Charm mixing from BaBar

Nicola Neri Universita' di Pisa & INFN

Joint Workshop on Charm Physics Beijing, 26-27 November 2007

Outline

- Charm mixing: a short introduction
- Experimental overview:
 - selection of the events
 - analysis methods
 - results
- Summary of the results

D⁰ mixing formalism

Time evolution according to Schrödinger equation:

$$i\frac{\partial}{\partial t}\left(\frac{D^{0}(t)}{D^{0}(t)}\right) = H_{eff}\left(\frac{D^{0}(t)}{D^{0}(t)}\right) \qquad H_{eff} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \text{ effective hamiltonian}$$

M, $\mathbf{\Gamma}$ hermitian matrices

Mass eigenstates ≠ flavor eigenstates:

$$D_{1,2}^{0} \rangle = p \left| D^{0} \right\rangle \pm q \left| \overline{D^{0}} \right\rangle$$
$$\left(\frac{q}{p} \right)^{2} = \frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}}{M_{12} - \frac{i}{2}\Gamma_{12}}$$

Propagate with different mass $m_{1,2}$ and widths $\Gamma_{1,2}$:

$$|D_{1,2}(t)\rangle = e^{-i(m_{1,2}-i\Gamma_{1,2}/2)t} |D_{1,2}(t=0)\rangle$$

26 Nov 2007

D⁰ mesons oscillations

Time evolution for meson of *known flavor at t=0*

$$x = \frac{m_2 - m_1}{\Gamma} \qquad \Gamma = \frac{\Gamma_2 + \Gamma_1}{2}$$

$$y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma} \qquad \Gamma = \frac{\Gamma_2 + \Gamma_1}{2}$$

$$\left| D^0(t) \right\rangle = e^{-\bar{\gamma}t/2} \left(\cosh(\Delta\gamma t/2) || D^0 \right) - \frac{q}{p} \sinh(\Delta\gamma t/2) || \bar{D}^0 \right)$$
Where $\Delta\gamma = (y + ix)\Gamma \qquad \bar{\gamma} = (\Gamma_1 + \Gamma_2)/2 - i(m_1 + m_2)$

$$D^0 \text{ "oscillates" into } \overline{D}^0!$$

$$(charm meson "mixing")$$
An opposite flavor component appears after a while
$$26 \operatorname{Nov} 2007 \qquad \operatorname{Nicola \operatorname{Neri} - \operatorname{Beijing } 07} \qquad 4$$

Standard Model predictions

- Short-distance contributions from mixing box diagrams in the Standard Model are expected to be small: ^a b, s, d ^u
 - b quark is CKM-suppressed
 - s and d quarks are GIM suppressed
 - mainly contributes to the mass difference $\mathbf{X} \approx O(10^{-5})$ or less

- Long-distance contributions dominate but hard to estimate precisely
 - expect $|y| \le 0.01$
 - $|\mathbf{x}| \sim 0.1 1|\mathbf{y}|$

 No CP violation in mixing expected in SM with current experimental sensitivity

26 Nov 2007

CP violation formalism

Let's define the amplitudes:

$$A_{f} = \left\langle f \left| H \right| D^{0} \right\rangle \quad \overline{A}_{f} = \left\langle f \left| H \right| \overline{D}^{0} \right\rangle$$

Effect of CP violation due to mixing parameterized in terms of:

$$\varphi_f = \arg\left(\frac{q}{p}\frac{\overline{A}_f}{A_f}\right)$$

 $r_m \neq 1$ CP violation in mixing

 $\varphi_f \neq 0$ CP violation in interference of mixing and decay

 $\begin{array}{l} CP \ violation \ in \ decay \\ is \ very \ small \ in \ SM \end{array} \quad \begin{array}{l} A_{\overline{f}} \\ \overline{A_{s}} \neq 1 \end{array}$

An observation of CP violation in charm mixing with present experimental sensitivity would provide evidence of New Physics

Charm laboratory and analysis techniques

BaBar experiment

BaBar detector records data delivered by PEP-II asymmetric B-factory ($\beta\gamma$ =0.55) running at the Υ (4S) mass peak (10.58 GeV) at SLAC.

BaBar is also a charm factory

Experimental techniques

Identify the D^0 flavor at production using the decays $D^{*\pm} \rightarrow \pi_s^{\pm} D^0$ - select events around the expected $\Delta m = m(D_{\text{rec.}}^{*+}) - m(D_{\text{rec.}}^0)$ - The charge of the soft pion determines the flavor of the D^0

- p*(D⁰)>2.5 GeV/c (reject BB bkg)

Identify the D^o flavor at decay using the charge of the Kaon

 $D^0 o K^- \pi^+ \pi^0$ right-sign (RS)

 $D^0
ightarrow K^+ \pi^- \pi^0$ wrong-sign (WS)

Vertexing with beam spot constraint determines decay time, t and decay time error, σ_t It also affects resolution on $m_{K\pi\pi^0}$, Δm

26 Nov 2007

 K^{-}

 π^0

Charm event selection

- Excellent bkg rejection:
 - D^0 invariant mass and Δm well separate signal from bkg.

Very good resolution on Δm : $Q = m(D^{*+}) - m(D^0) - m(\pi^+) \approx 6 \operatorname{MeV}/c^2$

- Typical signal purity at level of 99% (for RS D decays)

Nicola Neri - Beijing 07

11

Bkg components ($D \rightarrow K\pi as example$)

Random π_s : **Correct** D^o , wrong π_s^{BABAR} **Peaks in m**($K\pi$), not Δm

 $\frac{\text{Misreconstructed } D^{\circ}:}{\bullet}$ $Partially reco. D^{\circ},$ $D^{\circ} \rightarrow K^{-} \mu^{+} v$

◆ Double misid D^o→K⁻π⁺
(WS events only)
◆ Peaks in Δm, not m(Kπ)

Combinatoric: Random tracks

Discrimination power from $m(K\pi)$ and Δm

Proper time reconstruction

2

 D^* and π_{soft} constrained to the beam spot

Resolution on proper-time: $\tau_D / < \delta t > \sim 2$

- Signal resolution function:sum of 3 guassians:
 - Mean of gaussian allowed to be non-zero (Vertex detector mis-alignment)
- Combinatorial bkg:
 - gaussian + tail for small long-lived component

Experimental searches

• Mixing Time dependent analyses

- $-D^0 \rightarrow K^+\pi^-$
- $-D^0 \rightarrow K^+K^-, \pi^+\pi^-$
- $D^0 \rightarrow K^+ \pi^- \pi^0$
- Time integrated analysis:
 - $-D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$ search for CP violation

Distinguishing Mixing from DCS Decays

- Exploit different time dependence. Approx. x,y<<1: $\frac{d\Gamma}{dt} \Big[|D^{0}(t)\rangle \rightarrow f \Big] \propto e^{-\Gamma t} \left(\underbrace{R_{D}}_{VD} + \sqrt{R_{D}} \underbrace{y'(\Gamma t)}_{V} + \frac{x'^{2} + y'^{2}}{4} (\Gamma t)^{2} \right)$ Interference $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi} \quad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$ $D^{0} - \overline{D}^{0} \quad \text{relative phase}$ not directly measurable at B-factories $R_{D} = \frac{\Gamma(D^{0} \rightarrow K^{+}\pi^{-})}{\Gamma(D^{0} \rightarrow K^{-}\pi^{+})} \approx 3 \cdot 10^{-3}$
- Analysis of the proper time distribution of WS events permits extraction of D⁰ mixing parameters y', x'²

Event selection

Also require

 $0.14 < \Delta m < 0.16 \text{ GeV/c}^2$

Select candidate with greatest fit probability for multiple D*+ candidates sharing tracks

Fitting Strategy

Final goal is a fit of WS sample using $m(D^0)$, Δm and $t \rightarrow$ yields mixing parameters

- Exploit large sample of RS events (>1.1M sig evt) to fix parameters of fit function
- Proceed in 3 well-defined steps:
 - 1. Fit in $m(D^0)$, Δm (i.e. time-independent) of RS and WS samples together \rightarrow determines shapes for probability density functions (PDFs) for these variables
 - Time-dependent fit to RS sample → determine D⁰ lifetime and constrain the proper time resolution function (see below)
 - 3. Finally fit $m(D^0)$, Δm and t to WS sample to extract the mixing parameters
- Method allows determination of all fit function parameters from data → Monte Carlo events not needed

Wrong-sign $m(D^0)$, Δm fit

The fit determines the wrong-sign branching ratio R_{WS}. A preliminary wrong-sign fit of D⁰ mass and Δm distributions is shown, which yields R_{WS} = (0.353 ± 0.008 ± 0.004)%. This is a 3x improvement from the earlier 2003 BABAR

measurement.

It is comparable with the latest BELLE result of (0.377 \pm 0.008 \pm 0.005)% using 400 fb⁻¹ PRL 96, 151801 (2006).

WS decay time fit: Assuming No Mixing

- The parameters varied in the WS decay-time fit are the
 - WS category yields and the
 - WS combinatoric shape parameter
- As can be seen in the residual plot, there are large residuals.

WS decay time fit: Mixing Allowed

26 Nov 2007

Systematic Uncertainties

- Two types of systematics considered:
 - Variations in Fit Model
 - vary signal and background descriptions
 - Proper time resolution function, 3.6fs bias (SVT mis-alignment)
 - Variations in selection criteria
 - most important: cuts on decay time and its error t and δt

Systematic source	R _D	y '	X ′ ²	
Fit Model:	0.59σ	0.45σ	0.40σ	<i>Results are expressed in units of the statistica</i>
Selection Criteria:	0.24σ	0.55σ	0.57σ	
Quadrature total:	0.63σ	0.71σ	0.70σ	error

Evidence of mixing at 3.9 σ

- Contours in y', x² computed from 2Δ(In L)
- Best-fit point is in the nonphysical region $x'^2 < 0$
- 1σ contour extends into physical region. Correlation: -0.94
- Contours include systematic errors

The no-mixing point is at the 3.9 σ contour

No evidence for CP violation fitting separately D^0 and $\overline{D^0}$

26 Nov 2007

$$D^0 - \overline{D}^0$$
 Mixing in Lifetime Ratio of
 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^- \text{vs } D^0 \rightarrow K^- \pi^+$

• D⁰ mixing and CP violation alter decay time distribution of CP eigenstates to exponential with effective lifetimes τ_{hh} :

$$\tau_{hh}^{\pm} = \tau_D \cdot f^{\pm} \left(r_m, x, y, \varphi_f \right) \qquad \begin{array}{c} \tau_{hh}^{+} = \tau \left(D^0 \to h^+ h^- \right) \\ \tau_{hh}^{-} = \tau \left(\overline{D}^0 \to h^+ h^- \right) \end{array} \qquad h = K, \pi$$

• Let's define
$$\langle \tau_{hh} \rangle = \frac{\tau_{hh}^+ + \tau_{hh}^-}{2}$$
 $A_\tau = \frac{\tau_{hh}^+ - \tau_{hh}^-}{\tau_{hh}^+ + \tau_{hh}^-}$

$$y_{CP} = \frac{\tau_D}{\langle \tau_{hh} \rangle} - 1 \qquad \Delta Y = \frac{\tau_D}{\langle \tau_{hh} \rangle} A_{\tau}$$

Measuring τ_{D} and ${<}\tau_{hh}\!{>}$ we obtain

<i>YCP</i>	=	$y\cos arphi_f$
ΔY	=	$x\sin arphi_f$

 $y_{CP}=y$ and $\Delta Y=0$ if CP conserved. $y_{CP}=0$ and $\Delta Y=0$ if no mixing

Results for y_{CP} , ΔY

Tagged results from 384 fb⁻¹:

	y_{CP}	ΔY
K^+K^-	$(1.60 \pm 0.46(\text{stat}) \pm 0.17(\text{syst}))\%$	$(-0.40 \pm 0.44 (\text{stat}) \pm 0.12 (\text{syst}))\%$
$\pi^+\pi^-$	$(0.46 \pm 0.65(\text{stat}) \pm 0.25(\text{syst}))\%$	$(0.05 \pm 0.64(\text{stat}) \pm 0.32(\text{syst}))\%$
Combined	$(1.24 \pm 0.39(\text{stat}) \pm 0.13(\text{syst}))\%$	$(-0.26 \pm 0.36(\text{stat}) \pm 0.08(\text{syst}))\%$

Evidence of charm mixing at 3σ level. No evidence of CP violation

Combining results with BaBar PRL 91, 162001(2002) with 91 fb⁻¹ (*untagged* D⁰ sample, statistically independent)

y_{CP} =1.03±0.33±0.19 %

26 Nov 2007

Search for CPV in $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$

 CP violation in these modes is predicted to be $\mathcal{O}(10^{-5}-10^{-4})$ in SM

- F. Bucella et al., Phys. Rev. **D51**, 3478 (1995) S. Bianco et al., Riv. Nuovo Cim. 26N7, 1(2003)
- Evidence of CPV with current precision in these modes would be signal of New Physics
- Time integrated measurement:

$$a_{CP}^{hh} = \frac{\Gamma\left(D^0 \to h^+ h^-\right) - \Gamma\left(\bar{D}^0 \to h^+ h^-\right)}{\Gamma\left(D^0 \to h^+ h^-\right) + \Gamma\left(\bar{D}^0 \to h^+ h^-\right)}; \qquad h = K, \pi$$

- Experimental difficulties:
 - precise determination of detector D⁰ tagging asymmetry (π_{soft} reconstruction in D*+ \rightarrow D⁰ π_{soft} decays)
 - forward-backward (FB) asymmetry in $c\overline{c}$ production.

arXiv:0709 2715

Experimental procedure

• Determine relative D^0/D^0 soft pion tagging efficiency using $D^0 \rightarrow K^- \pi^+$ data

 \Rightarrow greatly reduces systematic uncertainties

Category	Δa_{CP}^{KK}	$\Delta a_{CP}^{\pi\pi}$
2 <u>-Dim. PDF shapes</u>	$\pm 0.04\%$	$\pm 0.05\%$
π_s correction	$\pm 0.08\%$	$\pm 0.08\%$
a_{CP} extraction	$\pm 0.09\%$	$\pm 0.20\%$
Quadrature sum	$\pm 0.13\%$	$\pm 0.22\%$

- Another thing to take into account:
 - correct for FB asymmetries A_{FB} in $e^+e^-\rightarrow cc$ production: Z^0/γ mediated diagrams interference, high order QED diagrams interference.
 - effects are anti-symmetric in the $\text{cos}\theta_{\text{CM}}$
- extract a_{CP} (symmetric in $cos\theta_{CM}$)

Search for CPV in $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$

No evidence for CPV in either mode

Mixing in $D^0 \rightarrow K^+ \pi^- \pi^0$

- Use WS events and exploit interference to distinguish mixing events from DCS, as in $D^0 \rightarrow K^+\pi^-$but 3-body decay mode here.
- Study the variation along time of the *Dalitz plot* distribution of the events due to mixing.

RS and WS ($m_{\kappa\pi\pi^0}$, Δm) fits

$D^{0}(t) \rightarrow K^{+}\pi^{-}\pi^{0}$ (ws) Dalitz-mixing fit

Through t-dependence, distinguish DCS amplitudes from the CF amplitudes arising from mixing.

Mixing parameter results

Results are consistent with no mixing at 0.8%, including systematics

26 Nov 2007

BaBar D⁰-D ⁰ Mixing Summary

- Evidence for D^0 - D^0 mixing from BaBar experiment:
 - $D^0 \rightarrow K^+ \pi^- WS$ time-depedent analysis $x^{\prime 2} = (-0.022 \pm 0.030 \text{ (stat.)} \pm 0.010 \text{ (syst.)})\%$
 - $y' = (0.97 \pm 0.44 \text{ (stat.)} \pm 0.31 \text{ (syst.)})\%$
 - $D^0 \rightarrow K^- \pi^+ \text{to } D^0 \rightarrow K^+ K^-, \pi^+ \pi^- \text{lifetimes:}$ $y_{CP} = (1.24 \pm 0.39 \text{ (stat.)} \pm 0.13 \text{ (syst.)})\%$
 - $D^0 \rightarrow K^+ \pi^- \pi^0$ time-dependent Dalitz analysis:

 $x'' = (2.39 \pm 0.61 \text{ (stat.)} \pm 0.32 \text{ (syst.)})\%$ $y'' = (-0.14 \pm 0.60 \text{ (stat.)} \pm 0.40 \text{ (syst.)})\%$

In $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ decays,

no evidence for CP violation

 $a_{CP}^{KK} = (0.00 \pm 0.34 \text{ (stat.)} \pm 0.13 \text{ (syst.)})\%$ $a_{CP}^{\pi\pi} = (-0.24 \pm 0.52 \text{ (stat.)} \pm 0.22 \text{ (syst.)})\%$

- no evidence for CP violation in mixing:
 - $\Delta Y = (-0.26 \pm 0.36 \text{ (stat.)} \pm 0.08 \text{ (syst.)})\%$

No mixing excluded at 3.9σ

No mixing excluded at 3σ

Mixing: status of art

Towards a SuperB Factory

Table III Summary of the expected precision on charm mixing parameters. For comparison we put the reach of the *B* Factories at 2 ab^{-1} . The estimates for Super*B* assume that systematic uncertainties can be kept under control.

Mode		B Factories	$\mathrm{Super}B$
		(2 ab^{-1})	(75 ab^{-1})
$D^0 \to K^+ K^-$	y_{CP}	$2 - 3 \times 10^{-3}$	5×10^{-4}
$D^0 \to K^+ \pi^-$	y'_D	$2 - 3 \times 10^{-3}$	7×10^{-4}
	$x_D^{\prime 2}$	$1-2 \times 10^{-4}$	3×10^{-5}
$D^0 \to K^0_S \pi^+ \pi^-$	y_D	$2 - 3 \times 10^{-3}$	5×10^{-4}
	x_D	$2 - 3 \times 10^{-3}$	5×10^{-4}
Average	y_D	$1 - 2 \times 10^{-3}$	3×10^{-4}
	x_D	$2 - 3 \times 10^{-3}$	5×10^{-4}

Backup slides

$D^{0}(t) \rightarrow K^{+}\pi^{-}\pi^{0}$ Systematics

• Systematics: (describe main systematics here if there will be time). Expecially Dalitz model.

Syst.	x''/r_0	y''/r_0
Dalitz model	0.338	0.472
t resolution function	0.259	0.0621
Background model	0.55	0.464
Signal and Background yields	0.168	0.0132
Dalitz plot efficiency	0.0876	0.0794
Selection	0.391	0.287
Total	0.858	0.745