Leptonic D & D_s Decays from CLEO-c and Prospects for BESIII

Roy A. Briere Carnegie Mellon

(+ CLEO-c & BESIII)

CHARM 2010 22 Oct 2010

Outline

Introduction

CLEO-c Results: all published; so I'll try to add some insights... $D^+ \rightarrow \mu \nu$ $D_s \rightarrow \mu \nu, \tau \nu [\tau \rightarrow \pi \nu]$

 $\begin{array}{l} D_{s} \rightarrow \mu\nu, t\nu \quad [\ t \rightarrow \mu\nu \] \\ D_{s} \rightarrow \tau\nu \quad [\ \tau \rightarrow e\nu\nu \] \\ D_{s} \rightarrow \tau\nu \quad [\ \tau \rightarrow \rho\nu \] \end{array}$

The Future at BESIII

Take-home message: charm threshold gives BOTH f_{D} and f_{Ds}

BESIII

Theory-on-a-Page

Comparing $D_{(s)}$ and $B_{(s)}$

 B^{0} , B^{0}_{s} mixing experimental results are not fully utilized: theory limited due to $f_{B(s)}$ uncertainty

Charm: has <u>both</u> D⁺, D_s⁺ leptonic decays > Can measure SU(3) breaking

Beauty: have only B⁺ leptonic (= B⁰ via isospin)
Hard to measure directly
AND, we need f_{Bs} in addition to f_B

Leptonic Decays D_(s) → Iv to extract decay constants
Can do precision tests of modern lattice QCD,
including SU(3) breaking, in the charm sector

Helicity & Phase Space

B($D^+ \Rightarrow \mu v$) = 3.8 x 10⁻⁴ x 2.1 "lifetime favored"

B(
$$D_s^+ \Rightarrow \mu\nu$$
) = ~5.6 x 10⁻³
 $\begin{cases} x \ 19 \\ x \ 1.5 \ decay \ const \\ x \ 1.05 \ phase \ space \end{cases}$

D⁺ SM ratios $ev : \mu v : \tau v \Leftrightarrow 2.3 \times 10^{-5} : 1 : 2.65$ D_s⁺ SM ratios $ev : \mu v : \tau v \Leftrightarrow 2.3 \times 10^{-5} : 1 : 9.76$

Tau modes can be relevant with certain large one-prong tau decays:18% evv11% πv25.5% ρv

for D⁺: dominated by muons; small smeared-out tau rate for D_s⁺: can measure BOTH muon and tau channels (more details later)

Electron channel: only limits, hard to approach Standard Model

CLEO f_D Technique

CLEO-c D⁻ Tags = fully-recon. hadronic decay

CLEO-c uses Tagging: $e^+e^- \rightarrow \psi(3770) \rightarrow D^0D^0, D^+D^$ creates ONLY D pairs

Fully reconstruct one D
Can then infer neutrinos (constrained kinematics)
or get absolute hadronic BFs

> Typical tag rate per D: 15% / 10% / 5% D⁰ / D⁺ / D_s

 $D^+ \rightarrow \mu^+ v$

PRD 78, 052003 2008 818 pb⁻¹

1630608-013

Neutrino from 4-momentum balance can plot (missing mass)²: MM²

Signal side is one track + unobserved neutrino Veto on extra unmatched showers > 250 MeV

>>> D-tagging gives a clean, isolated signal peak

Systematics: Backgrounds

Previous page, signal plot: "muon": <300 MeV in CsI calorimeter This page, background check: "muon": >300 MeV in CsI calorimeter $\tau^+\nu, \tau^+ \rightarrow \pi^+\nu$ shows up in both

 $\pi^+\pi^0$ background would be problematic, but is small and well-simulated

τ⁺ν has known kinematics, rate related to signal in SM

Tails of the K⁰π⁺ peak will be shown to be well-understood next...

Other backgrounds are small, and peak away from signal region

PRD 78, 052003 2008 818 pb⁻¹

Systematics: Resolution

PRD 78, 052003 2008 818 pb⁻¹

Missing-mass is intrinsically powerful, But one needs to understand resolution, including mis-reconstruction.

Systematic Error Summary

PRD 78, 052003 2008 818 pb⁻¹

Error on f_D is 1/2 of this

TABLE III. Systematic errors on the $D^+ \rightarrow \mu^+ \nu$ branching ratio.

	Systematic errors (%)	
Track finding	0.7	
PID cut	1.0	
MM ² width	0.2	
Minimum ionization cut	1.0	
Number of tags	0.6	
Extra showers cut	0.4	
Radiative corrections	1.0	
Background	0.7	
Total	2.2	

But... most of systematics are based on data.

Already only

May be hard

1.1% on $f_{D}!$

No one dominant

to improve ???

source of error.

$D^+ \rightarrow \mu^+ v$ Results

Fix $\tau v/\mu v$ at SM ratio of 2.65 : B (D⁺ $\rightarrow \mu^+ \upsilon$) = (3.82 ± 0.32 ± 0.09) x 10⁻⁴ $f_{D^+} = (205.8 \pm 8.5 \pm 2.5) \text{ MeV} [\pm 4.1\% \pm 1.2\%]$ **Float** $\tau v/\mu v$: (for non-SM scenarios, only small loss of precision) $B(D^+ \rightarrow \mu^+ \upsilon) = (3.93 \pm 0.35 \pm 0.10) \times 10^{-4}$ $f_{D^+} = (207.6 \pm 9.3 \pm 2.5) \text{ MeV}$ consistent Selected Lattice QCD: 2+1 unquenched lattice QCD* 213 ± 4 MeV 2+1 unquenched lattice QCD** 217 \pm 10 MeV * Follana et al. (HPQCD/UKQCD), PRL 100, 062002 (2008) central value updated indirectly from 207 to 213, in Davies et al. (HPQCD), arXiv:1008.4018 ** Bazavov et al. (FNAL/MILC), arXiv:0912.5221 Note: numbers are radiatively corrected; -1% on BR Also, with updated V_{cs} : "SM result" is f_D + = (206.7 ± 8.5 ± 2.5) MeV

11

 $D_s \rightarrow \mu^+ \upsilon \& \tau^+ \upsilon \\ (\tau^+ \rightarrow \pi \upsilon)$

PRD 79, 052001 (2009) 600 pb⁻¹

D_s : Larger leptonic BF, but tougher for tagging

Use data from 4170 MeV: $D_s^{*+}D_s^{-}$ + c.c events On top of uds +*plus* other charm continuum

Invariant mass of 9 tag modes

 $D_{s} \rightarrow \mu^{+} \upsilon \& \tau^{+} \upsilon \\ (\tau^{+} \rightarrow \pi \upsilon)$

PRD 79, 052001 (2009) 600 pb⁻¹

Look at missing mass after adding photon (from $D_s^* \rightarrow D_s \gamma$) Plot missing-mass² against $D_s \gamma$ system

More on the Method...

PRD 79, 052001 (2009) 600 pb⁻¹

As with D+ analysis, separate two cases: Case (i): signal track deposits <300 MeV in CsI calorimeter dominantly $\mu^+ \upsilon$ (but ~ 1/2 of $\tau^+ \upsilon$, $\tau^+ \rightarrow \pi^+ \upsilon$ is also here) Case (ii): signal track deposits >300 MeV in CsI calorimeter dominantly $\tau^+ \upsilon$ (~ 1/2 of $\tau^+ \upsilon$, $\tau^+ \rightarrow \pi^+ \upsilon$; very little $\mu^+ \upsilon$)

Similar to D⁺ case: Veto on extra unmatched showers > 300 MeV

First, I will show combined data, then separated...

 $D_s \rightarrow \mu^+ \upsilon \& \tau^+ \upsilon \\ (\tau^+ \rightarrow \pi \upsilon)$

PRD 79, 052001 (2009) 600 pb⁻¹

Separated Data

Color-code: $\mu^+ \nu$ $\tau^+ \nu$ Background D_s sidebands Real D_s background

TABLE II. Background estimates for the data in the signal region $-0.1 < \text{MM}^2 < 0.2 \text{ GeV}^2$. (We assume $\mathcal{B}(D_s^+ \rightarrow \tau^+ \nu) = 6.2 \pm 0.7\%$.)

Final State	B (%)	# of events case(i)	# of events case (ii)
$\begin{aligned} \tau^+ &\to \pi^+ \pi^0 \bar{\nu} \\ \tau^+ &\to \mu^+ \nu \bar{\nu} \\ D_s^+ &\to \pi^+ \pi^0 \pi^0 \\ D_s^+ &\to K^0 \pi^+ \\ D_s^+ &\to \eta \pi^+ \end{aligned}$	1.6 ± 0.2 1.1 ± 0.1 1.1 (estimate) 0.24 ± 0.03 1.5 ± 0.2	2.06 ± 0.34 1.60 ± 0.24 0.12 1.3 ± 0.3 1.1 ± 0.3	1.43 ± 0.36 0 0.12 1.1 ± 0.3 0.9 ± 0.3
Sum		6.2 ± 0.7	3.5 ± 0.6

Rates are for full range of signal plots I've shown...

For reference, $\mu^+\nu$ signal is 235.5 ± 13.8 events

Systematic Errors

Error on f_{Ds} is 1/2 on this

TABLE III. Systematic errors on determination of the $D_s^+ \rightarrow \mu^+ \nu$ branching fraction.

Error Source	Size (%)
Track finding	0.7
Particle identification of μ^+	1.0
MM ² width	0.2
Photon veto	0.4
Background	1.0
Number of tags	2.0
Tag bias	1.0
Radiative Correction	1.0
Total	3.0

Largest single error is # tags: might be better at 4030 MeV, with no D_s* (but only 30% of cross-section !)

 $f_{Ds} = (263.3 \pm 8.2 \pm 3.9) \text{ MeV}$ [$\pm 3.1\% \pm 1.5\%$]

 $\Gamma(D^+ \rightarrow \tau^+ \nu) / \Gamma(D^+ \rightarrow \mu^+ \nu) = 11.74 \pm 1.7 \pm 0.2$ [SM = 9.76]

 $D_s \rightarrow \tau^+ \upsilon$ ($\tau^+ \rightarrow e^+ \upsilon \upsilon$)

PRD 79, 052002 (2009) 602 pb⁻¹

Uses only cleanest tags:

Always have >1 neutrino! Abandon use of MM² Semileptonic events tend to have hadronic Energy in CsI (but careful re: K_L !)

Plot E_{extra} in Calorimeter (Extra: not tag or e)

Signal region: <400 MeV

Error on f_{Ds} is 1/2 of this

Source	Effect on $\mathcal{B}(\%)$	Errors on T _{Ds} :
Background (nonpeaking)	0.7	
$D_s^+ \to K_L^0 e^+ \nu_e$ (peaking)	3.2	1 6% from Key
Extra shower	1.1	
Extra track	1.1	(BR + energy deposit)
$Q_{\rm net} = 0$	1.1	1.2% all athens
Non electron	0.1	1.5% all others
Secondary electron	0.3	combined
Number of tag	0.4	combined
Tag bias	0.2	
Tracking	0.3	
Electron identification	1.0	> #tag effect smaller than before:
FSR	1.0	no y from D _s * required
Total	4.1	

 $f_{Ds} = (252.5 \pm 11.1 \pm 5.2) \text{ MeV}$

Note: rad. corr. is small, since tau has only 9 MeV kin. E

^[± 4.4% ± 2.1%]

 $D_s \rightarrow \tau^+ \upsilon \quad (\tau^+ \rightarrow \rho^+ \upsilon)$

PRD 80, 112004 (2009) 600 pb⁻¹

- —— Signal (large frac. of total) $\eta \rho^+$
- ······ Fake D_s
- --- Κππ⁰
- · · · Sum of 6 minor exclusive
 · other

TABLE II. Systematic errors on determination of the branching fraction.

Error source	Size (%)
Finding the π^+ track from the ρ^+ decay	0.3
Hadron identification	1.0
Finding the π^0 from the ρ^+ decay	1.3
$E_{\rm extra} < 0.2 {\rm GeV}$ and π^0 efficiencies on background	1.1
$E_{\rm extra} < 0.2 \text{ GeV signal efficiency}$	2.0
Background modeling	1.1
Number of tags	2.0
Tag bias	1.0
Total	3.8

No time for details: comprehensive analysis !

CLEO f_{Ds} Summary

$J D_s$ $J D_s$ $J D_s$				
Experiment	Mode	B (%)	f_{D_s} (MeV)	
This result	$\tau^+ \nu \; (\rho^+ \bar{\nu})$	$(5.52 \pm 0.57 \pm 0.21)$	257.8 ± 13.3 ± 5.2	
CLEO-c [9]	$ au^+ u \; (\pi^+ ar u)$	$(6.42 \pm 0.81 \pm 0.18)$	$278.0 \pm 17.5 \pm 4.4$	
CLEO-c [13]	$ au^+ u \; (e^+ u ar u)$	$(5.30 \pm 0.47 \pm 0.22)$	$252.6 \pm 11.2 \pm 5.6$	
Average	$ au^+ u$	$(5.58 \pm 0.33 \pm 0.13)$	$259.7 \pm 7.8 \pm 3.4$	
CLEO-c [9]	$\mu^+ u$	$(0.565 \pm 0.045 \pm 0.017)$	$257.6 \pm 10.3 \pm 4.3$	CLEO-c:
Average	$ au^+ u + \mu^+ u$		$259.0 \pm 6.2 \pm 3.0$	±2.4% ±1.2%

TABLE IV. Recent absolute measurements of f_{D_c} from CLEO-c.

New HFAG World Ave 257.3 ± 5.3 MeV (see backup slides)

248	±	2.5	MeV
260	±	10	MeV
	248 260	248 ± 260 ±	248 ± 2.5 260 ± 10

* Davies et al. (HPQCD), arXiv:1008.4018
** Bazavov et al. (FNAL/MILC), arXiv:0912.5221

Statistical Power for D_s

mean²/ σ_{stat}^2 , normalized to $D_s \rightarrow \mu^+ v$ (like an "additional luminosity" factor...)

$$\begin{array}{ccc} D_{s} \rightarrow \mu^{+}\upsilon: & 1.00 \\ D_{s} \rightarrow \tau^{+}\upsilon: \tau^{+} \rightarrow \pi^{+}\upsilon & 0.40 \end{array} \end{array} \ \begin{array}{c} \text{Done as joint analysis} \\ \end{array} \\ \begin{array}{c} D_{s} \rightarrow \tau^{+}\upsilon: \tau^{+} \rightarrow e^{+}\upsilon\upsilon & 0.81 \\ D_{s} \rightarrow \tau^{+}\upsilon: \tau^{+} \rightarrow \rho^{+}\upsilon & 0.59 \end{array} \end{array} \right\} \ \begin{array}{c} \text{Doubles stat. power !} \end{array}$$

External Systematics

Effects on decay constants are listed; this is 1/2 of the effect on BF > not currently dominant <</p> $D_{(s)}$ Lifetimes: 0.34% for D 0.7% for D (from FOCUS) radiative corrections on $D_{(s)} \rightarrow \mu^+ \upsilon$: 0.5% (conservative? improvable?) τ BFs for $D_s \rightarrow \tau^+ v$ ($\tau^+ \rightarrow e^+ v v$, $\pi^+ v$, $\rho^+ v$): 0.14%, 0.32%, 0.18% V_{cd} : 0.5% V_{cs} , masses: negligible

The Future @ Threshold

BESIII:

- > Now at 3 x 10³² cm⁻²s⁻¹ [~ 4x CLEO-c; goal is 10 x 10³²]
- > 12x (4x) CLEO data for D (D_s) would lower statistical errors
 to equal the CLEO-c systematics (assuming equal efficiencies !)

BESIII data in-hand : Jan-Jul 2010: ~910 pb⁻¹ @ ψ(3770) (and a peak scan, in addition) Expect improved luminosity next 3770 run

Tasks :

Achieve CLEO-c efficiency and systematic understanding

- > Different PID: TOF vs. RICH
- > Similar drift chamber, calorimetry

(BESIII CsI has small barrel/endcap gap)

> More luminosity, but also higher currents and more noise ...

Further Observations...

Note that one can take ratios of leptonic decay constants and semileptonic form-factors to cancel CKM matrix elements

We can also compare the relative ease of the two leptonic modes CLEO-c stat errors, normalized to 1 fb⁻¹ each:

 f_D 3.7 % f_{Ds} 1.9 % --> D_s easier w.r.t. statistics

Energy for Ds running: 4015 vs. 4170 MeV
CESR-c was better at higher E_{cm}, BEPC-II better closer to 3770
Cross section*: 0.27 nb D_sD_s @ 4015 vs. 0.92 nb D_sD_s* @ 4170
Better efficiency without D_s* transition photon

Conclusions

Charm decay constants can verify lattice QCD Verified lattice QCD helps extract V_{td} , V_{ts} from $B_{(s)}$ mixing Charm threshold gives BOTH f_D and f_{Ds}

CLEO-c, at charm threshold, has best results ONLY significant f_D result Slightly better than B factories for f_{Ds} , but noticeably better on systematics Current agreement with LQCD is good,

- BESIII has taken data at 4x CLEO-c luminosity CLEO-size dataset in hand for D No Ds running, yet ...
- If BESII analyses do as well as CLEO-c, the larger datasets will clearly continue to improve experimental precision ...

BACKUP SLIDES

New HFAG D_s Branching Fractions

B ($D_s \rightarrow \mu \nu$)

New HFAG f_{Ds}

Note that f_D is all CLEO-c (no B-factories)

Electron Mode Limits

CLEO-c

 $B(D^+ \rightarrow e^+\nu) < 8.8 \times 10^{-6}$ No events in signal area [960 x SM expectation]

 $B(D_s^+ \rightarrow e^+\nu) < 1.2 \times 10^{-4}$ One event in signal area

[890 × SM expectation]

CP Asymmetries

CLEO-c [$\Gamma(D^+ \to \mu^+\nu)$ - $\Gamma(D^- \to \mu^-\nu)$] / (SUM) = (8 ± 8) %

 $[\Gamma(D_{s}^{+} \rightarrow \mu^{+}\nu) - \Gamma(D_{s}^{-} \rightarrow \mu^{-}\nu)] / (SUM) = (4.8 \pm 6.1) \%$

PRD 78, 052003 2008 818 pb⁻¹ PRD 79, 052001 (2009) 600 pb⁻¹

B Physics Connection

B mixing experimental results are not fully utilized due to f_B uncertainty

Leptonic Decays D_(s) → Iv to extract decay constants Key issue: Precision tests of (unquenched) Lattice QCD

If D_s Discrepancy is Real...

Models need to raise f_{Ds} without much effect on f_{D}

Dobrescu & Kronfeld argue that possible New Physics could be either a charged Higgs (their own model) or leptoquarks [PRL 100, 241802 (2008)]

Kundu & Nandi suggest R-parity violating SUSY to explain large f_{Ds} and B_s mixing phase [PRD 78, 015009 (2008)]

Hewett, and Akeroyd & Chen, also discussed 2 Higgs doublet model [H: arXiv:hep-ph/9505246 A: PrThPh 111, 295 (2004); A&C: PRD 75 075004 (2007)]

Note that mass-dependent Higgs couplings exactly mimic the V-A helicity suppression, preserving the e:μ:τ ratio