The Decay Constants f_{D_s} and f_{D^+} from Lattice QCD ## James N. Simone Review CHARM 2010 October 21, 2010 #### Lattice QCD is an ab initio method $$\mathcal{S}_{\textit{Dirac}} = \bar{\Psi}(\not\!\!D + m)\Psi$$ #### Discretized derivative $$D_{\mu}\Psi(x) = rac{1}{2a} \left[U_{\mu}(x)\Psi(x+\hat{\mu}) - U_{\mu}^{\dagger}(x-\hat{\mu})\Psi(x-\hat{\mu}) ight]$$ Procedure (executive summary): - Choose the bare coupling constant, g_0 , extract α_s at short distance e.g. from plaquette. - Determine lattice spacing, a, from e.g. HQ potential. - Quark masses m_u , m_d , m_s , m_c and m_b determined by reproducing masses of π , K, η_c and η_b mesons. - QCD parameters now completely fixed in other computations. ### "Gold-plated" quantities in LQCD Lattice QCD technology for process is understood, not computationally expensive and statistical signal to noise ratio is good. - Stable particles not near threshold. - At most one stable hadron in both inital and final states. - Low to moderate momentum transfer in process. Spectroscopy, leptonic decays, semileptonic decays and neutral meson mixing! #### Lattice "Gold" Decays and the CKM Matrix Leptonic and semileptonic decays plus mixing... $$egin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \ \pi ightarrow \ell ar{ u} & K ightarrow \ell ar{ u} & K ightarrow \ell ar{ u} & B ightarrow \pi \ell ar{ u} & B ightarrow \pi \ell ar{ u} & B ightarrow ho \ell ar{ u} & |V_{cd}| & |V_{cs}| & |V_{cb}| \ D ightarrow \ell ar{ u} & D ightarrow \ell ar{ u} & B ightarrow D^* \ell ar{ u} & B ightarrow D \ell ar{ u} & |V_{td}| & |V_{ts}| & |V_{tb}| pprox 1 \ B ightarrow B_{B_d} ext{ and } f_B & \hat{B}_{B_s} ext{ and } f_{B_s} & \end{pmatrix}$$ K- \bar{K} mixing: $|\epsilon_K| \sim B_K \bar{\eta} (1 - \bar{\rho})$ ### Charm systems and lattice QCD Charmonium and *D* mesons are ideal systems for testing lattice QCD methods. - Abundant and relatively precise experimental data. - Test lattice technologies for both heavy and light quarks. - Same techniques used for bottom: m_c → m_b. - CKM physics and possible new physics signals, - e.g. nonstandard leptonic D_s decays, Dobrescu and Kronfeld, $ar\chi iv:0803.0512$ the " f_{D_s} puzzle" circa 2007. Three talks at CHARM 2010: Charmonium (C. Detar), semileptonic decays (H. Na) and decay constants (this talk). #### Decay constants Experiment determines the product $f_{D_q}|V_{cq}|$, $$\Gamma(D_q \to \ell u) = rac{G_f^2}{8\pi} m_\ell^2 \left(1 - rac{m_\ell^2}{M_{D_q}^2} ight)^2 M_{D_q} f_{D_q}^2 |V_{cq}|^2 \quad ,$$ while the lattice can compute f_{D_q} from first princples. A complete lattice calculation of the f_{D_a} must address: - dynamical (sea) quark effects, - discretization effects and finding the continuum limit $a \rightarrow 0$, - chiral extrapolation to the physical light quarks, - tuning errors in determinations of "a" and quark masses. ### Lattice studies of f_{D_s} and $f_{D_{+}}$ Focus on results from three collaborations with features: | | gauge sets | | valence quarks | | | |-----------|------------|----------------|----------------|---------|-------------| | collab. | name | n _f | sea quarks | light | charm | | HPQCD | MILC | 2+1 | asqtad | HISQ | HISQ | | FNAL/MILC | MILC | 2 + 1 | asqtad | asqtad | FNAL clover | | ETMC | ETMC | 2 | tw-mass | tw-mass | tw-mass | HPQCD: C.T.H. Davies, et al., $ar\chi iv:1008.4018$ and E. Follana, et al., $ar\chi iv:0706.1726$ FNAL/MILC: C. Bernard, et al., LATTICE 2010 and C. Aubin, *et al.*, $ar\chi iv:hep-lat/0506030$ ETMC: B. Blossier, et al., $ar\chi iv:0904.0954$ ## Dynamical sea quarks Neglecting vaccuum polarization ($n_f = 0$, quenched QCD) leads to 10-20% uncertainties. Effects from a quenched strange quark, e.g. in the ETMC $n_f = 2$ study, are difficult to estimate *a priori*. The heavier charm mass motivates a perturbative bound on effects from quenched charm. HPQCD esimates this error to be $\ll 0.01\%$ for f_{D_s} . Note: MILC/FNAL, HPQCD and ETMC are now generating gauge configurations including dynamical charm $(n_f = 2 + 1 + 1)$ ### MILC three flavor gauge sets The MILC collaboration has made publicly available sets of gluon configurations having three flavors dynamical quarks [A. Bazavov, *et al.*, $ar\chi iv:0903.3598$]. - Quenching is no longer dominant systematic. - One flavor $m_h \approx m_s$, two flavors $m_s/10 \leq m_l \leq m_s$. - Numerically less expensive than other methods. - Lighter quarks reduce "chiral" extrapolation systematics. - Leading gluons errors $\mathcal{O}\left(\alpha_s^2a^2\right)$ and "Asqtad" improved staggered quarks $\mathcal{O}\left(\alpha_sa^2\right)$. - Lattice spacings of 0.045, 0.06, 0.09, 0.12 and 0.15 fm. #### Open science - Sets (ensembles) of gauge configurations are expensive to generate, requiring large amounts of time on the fastest computers in the world. - The MILC, ETMC and other sets of configurations are openly shared worldwide via the ILDG, the International Lattice Data Grid. - A rich set of open source LQCD application codes are available in the MILC and Chroma codes which use the USQCD SciDAC portable LQCD libraries. #### Valence quarks are improved #### MILC/FNAL light: Asqtad improved stag. leading errors $\mathcal{O}(\alpha_s a^2)$ charm: Clover in FNAL interpretation $\mathcal{O}(\alpha_s a^2 \Lambda^2, a^4 \Lambda^4)$ #### **HPQCD** HISQ (Highly Improved Stag. Quark) for both light and charm. light: $\mathcal{O}(\alpha_s a^2)$, though smaller than asqtad. charm: leading error $\mathcal{O}(\alpha_s a^2 m_c^2)$ #### **ETMC** Twisted-mass quarks for both light and charm. $$\mathcal{L}_{doublet} = ar{\chi} \left(D + m_q + i \mu_q \gamma_5 au^3 ight) \chi$$ At tuned twist, $\mathcal{O}(a^2\mu_q^2)$ errors for q= light and charm. # Fermilab ## HPQCD f_{D_s} extrapolation Extrapolation in a^2 setting quarks to their physical masses - most precise lattice result - new result for f_{Ds} only - 2σ higher than 2007 result! - now at five lattice spacings - better tuning of quark masses and lattice spacing - full f_{D^+} update to follow? - significant lattice spacing dependence | a [fm] | error | |--------|-------| | 0.15 | 7.8% | | 0.12 | 4.2% | | 0.09 | 1 7% | #### Lattice spacing recalibration on MILC lattices Distance r_1 defined by the HQ potential - older $\Upsilon(2S-1S)$ gave a larger r_1 (top two values) - recent MILC and HPQCD give a lower r₁ (bottom two values) - net effect on f_{D_s} is smaller than naive rescaling since quark masses must be retuned ## FNAL/MILC f_{D_s} and f_{D^+} extrapolation ## Fit at finite a and simulated sea quarks - a = 0.09, 0.12 and 0.15 fm - eleven sets of gluon configurations - χ logs not apparent at finite "a" #### Extrap. $a \rightarrow 0$ and all $m_q \rightarrow$ physical - PRELIMINARY result - physical f_{D_a} indicated in red - "full QCD" subset of data points overlay the extrapolation #### Detailed error budgets #### **HPQCD** | source | $f_{D_{S}}$ | |-----------------------------------|-------------| | statistics /valence tuning | 0.57 | | r ₁ / a (lat. spacing) | 0.15 | | <i>r</i> ₁ | 0.57 | | <i>a</i> ² extrap. | 0.40 | | sea-quark extrap. | 0.34 | | finite vol. | 0.10 | | m_{η_S} (m_S tune) | 0.13 | | QED in D _s | 0.10 | | QED and annih. $m_{\eta c}$ | 0.00 | | quenched charm | 0.00 | | total | 1.0 | | total | 1.0 | #### FNAL/MILC | source | f _{Ds} | f _D + | f_{D_S}/f_{D^+} | |--|-----------------|------------------|-------------------| | stat. + disc. effects | 2.9 | 3.6 | 1.1 | | chiral extrapolation | 0.8 | 1.4 | 1.2 | | inputs r_1 , m_s , m_d and m_u | 0.7 | 0.8 | 0.1 | | input m _c or m _b | 1.2 | 1.0 | 0.2 | | Z_V^{hh} and Z_V^{qq} | 1.0 | 1.0 | 0 | | higher-order ρ_{A_4} | 0.3 | 0.3 | 0.2 | | finite volume | 0.2 | 0.4 | 0.4 | | total | 3.5 | 4.2 | 1.7 | #### Predicted improvements ## ETMC f_{D_s} extrapolation ($n_f = 2$) - top: extrap. in both m_l^{sea} and a for $\phi_s = f_{D_s} \sqrt{m_{D_s}}$ - bottom: extrapolation of ratio ϕ_s/ϕ_d - bulk of many syst. errors cancel in ratio - both SU(2) and SU(3) chiral P.Th. fits shown - lattice spacings a = 0.065, 0.085 and 0.10 fm ## Summary of lattice results Three flavor f_{D_s} results differ at the 1.4 σ level | Results in 2 + 1 flavor QCD | | | | | |-----------------------------|-----------------------------------|----------------------|------------------------------|--| | collaboration | $f_{D_s} [{ m MeV}]$ | $f_{D^+} [{ m MeV}]$ | f_{D_s}/f_{D^+} | | | HPQCD | 248.0 ± 2.5 | 213 ± 4 | 1.164 ± 0.018 | | | FNAL/MILC | $\textbf{261.4} \pm \textbf{9.2}$ | 220.3 ± 9.3 | $\boldsymbol{1.19 \pm 0.02}$ | | | Results in 2 flavor QCD | | | | | |-------------------------|----------------------|----------------------|-----------------------------------|--| | collaboration | $f_{D_s} [{ m MeV}]$ | $f_{D^+} [{ m MeV}]$ | f_{D_s}/f_{D^+} | | | ETMC | 244 ± 8 | 197 ± 9 | $\textbf{1.24} \pm \textbf{0.03}$ | | HPQCD: f_{D^+} based on older ratio and updated f_{D_s} FNAL/MILC: PRELIMINARY ## Brief history of f_{D_s} Kronfeld, $ar\chi iv:0912.0543 + updates$ - Gray bands lattice three-flavor avg. - Yellow bands expt. avg. - Leftmost (t = 0) result accompanied by successful prediction of f_{D^+} by FNAL/MILC. - HPQCD 2007 ($t \approx 2$) result provoked the " f_{D_s} puzzle" (3.8 σ discrepency). - Lattice avg. has come up. - Expt. has come down. #### Comparisons of lattice to recent experiment - Includes recent f_{Ds} update from BaBar. - My unofficial expt. average pending HFAG f_{Ds} update. - HPQCD and expt. f_{D_s} differ at about the 1.5 σ level. BaBar: P. del Amo Sanches, et al., ${\rm ar}\chi{\rm iv}$:1008.4080 Belle: K. Abe, *et al.*, arxiv:0709.1340 CLEO: D. Cassel, ICHEP 2010, Paris #### BES-III and future lattice ## Bounds on 2-Higgs doublet (type-II) from HPQCD using A.G. Akeroyd and F. Mahmoudi, $ar\chi$ iv:0902.2393 - 1-2% decay constant measurements by BES-III a welcome challenge for lattice! - HPQCD: update to f_{D^+} ? - FNAL/MILC: extend asqtad to finer lattices and higer statistics. - FNAL/MILC/HPQCD: HISQ valence+sea quarks with $n_f = 2 + 1 + 1$. - ETMC: A four dynamical flavor prelim. f_{Ds} shown at LATTICE2010.