The Decay Constants f_{D_s} and f_{D^+} from Lattice QCD

James N. Simone Review CHARM 2010

October 21, 2010

Lattice QCD is an ab initio method

$$\mathcal{S}_{\textit{Dirac}} = \bar{\Psi}(\not\!\!D + m)\Psi$$

Discretized derivative

$$D_{\mu}\Psi(x) = rac{1}{2a} \left[U_{\mu}(x)\Psi(x+\hat{\mu}) - U_{\mu}^{\dagger}(x-\hat{\mu})\Psi(x-\hat{\mu})
ight]$$

Procedure (executive summary):

- Choose the bare coupling constant, g_0 , extract α_s at short distance e.g. from plaquette.
- Determine lattice spacing, a, from e.g. HQ potential.
- Quark masses m_u , m_d , m_s , m_c and m_b determined by reproducing masses of π , K, η_c and η_b mesons.
- QCD parameters now completely fixed in other computations.

"Gold-plated" quantities in LQCD

Lattice QCD technology for process is understood, not computationally expensive and statistical signal to noise ratio is good.

- Stable particles not near threshold.
- At most one stable hadron in both inital and final states.
- Low to moderate momentum transfer in process.

Spectroscopy, leptonic decays, semileptonic decays and neutral meson mixing!

Lattice "Gold" Decays and the CKM Matrix

Leptonic and semileptonic decays plus mixing...

$$egin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \ \pi
ightarrow \ell ar{
u} & K
ightarrow \ell ar{
u} & K
ightarrow \ell ar{
u} & B
ightarrow \pi \ell ar{
u} & B
ightarrow \pi \ell ar{
u} & B
ightarrow
ho \ell ar{
u} & |V_{cd}| & |V_{cs}| & |V_{cb}| \ D
ightarrow \ell ar{
u} & D
ightarrow \ell ar{
u} & B
ightarrow D^* \ell ar{
u} & B
ightarrow D \ell ar{
u} & |V_{td}| & |V_{ts}| & |V_{tb}| pprox 1 \ B
ightarrow B_{B_d} ext{ and } f_B & \hat{B}_{B_s} ext{ and } f_{B_s} & \end{pmatrix}$$

K- \bar{K} mixing: $|\epsilon_K| \sim B_K \bar{\eta} (1 - \bar{\rho})$

Charm systems and lattice QCD

Charmonium and *D* mesons are ideal systems for testing lattice QCD methods.

- Abundant and relatively precise experimental data.
- Test lattice technologies for both heavy and light quarks.
- Same techniques used for bottom: m_c → m_b.
- CKM physics and possible new physics signals,
- e.g. nonstandard leptonic D_s decays, Dobrescu and Kronfeld, $ar\chi iv:0803.0512$ the " f_{D_s} puzzle" circa 2007.

Three talks at CHARM 2010: Charmonium (C. Detar), semileptonic decays (H. Na) and decay constants (this talk).

Decay constants

Experiment determines the product $f_{D_q}|V_{cq}|$,

$$\Gamma(D_q \to \ell
u) = rac{G_f^2}{8\pi} m_\ell^2 \left(1 - rac{m_\ell^2}{M_{D_q}^2}
ight)^2 M_{D_q} f_{D_q}^2 |V_{cq}|^2 \quad ,$$

while the lattice can compute f_{D_q} from first princples.

A complete lattice calculation of the f_{D_a} must address:

- dynamical (sea) quark effects,
- discretization effects and finding the continuum limit $a \rightarrow 0$,
- chiral extrapolation to the physical light quarks,
- tuning errors in determinations of "a" and quark masses.

Lattice studies of f_{D_s} and $f_{D_{+}}$

Focus on results from three collaborations with features:

	gauge sets		valence quarks		
collab.	name	n _f	sea quarks	light	charm
HPQCD	MILC	2+1	asqtad	HISQ	HISQ
FNAL/MILC	MILC	2 + 1	asqtad	asqtad	FNAL clover
ETMC	ETMC	2	tw-mass	tw-mass	tw-mass

HPQCD: C.T.H. Davies, et al., $ar\chi iv:1008.4018$ and

E. Follana, et al., $ar\chi iv:0706.1726$

FNAL/MILC: C. Bernard, et al., LATTICE 2010 and

C. Aubin, *et al.*, $ar\chi iv:hep-lat/0506030$

ETMC: B. Blossier, et al., $ar\chi iv:0904.0954$

Dynamical sea quarks

Neglecting vaccuum polarization ($n_f = 0$, quenched QCD) leads to 10-20% uncertainties.

Effects from a quenched strange quark, e.g. in the ETMC $n_f = 2$ study, are difficult to estimate *a priori*.

The heavier charm mass motivates a perturbative bound on effects from quenched charm. HPQCD esimates this error to be $\ll 0.01\%$ for f_{D_s} .

Note: MILC/FNAL, HPQCD and ETMC are now generating gauge configurations including dynamical charm $(n_f = 2 + 1 + 1)$

MILC three flavor gauge sets

The MILC collaboration has made publicly available sets of gluon configurations having three flavors dynamical quarks [A. Bazavov, *et al.*, $ar\chi iv:0903.3598$].

- Quenching is no longer dominant systematic.
- One flavor $m_h \approx m_s$, two flavors $m_s/10 \leq m_l \leq m_s$.
- Numerically less expensive than other methods.
- Lighter quarks reduce "chiral" extrapolation systematics.
- Leading gluons errors $\mathcal{O}\left(\alpha_s^2a^2\right)$ and "Asqtad" improved staggered quarks $\mathcal{O}\left(\alpha_sa^2\right)$.
- Lattice spacings of 0.045, 0.06, 0.09, 0.12 and 0.15 fm.

Open science

- Sets (ensembles) of gauge configurations are expensive to generate, requiring large amounts of time on the fastest computers in the world.
- The MILC, ETMC and other sets of configurations are openly shared worldwide via the ILDG, the International Lattice Data Grid.
- A rich set of open source LQCD application codes are available in the MILC and Chroma codes which use the USQCD SciDAC portable LQCD libraries.

Valence quarks are improved

MILC/FNAL

light: Asqtad improved stag. leading errors $\mathcal{O}(\alpha_s a^2)$

charm: Clover in FNAL interpretation $\mathcal{O}(\alpha_s a^2 \Lambda^2, a^4 \Lambda^4)$

HPQCD

HISQ (Highly Improved Stag. Quark) for both light and charm.

light: $\mathcal{O}(\alpha_s a^2)$, though smaller than asqtad.

charm: leading error $\mathcal{O}(\alpha_s a^2 m_c^2)$

ETMC

Twisted-mass quarks for both light and charm.

$$\mathcal{L}_{doublet} = ar{\chi} \left(D + m_q + i \mu_q \gamma_5 au^3
ight) \chi$$

At tuned twist, $\mathcal{O}(a^2\mu_q^2)$ errors for q= light and charm.

Fermilab

HPQCD f_{D_s} extrapolation

Extrapolation in a^2 setting quarks to their physical masses

- most precise lattice result
- new result for f_{Ds} only
- 2σ higher than 2007 result!
- now at five lattice spacings
- better tuning of quark masses and lattice spacing
- full f_{D^+} update to follow?
- significant lattice spacing dependence

a [fm]	error
0.15	7.8%
0.12	4.2%
0.09	1 7%

Lattice spacing recalibration on MILC lattices

Distance r_1 defined by the HQ potential

- older $\Upsilon(2S-1S)$ gave a larger r_1 (top two values)
- recent MILC and HPQCD give a lower r₁ (bottom two values)
- net effect on f_{D_s} is smaller than naive rescaling since quark masses must be retuned

FNAL/MILC f_{D_s} and f_{D^+} extrapolation

Fit at finite a and simulated sea quarks

- a = 0.09, 0.12 and 0.15 fm
- eleven sets of gluon configurations
- χ logs not apparent at finite "a"

Extrap. $a \rightarrow 0$ and all $m_q \rightarrow$ physical

- PRELIMINARY result
- physical f_{D_a} indicated in red
- "full QCD" subset of data points overlay the extrapolation

Detailed error budgets

HPQCD

source	$f_{D_{S}}$
statistics /valence tuning	0.57
r ₁ / a (lat. spacing)	0.15
<i>r</i> ₁	0.57
<i>a</i> ² extrap.	0.40
sea-quark extrap.	0.34
finite vol.	0.10
m_{η_S} (m_S tune)	0.13
QED in D _s	0.10
QED and annih. $m_{\eta c}$	0.00
quenched charm	0.00
total	1.0
total	1.0

FNAL/MILC

source	f _{Ds}	f _D +	f_{D_S}/f_{D^+}
stat. + disc. effects	2.9	3.6	1.1
chiral extrapolation	0.8	1.4	1.2
inputs r_1 , m_s , m_d and m_u	0.7	0.8	0.1
input m _c or m _b	1.2	1.0	0.2
Z_V^{hh} and Z_V^{qq}	1.0	1.0	0
higher-order ρ_{A_4}	0.3	0.3	0.2
finite volume	0.2	0.4	0.4
total	3.5	4.2	1.7

Predicted improvements

ETMC f_{D_s} extrapolation ($n_f = 2$)

- top: extrap. in both m_l^{sea} and a for $\phi_s = f_{D_s} \sqrt{m_{D_s}}$
- bottom: extrapolation of ratio ϕ_s/ϕ_d
- bulk of many syst. errors cancel in ratio
- both SU(2) and SU(3) chiral P.Th. fits shown
- lattice spacings

 a = 0.065, 0.085 and
 0.10 fm

Summary of lattice results

Three flavor f_{D_s} results differ at the 1.4 σ level

Results in 2 + 1 flavor QCD				
collaboration	$f_{D_s} [{ m MeV}]$	$f_{D^+} [{ m MeV}]$	f_{D_s}/f_{D^+}	
HPQCD	248.0 ± 2.5	213 ± 4	1.164 ± 0.018	
FNAL/MILC	$\textbf{261.4} \pm \textbf{9.2}$	220.3 ± 9.3	$\boldsymbol{1.19 \pm 0.02}$	

Results in 2 flavor QCD				
collaboration	$f_{D_s} [{ m MeV}]$	$f_{D^+} [{ m MeV}]$	f_{D_s}/f_{D^+}	
ETMC	244 ± 8	197 ± 9	$\textbf{1.24} \pm \textbf{0.03}$	

HPQCD: f_{D^+} based on older ratio and updated f_{D_s}

FNAL/MILC: PRELIMINARY

Brief history of f_{D_s}

Kronfeld, $ar\chi iv:0912.0543 + updates$

- Gray bands lattice three-flavor avg.
- Yellow bands expt. avg.
- Leftmost (t = 0) result accompanied by successful prediction of f_{D^+} by FNAL/MILC.
- HPQCD 2007 ($t \approx 2$) result provoked the " f_{D_s} puzzle" (3.8 σ discrepency).
- Lattice avg. has come up.
- Expt. has come down.

Comparisons of lattice to recent experiment

- Includes recent f_{Ds} update from BaBar.
- My unofficial expt. average pending HFAG f_{Ds} update.
- HPQCD and expt. f_{D_s} differ at about the 1.5 σ level.

BaBar: P. del Amo Sanches, et al.,

 ${\rm ar}\chi{\rm iv}$:1008.4080

Belle: K. Abe, *et al.*, arxiv:0709.1340

CLEO: D. Cassel, ICHEP

2010, Paris

BES-III and future lattice

Bounds on 2-Higgs doublet (type-II)

from HPQCD using A.G. Akeroyd and F. Mahmoudi, $ar\chi$ iv:0902.2393

- 1-2% decay constant measurements by BES-III a welcome challenge for lattice!
- HPQCD: update to f_{D^+} ?
- FNAL/MILC: extend asqtad to finer lattices and higer statistics.
- FNAL/MILC/HPQCD: HISQ valence+sea quarks with $n_f = 2 + 1 + 1$.
- ETMC: A four dynamical flavor prelim. f_{Ds} shown at LATTICE2010.