Dark Sector at Low Energy e+ e- Experiments

Lian-Tao Wang Princeton University

Based on: M. Reece and LTW, arXiv:0904.1743

More information and simulation tools at:

http://phy-hal.physics.harvard.edu/LeptonJets/LE.html

Charm 2010, Institute of High Energy Physics, Beijing

Outline

- Introduction to GeV dark sector.
 - Review of basic structure.
- Survey of search channels.
 - Focusing on low energy e+e- experiments.
- Conclusion.

Basic dark sector

• Dark sector and the SM sector is connected via some small coupling, "protal".

Motivation of Light Dark Sector

- Dark Matter in the universe.
 - Cold, dark, and gravitationally coupled.
- Perhaps dark matter has self-interactions too.
 - Force carrier is an example of dark sector.
- Motivations from astrophysical observations.
 - ullet Fermi, Pamela, ... $M_{
 m dark} \sim {
 m GeV}$

Motivation of Light Dark Sector

- Dark Matter in the universe.
 - Cold, dark, and gravitationally coupled.
- Perhaps dark matter has self-interactions too.
 - Force carrier is an example of dark sector.
- Motivations from astrophysical observations.
 - ullet Fermi, Pamela, ... $M_{
 m dark} \sim {
 m GeV}$

May or may not be the right motivation.

But this class of dark sector can be generic and interesting on its own.

A GeV dark sector.

Dark matter self-interaction, mediated by

$$b_{\rm dark} \subset {\rm dark\ sector.}$$

- ullet Range of dark force $m_{b_{
 m dark}} \sim 100 s \ {
 m MeV-GeV}$
- Dark sector couples to SM with tiny couplings, parameterized by ϵ Typically: $\epsilon \leq 10^{-3}$

Basic dark sector model ingredients:

- Model choices:
 - Dark matter identity.
 - Self-interaction G_d : gauge interaction...
 - GeV scale, dark higgs $h_d: v_d = \langle h_d \rangle \sim \text{GeV}$
 - Supersymmetric scenarios: natural generation of the GeV Scale.

Various constructions:

Earlier proposals:

M. Pospelov, A. Ritz and M. Voloshin, arXiv:0711.4866 N. Arkani-Hamed, D. Finkbeiner, T. Slatyer and N. Weiner, arXiv:0810.0713

U(I) models:

E. J. Chun and J. C. Park, arXiv:0812.0308

C. Cheung, J. Ruderman, LTW, and I. Yavin, arXiv:0902.3246

A. Katz and R. Sundrum, arXiv:0902.3271

D. Morrissey, D. Poland and K. Zurek, arXiv:0904.2567

M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, arXiv:0909.0515

Non-abelian model, SUSY:

M. Baumgart, C. Cheung, L.-T. Wang, J. Ruderman, I. Yavin, arXiv:0901.0283

• Scalar Portal:

Y. Nomura and J. Thaler, arXiv:0810.5397

Composite:

D. Alves, S. Behbabani, P. Schuster, and J. Wacker, arXiv:0903.3945

More...

Simplest choice: abelian dark sector

- Simplest self-interaction: $G_d = U(1)_d$
- Natural connection to the SM: kinetic mixing

$$\mathcal{L}_{\text{kin.mix}} = -\frac{\epsilon}{2} b_{\mu\nu} F_{\gamma}^{\mu\nu}$$

 Supersymmetry can be an elegant way of generating the GeV scale.

For a very simple and predictive construction: C. Cheung, J. Ruderman, LTW and I. Yavin, arXiv:0902.3246 See also: D. E. Morrissey, D. Poland and K. M. Zurek, arXiv:0904.2567

Kinetic mixing:

- Expected to be there!
 - Kinetic mixing between dark photon and SM hypercharge gauge boson B_{μ} is generically present in extensions of the Standard Model.

Expected to be small (consistent with constraints).

$$\epsilon \sim \frac{g_d g_Y}{16\pi^2} \log\left(\frac{M}{M'}\right) \sim 10^{-3} - 10^{-4}$$

Searching for the GeV dark sector:

- Dark sector couples very weakly to the SM particles.
 - Most model independent search requires high luminosity.
 - Advantage of low energy searches at meson factories.

Studies of low energy searches

Earlier studies of light weakly coupled vector (U-boson).

N. Borodatchenkova, D. Choudhury, and M. Drees, hep-ph/0510147 P. Fayet et. al., hep-ph/0403226, hep-ph/0410260, hep-ph/0607094, hep-ph/0702176, arXiv:0812.3980 S.-h. Zhu, hep-ph/0701001.

Recent studies of search of dark sector states.

M. Pospelov and A. Ritz, arXiv:0810.1502

B. Batell, M. Pospelov, and A. Ritz, arXiv:0903.0363.

R. Essig, P. Schuster, and N. Toro, arXiv:0903.3941.

M. Reece and LTW, arXiv:0904.1743.

P.-f. Yin, J. Liu, and S.-h. Zhu, arXiv:0904.4644.

J.D. Bjorken, R. Essig, P. Schuster, and N. Toro, arXiv:0906.0580

B. Batell, M. Pospelov, and A. Ritz, arXiv:0906.5614

M. Freytsis, G. Ovanesyan, and J. Thaler, arXiv:0909.2862

BABAR, arXiv:0908.2821.

Dark sector couplings to the SM

$$\mathcal{L}_{\text{gauge}} \supset -\frac{1}{4}W_{3\mu\nu}W_{3}^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}b_{\mu\nu}b^{\mu\nu} + \frac{\epsilon}{2}B_{\mu\nu}b^{\mu\nu}$$

$$= -\frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}b_{\mu\nu}b^{\mu\nu}$$

$$+ \frac{\epsilon}{2}\left(\cos\theta_{W}F_{\mu\nu} - \sin\theta_{W}Z_{\mu\nu}\right)b^{\mu\nu}$$

$$A_{\mu} \rightarrow A_{\mu} + \epsilon\cos\theta_{W}b_{\mu}$$

$$b_{\mu} \rightarrow b_{\mu} - \epsilon\sin\theta_{W}Z_{\mu}$$

$$\rightarrow V \supset \epsilon\cos\theta_{W}b_{\mu}J_{EM}^{\mu} - \epsilon\sin\theta_{W}Z_{\mu}J_{dark}^{\mu}$$

Couples just like the Standard Model photon, but with a suppressed coupling.

The "dark photon", sometimes also called

$$\gamma'$$
, U-boson, V_{μ} , or a_{μ} .

Notation:
$$A' = \gamma' = b_{\mu} = V = a_{\mu} = U$$

Several low energy probes

Precision QED measurements

- $g_{\mu}-2$. M. Pospelov, arXiv:0811.1030 Strongest constraint: $\epsilon^2 \leq 2 \times 10^{-5} (m_{b_{\mu}}/100 \text{ MeV})^2$
- Others such as: $g_e 2$, muonic hydrogen, ... Not competitive.
- $e \nu$ scattering. Requires coupling to neutrino, suppressed further by $m_{b_\mu}^2/m_Z^2$. $\epsilon^2 e^2/m_Z^2 < G_F \to \epsilon < 1$

Atomic parity.

Constrains the product of vector and axial coupling. Same suppression factor. About $\epsilon < 10^{-1}$

Decay of dark photon:

- Dark photon is the only connection, "portal", to the Standard Model.
- Dark photon decay to SM is always the last stage of dark sector process, giving rise directly to observable signals.

$$\epsilon b_{\mu} J_{\rm EM}^{\mu} \longrightarrow b_{\mu} \sim b_{\mu}$$

• $m_{b_{\mu}} \sim 100 {
m s~MeV} - {
m GeV}$, form factors are important in determining decay branching ratios.

Dark Photon decay branching ratios:

Decay form factor has been measured, known as R.

$$R(s) = \frac{\sigma(e^{+}e^{-} \to \text{hadrons}, s)}{\sigma(e^{+}e^{-} \to \mu^{+}\mu^{-}, s)} = \frac{BR(b_{\mu} \to \text{hadrons})}{BR(b_{\mu} \to \mu^{+}\mu^{-}(\text{or } e^{+}e^{-}))} \ (m_{b} = s)$$

$$\sim \frac{BR(b_{\mu} \to \pi^{+}\pi^{-})}{BR(b_{\mu} \to \mu^{+}\mu^{-}(\text{or } e^{+}e^{-}))}, \text{ for } m_{b} \leq \text{GeV}$$

For example: $\pi^+\pi^-: \mu^+\mu^-: e^+e^- \simeq 1:1:1$ for $m_b \simeq 600$ MeV.

I will focus mainly on leptons here. But, the hadronic final states can be interesting as well.

Life time of dark photon

Prompt, except for tiny couplings, or very large boost.

Value of ϵ for which $c\tau = 1$ mm

Meson decays

Large quantities of mesons, ρ , η , ϕ , Υ , J/ψ , etc., have been produced.

Many of them have decay channels into photons. As a result, they should also have rare decay into dark photon, with $BR \sim \epsilon^2 \times BR(\rightarrow \text{photon})$.

Reach in meson decays, rough estimates:

- Consider $X \to Y + b_{\mu}(b_{\mu} \to \ell^{+}\ell^{-})$. Background: $X \to Y + \gamma^{*} \to Y + \ell^{+}\ell^{-}$
- Signal significance

$$rac{\mathsf{S}}{\sqrt{\mathsf{B}}} pprox \sqrt{n_X} rac{\epsilon^2 imes \mathsf{BR}(X o Y + \gamma) imes \mathsf{BR}(b_\mu o \ell^+ \ell^-)}{\sqrt{\mathsf{BR}(X o Y + \gamma^* o Y + \ell^+ \ell^-)}} \sqrt{rac{m_{b_\mu}}{\delta m}} \log \left(rac{m_X - m_Y}{2m_\ell}
ight).$$

Reach
$$\propto n_X^{-1/4}$$
, and $\propto (\text{BR}(X \to Y\gamma))^{1/2}$

- Typically: BR($X \to Y + \gamma^* \to Y + \ell^+ \ell^-$) $\sim 10^{-2} \times BR(X \to Y + \gamma)$
- Need $n_X \sim 10^9$ to reach $\epsilon < 10^{-3}$.

Reaches in some channels:

$X o Y + b_{\mu}$	nχ	$\Delta M_{ m XY}$	$BR(X \to Y + \gamma)$	$BR(X \to Y + \ell^+ \ell^-)$	$\epsilon \leq$
$\eta o \gamma b_{\mu}$	$n_{\eta} \sim 10^{7}$	547	$2 \times 39.8\%$	6×10^{-4}	2×10^{-3}
$\omega ightarrow \pi^0 b_\mu$	$n_\omega \sim 10^7$	648	8.9%	7.7×10^{-4}	5×10^{-3}
$\phi ightarrow \eta b_{\mu}$	$n_{\phi} \sim 10^{10}$	472	1.3%	1.15×10^{-4}	1×10^{-3}
$\mathcal{K}_{L}^{0} ightarrow \gamma b_{\mu}$	$n_{K_{L}^{0}} \sim 10^{11}$	497	$2\times(5.5\times10^{-4})$	9.5×10^{-6}	2×10^{-3}
${\it K}^+ ightarrow \pi^+ b_{\mu}$	$n_{K^{+}}^{L} \sim 10^{10}$	354	-	2.88×10^{-7}	7×10^{-3}
${\it K}^+ ightarrow \mu^+ u b_\mu$	$n_{K^+} \sim 10^{10}$	392	6.2×10^{-3}	7×10^{-8}	2×10^{-3}
$K^+ ightarrow e^+ u b_{\mu}$	$n_{K^+} \sim 10^{10}$	496	1.5×10^{-5}	2.5×10^{-8}	7×10^{-3}

• In addition:

- BR($J/\psi \to \gamma X$) ~ 2%, BR($J/\psi \to \gamma e^+e^-$) ~ 0.8%. Interesting to look for $J/\psi \to b_\mu X$ and $J/\psi \to b e^+e^-$. Currently, $n_{J/\psi} \sim 10^7$. BES-III can have 10^{10} .
- $\Upsilon(1S) \to b_{\mu} \ell^+ \ell^-$ can be potentially interesting.
- $\Upsilon(4S)$. $\Upsilon(4S) \to BB > 96\%$ and $B \to D^0/\bar{D}^0 + X \sim 62\%$. $D^0 \to \eta + X \sim 10\%$. Interesting source for η with $10^8 10^9$ $\Upsilon(4S)$.
- $\pi^0 \to b_\mu \gamma$ could be useful for very light b_μ .

Searches of direct production of the dark photon

Production: associated with photon

Leptonic signal: $\gamma + \ell^+ \ell^-$, $m_{\ell\ell} = m_{b_{\mu}}$

Signal vs background estimates:

 \mathcal{L} : integrated luminosity; δm : resolution

$$\sigma_0 = \text{rate}(e^+e^- \to \gamma\gamma) \sim 1 \times 10^4 \text{ pb}$$

$$\mathcal{L} \sim 100 \text{s fb}^{-1}, \delta m \sim 1 - 10 \text{ MeV},$$

rough estimate of reach: $\epsilon \sim 10^{-3}$

Luminosity crucial! Reach $\propto \mathcal{L}^{-1/4}$

Earlier lepton colliders:

DCI, SPEAR, VEPP 4, DORIS, PEP, PETRA, TRISTAN $\sim 10-100~{\rm pb}^{-1}{\rm year}^{-1}$.

Reach estimate:

M. Reece, LTW, arXiv:0904.1743.

Pion mode used around ρ .

 e^{\pm} worse than μ^{\pm} for larger m_b due to Bhabha scattering.

In our paper, we used crude approximation:

$$\mathcal{L} \simeq 500 \; \mathrm{fb}^{-1}$$
 $E_{\gamma} > 20 \; \mathrm{MeV}, \; -.890 < \cos \theta_{\gamma} < 0.775$ $p_T^{\ell} > 60 \; \mathrm{MeV}, \; -0.956 < \cos \theta_{\ell} < 0.865$

$$\delta m(e^+e^-) = \left(2.0 + 3.9 \left(\frac{m_U}{1.0 \text{ GeV}}\right) + 0.25 \left(\frac{m_U}{1.0 \text{ GeV}}\right)^2\right) \text{MeV}$$

$$\delta m(\mu^+\mu^-) = \left(1.8 + 4.1 \left(\frac{m_U}{1.0 \text{ GeV}}\right) + 0.28 \left(\frac{m_U}{1.0 \text{ GeV}}\right)^2\right) \text{MeV}$$

BES-III. Hai-Bo Li and Tao Luo, arXiv:0911.2067

Production: final state radiation

Reach a factor of several worse than $e^+e^- \to \gamma + b_\mu$ M. Reece, LTW, arXiv:0904.1743.

Dark photon searches

Saturday, October 23, 2010

Dark photon searches

Scenario covered in this talk

Notation:
$$A' = \gamma' = b_{\mu} = V = a_{\mu} = U$$

D/L, HPS, APEX, proposed fixed target experiments

D/L, HPS, APEX, proposed fixed target experiments

Dark Sector self-coupling

- Dark force has finite range.
 - Gauge symmetry spontaneously broken.

$$\mathcal{L} \supset |Dh_{\rm d}|^2; \ D_{\mu}h_{\rm d} = (i\partial_{\mu} + g_{\rm d}b_{\mu})h_{\rm d}$$

$$v_{\rm d} \equiv \langle h_{\rm d} \rangle \simeq \text{ GeV}$$

Dark photon - dark Higgs coupling

Decay of dark higgs

$$m_{h_{\rm d}} > m_b \rightarrow 4\ell$$
 final state

Can have displaced vertex if $m_{h_d} < 2m_b$

For example:

$$\epsilon = 10^{-3}, \ m_{h_d} = 1.2 \ \text{GeV}, \ m_{b_{\mu}} = 1 \ \text{GeV}$$
 $c\tau \sim 10(\text{s}) \ \text{cm}$

For $m_{h_{\rm d}} < m_{b_{\mu}}$

Very long lived: $c\tau \sim 10 \text{s m} - 10^2 \text{ km}$.

Production: "Higgsstrahlung"

Production rate of $e^+e^- -> b_{\mu} + h_d$

For detailed study:

- B. Batell, M. Pospelov, and A, Ritz, arXiv:0903.0363, and talk by B. Batell.
- R. Essig, P. Schuster, N. Toro, arXiv:0903.3941.

Signal of dark higgsstrahlung:

Or:

$$h_{\mathrm{d}} \longrightarrow b_{\mu}^{*} \longrightarrow E_{T}$$

$$\rightarrow 2\ell + \cancel{E}_T$$

Reach estimate: B. Batell, M. Pospelov, and A. Ritz, arXiv:0903.0363.

- Using 500 fb^{-1} .
- Contours for 10 signal events.

Decay in non-minimal models

 Non-minimal models with non-Abelian dark-sector, multiple dark Higgses possible.

N. Arkani-Hamed, D. Finkbeiner, T. Slatyer and N. Weiner, arXiv:0810.0713

M. Baumgart, C. Cheung, LTW, J. Ruderman, I. Yavin, arXiv:0901.0283

D. Alves, S. Behbabani, P. Schuster, and J. Wacker, arXiv:0903.3945

 A cascade decay in the dark sector before decaying into SM states. Long decay chains, more leptons.

More possibilities in non-minimal models.

Additional channels in non-minimal models.

R. Essig, P. Schuster, N. Toro, arXiv:0903.3941 BABAR, arXiv:0908.2821

Conclusion:

- Weakly coupled light dark sector is a generic and interesting possibility of new physics beyond the Standard Model.
- Recent evidence in dark matter detection can be interpreted as suggesting such self-interaction is mediated by GeV dark sector states.
- Low energy e+e- experiments, with high luminosity, is the prime place to look for such states.
- Production of GeV dark sector results in distinct signals: multiple leptons....
- It is exciting to go into this un-explored territory.

Motivation: dark matter annihilation

• Excesses in cosmic-ray electron and positron.

PAMELA: O. Adriani, et al., arXiv:0810.4995

Fermi-LAT: Abdo, et. al. arXiv:0905.0025

Also: ATIC, PPB-BETS, EGRET.

Astrophysics interpretation possible.

Here, we focus on the hypothesis of dark matter annihilation as source to the excess.

Leading to testable predictions.

DM interpretation of the excesses:

• Correct thermal relic density fixes DM annihilation rate:

$$\Omega_{\rm DM} h^2 = 0.1 \times \left(\frac{\langle \sigma v \rangle_{\rm freeze-out}}{3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}} \right)^{-1}$$

Cosmic ray flux:

$$R_{e^+,\gamma,\bar{p}...} \propto (n_{\rm DM}^{\rm halo2}) \times <\sigma v>_{\rm halo}$$

Assume $<\sigma v>_{\rm halo} \simeq <\sigma v>_{\rm freeze-out} \to R_{e^+,\gamma,\bar{p}...}$

 Observed positron and electron excess needs an additional O(10s-100) enhancement.

For example: P. Meade, M. Papucci, A. Strumia, T. Volansky, arXiv:0905.0480

- To preserve the success of relic density prediction, change late time physics.
 - Sommerfeld enhancement: $\langle \sigma v \rangle_{\text{halo}} \gg \langle \sigma v \rangle_{\text{freeze-out}}$

Sommerfeld enhancement

Earlier consideration:
J. Hisano, S. Matsumoto, M. Nojiri, and
O. Saito, hep-ph/0412403
J. Hisano, S. Matsumoto, M. Nagai O. Saito, and M. Senami, hep-ph/0610249

Long range self-interaction of dark matter mediated by $b_{\rm dark}$ range $\sim m_b^{-1}$, coupling $\alpha_{\rm dark}$

Enhancement sets in when $m_b \sim \alpha_{\rm dark} M_{\chi}$

Enhancement $\sim \alpha_{\rm dark}/v_{\rm halo}$, $v_{\rm halo} \sim 10^{-3}$.

Enhancement cuts off at $M_{\chi} \cdot v_{\rm halo} < m_b$.

$$M_\chi \sim 10^2$$
 GeV, $lpha_{
m dark} \sim 0.1-0.01$, $ightarrow m_b \sim$ GeV.

The observed signal at PAMELA/Fermi

- Dark matter annihilate into dark force carrier, which then decay to SM states, leading to observed excesses.
- Therefore, dark sector states must couple to the SM.
- The coupling has to be small to satisfy current constraints.

Solves anti-proton flux "puzzle"

- Conventional WIMP annihilation also results in excess in anti-proton flux, not observed by PAMELA.
- Annihilation into GeV scale dark sector states and their subsequent decay will not generate anti-proton due to kinematical suppression.

Search in J/psi decay at BES III

Hai-Bo Li and Tao Luo, arXiv:0911.2067

Enhancement on the resonance?

 Production rate could be enhanced if we are on a resonance. For example:

In comparison with continuum production:

on
$$\Upsilon$$
 resonance: $e^+e^- \to \gamma + b_{\mu}(\to \mu^+\mu^-)$ is enhance by $R(m_{\Upsilon}) \times BR(\Upsilon \to \mu^+\mu^-) \sim 60;$

Similarly,
$$\frac{e^+e^- \to \Upsilon \to b_\mu h_d}{e^+e^- \to b_\mu^* \to b_\mu h_d} \sim 60$$

• However, we cannot be precisely on the resonance, enhancement reduced by the spread of beam energy by a factor of Γ_{Υ}

 $\frac{\Gamma \Upsilon}{\delta E_{\text{beam}}} \sim 10^{-2} - 10^{-3}$

Other probes:

New fixed target experiment, promising.

```
M. Reece and LTW, arXiv:0904.1743.
J.D. Bjorken, R. Essig, P. Schuster, and N. Toro, arXiv:0906.0580
B. Batell, M. Pospelov, and A. Ritz, arXiv:0906.5614
M. Freytsis, G. Ovanesyan, and J. Thaler, arXiv:0909.2862
```

- High energy colliders.
 - More optimal for massive EW states decaying into darksector.

```
N. Arkani-Hamed and N. Weiner, arXiv:0810.0714
M. Baumgart, C. Cheung, J. Ruderman, LTW, I. Yavin, arXiv:0901.0283
C. Cheung, J. Ruderman, LTW, I. Yavin, arXiv:0901.0283
```

D0, arXiv:0905.1478.

Both subjects will be covered in detail by dedicated talks.

Reach at Belle in mu+ mu- channel

$$E_{\gamma} > 100 \text{ MeV}, \ 12.4^{\circ} < \theta_{\gamma} < 155^{\circ}$$

 $p_T^{\ell} > 1 \text{ GeV}, \ 17^{\circ} < \theta_{\ell} < 150^{\circ}$

Estimate of potential reach at KLOE.

M. Reece and LTW, arXiv:0904.1743

Left: Reach with e^+e^- final state.

Purple: $F_{\phi\eta\gamma^*}(q^2) = 1$ Blue: $F_{\phi\eta\gamma^*}(q^2) = 1/(1 - 3.8 \text{GeV}^{-2}q^2)$.

M. Achasov et. al. Phys. Lett. B504.

Right: including muon.

See also: F. Bossi, arXiv:0904.3815, and talk at this workshop

 $+(g-2)_{\mu}$ +dark matter motivation +GUT region of α'/α

Wide open range of couplings to explore

Timely measurement, ready equipment Could be ready with 1-month notice

Natalia Toro

Related Searches:

CLEO W. Love, et. al. [CLEO Collaboration], arXiv:0807.1427

$$\Upsilon(1S) \to A^0(\to \mu^+\mu^-) + \gamma$$
, A^0 : pseudo-scalar, 1.1 fb⁻¹
Same final state as: $e^+e^- \to b_\mu(\to \mu^+\mu^-) + \gamma$
 $BR(\Upsilon(1S) \to A^0 + \gamma) \times BR(A^0 \to \mu^+\mu^-) < 2.3 \times 10^{-6}$
 $\to < 50$ signal events $\to \epsilon \le 7.5 \times 10^{-3}$.

Using 8 fb⁻¹ $\Upsilon(4S)$ data could push $\epsilon \leq 4.5 \times 10^{-3}$

A similar BaBar search, somewhat stronger bound.

B. Aubert [The BABAR Collaboration], arXiv:0902.2176