s_L\gamma, a_L)$	102×102	1.6×10^{4}	9.0×10^{-7}	$3/1 \times 10^{-9}$	$_{K}, _{K}$
$(\overline{L}_{L})(\overline{L}_{W}K)$	1.0×10^{11}	$3.2 imes 10^5$	6.9×10^{-9}	2.6 imes 10	
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	5.1×10^{2}	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta_d, \mathcal{S}_{\psi}K_S$
$(\overline{b}, d)(\overline{b}, \overline{b})$	1.0 / 10	$3.6 imes 10^3$	5.6×10^{-1}	1.7×10^{-7}	
	1.	1×10^2	7.6	$\times 10^{-5}$	
$(\overline{h}, \overline{c})(\overline{L}, \overline{c})$	J.	7×10^{2}	1.3	X 10	Ame
$(\bar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work ?

Operator	Bounds on /	A in TeV $(c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(s_L\gamma, a_L)$	2.0×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\underline{-}$
$\left(\frac{1}{2} \right) \left(\frac{1}{2} \right) $	1.0 × 101	$3.2 imes 10^5$	6.9×10^{-9}	2.6 imes 10	
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	5.1×10^{2}	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta_{d}, \widetilde{\sim}_{\psi} K_{S}$
$(\overline{h}, d)(\overline{l}, h)$	1.0 / 10	3.6×10^{3}	5.6×10^{-1}	1.1 × 10	
	1.	1×10^{2}	7.6	$\times 10^{-5}$	•••• <i>D</i> _s
$(\overline{b} - \alpha)(\overline{b} - n)$	J.	7×10^{2}	1.3	X 10	Amp
$(\bar{t}_L \gamma^\mu u_L)^2$					

u-FCNC data remove immunities!

Friday, October 22, 2010

Up sector

Friday, October 22, 2010

The power of CPV in D mixing & how it kills alignment models

Wednesday, October 20, 2010
2-gen' effective theory for $\Delta F = 2$

Robust model independent bounds:

(*i*) robust (*ii*) LLRR - stronger, but model dependent.

Robust model independent bounds:

(*i*) robust (*ii*) LLRR - stronger, but model dependent.

 $\frac{1}{\Lambda_{\rm NP}^2} \left[z_1^K (\overline{d_L} \gamma_\mu s_L) (\overline{d_L} \gamma^\mu s_L) + z_1^D (\overline{u_L} \gamma_\mu c_L) (\overline{u_L} \gamma^\mu c_L) + z_4^D (\overline{u_L} c_R) (\overline{u_R} c_L) \right].$

[More info' in Δc =1, Golowich, et. al (09), Kagan & Sokolof (09)]

2-gen' effective theory for $\Delta F = 2$

Robust model independent bounds:

[More info' in $\Delta c=1$, Golowich, et. al (09), Kagan & Sokolof (09)]

2-gen' effective theory for $\Delta F = 2$

Robust model independent bounds:

[More info' in $\Delta c=1$, Golowich, et. al (09), Kagan & Sokolof (09)]

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems simultaneously!

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems

simultaneously!

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems

simultaneously! \hat{v}_1

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems

simultaneously! \hat{v}_1

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems

simultaneously! \hat{v}_1

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^\mu Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems

Implications of CPV in $D^0 - \bar{D}^0$ mixing

(i) Model independent;
(ii) General minimal flavor violation (GMFV);
(iii) SUSY;
(iv) Randall-Sundrum (RS).

Ciuchini, et al. (07); Csaki, et al. (08); Kagan, et al. (09); Gedalia, et al. (09,10,10); Blum, et al. (09); Buras et.al.; Csaki, et al. (09); Bauer, et al. (09); Bigi, et al. (09); Altmannshofer, et al. (09,10); Blanke, et al. (09); Crivellin & Davidkov (10).

$$\begin{array}{c|c} & \hat{v}_1 \\ & \Delta m_D \\ & Y_u Y_u^{\dagger} \\ \hline & 2\theta_C \\ 2\theta_C \\ 2\theta_d \\ \hline & Y_d Y_d^{\dagger} \\ & \Delta m_K \\ & \hat{v}_3 \end{array}$$

$$L = |X_Q| = \left(X_Q^2 - X_Q^1\right)/2$$

Constraining the eigenvalue difference of flavor violation source, indep' of it's direction!

CPV in D: Model Dependent Implications

(i) MFV (exciting #1); (ii) SUSY; (iii) Randall-Sundrum (RS).

General MFV (GMFV) vs. Linear MFV (LMFV)

Kagan, GP, Volanksy & Zupan, PRD (09); Gedalia, Grossman, Nir & GP, PRD (09).

Comparable NP contributions from strange & bottom (unlike SM)

$$r_{sb} \equiv \frac{y_s^2}{y_b^2} \left| \frac{V_{us}^{\text{CKM}} V_{cs}^{\text{CKM}}}{V_{ub}^{\text{CKM}} V_{cb}^{\text{CKM}}} \right| \sim 0.5,$$

$$C_1^{cu} \propto \left[y_s^2 \left(V_{cs}^{\text{CKM}} \right)^* V_{us}^{\text{CKM}} + \left(1 + r_{\text{GMFV}} \right) y_b^2 \left(V_{cb}^{\text{CKM}} \right)^* V_{ub}^{\text{CKM}} \right]^2$$

$$r_{\text{GMFV} result of resummation \sum_n y_b^n}$$

General MFV (GMFV) vs. Linear MFV (LMFV)

Kagan, GP, Volanksy & Zupan, PRD (09); Gedalia, Grossman, Nir & GP, PRD (09).

Comparable NP contributions from strange & bottom (unlike SM)

$$r_{sb} \equiv \frac{y_s^2}{y_b^2} \left| \frac{V_{us}^{\rm CKM} V_{cs}^{\rm CKM}}{V_{ub}^{\rm CKM} V_{cb}^{\rm CKM}} \right| \sim 0.5 \,,$$

General MFV (GMFV) vs. Linear MFV (LMFV)

Kagan, GP, Volanksy & Zupan, PRD (09); Gedalia, Grossman, Nir & GP, PRD (09).

Comparable NP contributions from strange & bottom (unlike SM)

 $C_1^{cu} \propto \left[y_s^2 \left(V_{cs}^{\text{CKM}} \right)^* V_{us}^{\text{CKM}} + \left(1 + \left(\int_{\text{GMFV}} y_b^2 \left(V_{cb}^{\text{CKM}} \right)^* V_{ub}^{\text{CKM}} \right)^2 \right]^2$ $|x_{12}^{NP}/\mathbf{x}|$ $r_{\rm GMFV}$ result of Determining what "phase" describes nature yield microscopic info'. Well beyond the LHC reach! Improvement via BESIII threshold measurements; Within the reach of LHCb & maybe Tevatron; Looking forward for Exp' talks...

 $r_{sb} \equiv \frac{y_s^2}{y_b^2} \left| \frac{V_{us}^{\rm CKM} V_{cs}^{\rm CKM}}{V_{vb}^{\rm CKM} V_{cb}^{\rm CKM}} \right| \sim 0.5 \,,$

SUSY+RS

SUSY (doom of alignment)

Gedalia, et. al (09).

Robust

 $\frac{m_{\tilde{Q}_2} - m_{\tilde{Q}_1}}{m_{\tilde{Q}_2} + m_{\tilde{Q}_1}} \le \begin{cases} 0.034 & \text{maximal phases} \\ 0.27 & \text{vanishing phases} \end{cases}$

$$\frac{m_{\tilde{u}_2} - m_{\tilde{u}_1}}{m_{\tilde{u}_2} + m_{\tilde{u}_1}} \lesssim 0.02 - 0.04.$$

Generic

squark doublets, 1TeV;

average of the doublet & singlet mass splitting.

RS (constraining alignment)

Csaki, Falkowski & Weiler, PRD (09); Gedalia, et. al (09).

Robust

$$m_{\rm KK} > 2.1 f_{Q_3}^2 \,{\rm TeV} \,,$$

 f_{Q_3} is typically in the range of 0.4- $\sqrt{2}$.

$$m_{\mathrm{KK}} > rac{4.9\,(2.4)}{y_{5D}}\,\mathrm{TeV}$$
 IR (bulk) Higgs

Generic

 $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{2\pi}{N_{KK}}$ for brane Higgs; $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{4\pi}{\sqrt{N_{KK}}}$ for bulk Higgs,

charming top Phys. @ the LHC

 $\Delta F = 2, \left[(\bar{t}, \bar{b})_L X_Q(u, d)_L \right]^2$

Gedalia, Mannelli & GP, PLB; JHEP (10).

\blacklozenge Signal is in same sign tops: ~uu ightarrow tt

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	$9.0 imes 10^{-7}$	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	$3.2 imes 10^5$	$6.9 imes 10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	$5.6 imes10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes10^2$	$3.3 imes 10^{-6}$	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	$3.6 imes10^3$	$5.6 imes10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	$1.1 imes 10^2$		$7.6 imes 10^{-5}$		Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	$3.7 imes 10^2$		$1.3 imes 10^{-5}$		Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$?		?		?

 $\Delta F = 2, \left[(\bar{t}, \bar{b})_L X_Q(u, d)_L \right]^2$

Projected LHC bound, same sign tops.

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_Rd_L)(ar{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1×10^2		7.6×10^{-5}		Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	$3.7 imes 10^2$		1.3×10^{-5}		Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$	12		7.1×10^{-3}		$uu \rightarrow tt$

What gives strongest bound on $[(\bar{t}, \bar{b})_L X_Q(u, d)_L]^2$? Despite $\mathcal{O}(\lambda_C^5)$ suppression: Define: $L \equiv |X_Q^{\Delta F=2}|$

 $uu \rightarrow tt \text{ (LHC projected):} \ L < 12\left(\frac{\Lambda_{\text{NP}}}{1 \text{ TeV}}\right); \ \Lambda_{\text{NP}} > 0.08 \text{ (1) TeV},$

Wednesday, October 20, 2010

What gives strongest bound on
$$[(\bar{t}, \bar{b})_L X_Q(u, d)_L]^2$$
?
Despect (()) Suppression:
Define: $L \equiv |X_Q^{\Delta F=2}|$

 $uu \to tt \text{ (LHC projected):} \ L < 12\left(\frac{\Lambda_{\text{NP}}}{1 \text{ TeV}}\right); \ \Lambda_{\text{NP}} > 0.08 \text{ (1) TeV},$

$$D^0 - \overline{D}^0 \text{ (present):} \quad L < 1.8 \left(\frac{\Lambda_{\text{NP}}}{1 \text{ TeV}}\right); \quad \Lambda_{\text{NP}} > 0.57 (7.2) \text{ TeV},$$

Wednesday, October 20, 2010

Wednesday, October 20, 2010

What gives strongest bound on
$$\left[(\bar{t}, \bar{b})_L X_Q(u, d)_L\right]^2$$
?
Despective (A) suppression:
Define: $L \equiv |X_Q^{\Delta F=2}|$

 $uu \rightarrow tt \text{ (LHC projected):} \ L < 12\left(\frac{\Lambda_{\text{NP}}}{1 \text{ TeV}}\right); \ \Lambda_{\text{NP}} > 0.08 \text{ (1) TeV},$

$$D^0 - \overline{D}^0 \text{ (present):} \quad L < 1.8 \left(\frac{\Lambda_{\text{NP}}}{1 \text{ TeV}}\right); \quad \Lambda_{\text{NP}} > 0.57 \text{ (7.2) TeV},$$

Despite $O(\lambda_{1,0}^{5})$ suppression, CPV in D mixing is more powerful in constraining 3rd gen' FCNC!

Friday, October 22, 2010

On the potential power of $D^0 \rightarrow \ell^+ \ell^-$

Practically no SM short distance:

Burdman, Golowich, Hewett & Pakvasa PRD (02).

$$\mathcal{B}r_{D^0 \to \mu^+ \mu^-}^{(\gamma\gamma)} \simeq 2.7 \times 10^{-5} \mathcal{B}r_{D^0 \to \gamma\gamma} \sim 10^{-13}$$

Donnerstag, 9. September 2010

On the potential power of $D^0 \rightarrow \ell^+ \ell^-$

Practically no SM short distance:

$$\mathcal{B}r_{D^0 o \mu^+ \mu^-}^{(\gamma \gamma)} \simeq 2.7 imes 10^{-5} \mathcal{B}r_{D^0 o \gamma \gamma} \sim 10^{-13}$$

 $\mathcal{H}_{\mathcal{V}} = \bar{u}_L \gamma^\mu c_L V_\mu + \bar{\ell} \gamma^\mu \ell V_\mu + \dots$ Golowich, Hewett, Pakvasa & Petrov, PRD (09)

On the potential power of $D^0 \rightarrow \ell^+ \ell^-$

Friday, October 22, 2010

Conclusions

• uFCNC is playing important role in learning about the microscopic world.

Charm phys. remove "immunities" => constrains alignments.

\diamond CPV in $D - \overline{D}$ mixing extremely powerful:

(i) disfavors SUSY alignment; (ii) constraining RS alignment;(iii) approaching 1TeV MFV models (factor of a few away).

Constraining 3rd generation physics.

 $\diamond D^0 \rightarrow \mu^+ \mu^-$ particularly interesting, promising future.

Robust bounds for $\Delta t = 1$

 3-gen' case the structure is much richer (8 Gell-Mann matrices), a "covariant" treatment is necessary.
 Simplification: @ LHC light quark jets look the same.

Approximate U(2) Limit of Massless Light Quarks

LHC projected bound

Friday, October 22, 2010

Flavor @ the LHC, spectrum/couplings very important

Grossman et al. (09); Gedalia & Perez (10)

Parametric solutions to the RS little CP problem & some LHC implications.

Friday, October 22, 2010

U-anarchy - constrained by D phys.

Generic warped models (up-type anarchy): Agashe, et. al (04,06).

Observable	M_G^{\min}	[TeV]	$y_{5\mathrm{D}}^{\mathrm{min}}$ or $f_{Q_3}^{\mathrm{max}}$		
	IR Higgs	$\beta = 0$	IR Higgs	eta=0	
$ ext{CPV-}B_d^{LLLL}$	$12f_{Q_{3}}^{2}$	$12f_{Q_{3}}^{2}$	$f_{Q_3}^{\rm max} = 0.5$	$f_{Q_3}^{\rm max} = 0.5$	
$ ext{CPV-}B_d^{LLRR}$	$4.2/y_{5D}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.4$	$y_{\rm 5D}^{\rm min}=0.82$	
$CPV-D^{LLLL}$	$0.73 f_{Q_3}^2$	$0.73 f_{Q_3}^2$	no bound	no bound	
$CPV-D^{LLRR}$	$4.9/y_{5{ m D}}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.6$	$y_{5\mathrm{D}}^{\mathrm{min}}=0.8$	
ϵ_K^{LLLL}	$7.9 f_{Q_3}^2$	$7.9f_{Q_3}^2$	$f_{Q_3}^{\max} = 0.62$	$f_{Q_3}^{\max} = 0.62$	
ϵ_{K}^{LLRR}	$49/y_{5D}$	$24/y_{5D}$	above (6.7)	$y_{5\mathrm{D}}^{\mathrm{min}} = 8$	
	$CPV-B_{d}^{LLLL}$ $CPV-B_{d}^{LLRR}$ $CPV-D^{LLLL}$ $CPV-D^{LLRR}$ ϵ_{K}^{LLLL}	$\begin{array}{c} & \mbox{IR Higgs} \\ & \mbox{IR Higgs} \\ & \mbox{CPV-}B_d^{LLLL} & 12f_{Q_3}^2 \\ & \mbox{CPV-}B_d^{LLRR} & 4.2/y_{5D} \\ & \mbox{CPV-}D^{LLLL} & 0.73f_{Q_3}^2 \\ & \mbox{CPV-}D^{LLRR} & 4.9/y_{5D} \\ & \mbox{ϵ_K^{LLLL}} & 7.9f_{Q_3}^2 \end{array}$	$\begin{array}{c c} & \text{IR Higgs} & \beta = 0 \\ \hline & \text{IR Higgs} & \beta = 0 \\ \hline & \text{CPV-}B_d^{LLLL} & 12f_{Q_3}^2 & 12f_{Q_3}^2 \\ \hline & \text{CPV-}B_d^{LLRR} & 4.2/y_{5D} & 2.4/y_{5D} \\ \hline & \text{CPV-}D^{LLLL} & 0.73f_{Q_3}^2 & 0.73f_{Q_3}^2 \\ \hline & \text{CPV-}D^{LLRR} & 4.9/y_{5D} & 2.4/y_{5D} \\ \hline & \epsilon_K^{LLLL} & 7.9f_{Q_3}^2 & 7.9f_{Q_3}^2 \end{array}$	$\begin{array}{c c} \mbox{IR Higgs} & \beta = 0 & \mbox{IR Higgs} \\ \hline \mbox{CPV-}B_d^{LLLL} & 12f_{Q_3}^2 & 12f_{Q_3}^2 & f_{Q_3}^{\max} = 0.5 \\ \hline \mbox{CPV-}B_d^{LLRR} & 4.2/y_{5D} & 2.4/y_{5D} & y_{5D}^{\min} = 1.4 \\ \hline \mbox{CPV-}D^{LLLL} & 0.73f_{Q_3}^2 & 0.73f_{Q_3}^2 & \mbox{no bound} \\ \hline \mbox{CPV-}D^{LLRR} & 4.9/y_{5D} & 2.4/y_{5D} & y_{5D}^{\min} = 1.6 \\ \hline \mbox{ϵ_{K}^{LLLL}} & 7.9f_{Q_3}^2 & 7.9f_{Q_3}^2 & f_{Q_3}^{\max} = 0.62 \end{array}$	

edalia, et. al (09); sidori, et. al (10).

U-anarchy - constrained by D phys.

Generic warped models (up-type anarchy): Agashe, et. al (04,06).

(09);(10).

Observabl	le	$M_G^{\min}[\text{TeV}]$		$y_{5\mathrm{D}}^{\mathrm{min}}$ or $f_{Q_3}^{\mathrm{max}}$		
		IR Higgs	$\beta = 0$	IR Higgs	$\beta = 0$	
$CPV-B_d^{LLI}$	LL	$12f_{Q_3}^2$	$12f_{Q_{3}}^{2}$	$f_{Q_3}^{\rm max} = 0.5$	$f_{Q_3}^{\rm max} = 0.5$	
$CPV-B_d^{LLH}$	RR	$4.2/y_{5D}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.4$	$y_{\rm 5D}^{\rm min}=0.82$	
$CPV-D^{LLI}$	LL	$0.73 f_{Q_3}^2$	$0.73 f_{Q_3}^2$	no bound	no bound	
$CPV-D^{LLH}$	RR	$4.9/y_{5{ m D}}$	$2.4/y_{5D}$	$y_{5\mathrm{D}}^{\mathrm{min}} = 1.6$	$y_{5\mathrm{D}}^{\mathrm{min}}=0.8$	J
ϵ_K^{LLLL}		$7.9 f_{Q_3}^2$	$7.9 f_{Q_3}^2$	$f_{Q_3}^{\max} = 0.62$	$f_{Q_3}^{\max} = 0.62$	Gedalia, et. al
ϵ_{K}^{LLRR}		$49/y_{5D}$	$24/y_{5D}$	above (6.7)	$y_{5\mathrm{D}}^{\mathrm{min}} = 8$	Isidori, et. al

RS alignment (via shining):
$$y_{5D}^d \gtrsim 3y_{5D}^u$$
_{Csaki, et. al (09).}
 $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{2\pi}{N_{\text{KK}}}$ for brane Higgs; $\frac{1}{2} \lesssim y_{5D} \lesssim \frac{4\pi}{\sqrt{N_{\text{KK}}}}$ for bulk Higgs,

Factor of few improvement exclude models.