



# $D^0$ mixing in decays to CP eigenstates

## **Marko Starič**

J. Stefan Institute, Ljubljana, Slovenia

**26-27 November 2007**BBCB Joint WS, Beijing, China

- Introduction
- Measurement giving the first evidence for D mixing
- Prospects for future
- Conclusions

#### Introduction .



## Mixing

• Flavor eigenstates  $\neq$  mass eigenstates (with  $m_{1,2}$ ,  $\Gamma_{1,2}$ )

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$$

•  $D^0$  at t=0 evolves as:

$$|D^{0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\cosh(\frac{y + ix}{2}\Gamma t)|D^{0}\rangle + \frac{q}{p}\sinh(\frac{y + ix}{2}\Gamma t)|\overline{D}^{0}\rangle\right]$$

with

$$x = \frac{m_2 - m_1}{\Gamma} \qquad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

 $|x|, |y| \ll 1$ :

$$\frac{dN_{D^0 \to f}}{dt} \propto |\langle f|\mathcal{H}|D^0(t)\rangle|^2 = e^{-\Gamma t} |\langle f|\mathcal{H}|D^0\rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t)\langle f|\mathcal{H}|\overline{D}^0\rangle|^2$$

◆ Decay time distribution of different final states sensitive to different combinations of mixing parameters x and y.



## Decays to CP eigenstates \_\_\_



$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \left| \langle f | \mathcal{H} | D^0 \rangle + \frac{q}{p} \left( \frac{y + ix}{2} \Gamma t \right) \langle f | \mathcal{H} | \overline{D}{}^0 \rangle \right|^2$$

 $p/q = 1 \Rightarrow \mathsf{CP}$  conservation:

- $|D_{1,2}\rangle$  are CP-odd (1) and CP-even (2) eigenstates
  - $\triangleright$  with decays to CP eigenstates we measure  $\Gamma_1$  or  $\Gamma_2$
  - > time distribution is exactly exponential
- Decays to non-CP eigenstates ( $D^0 \to K^-\pi^+$  most suitable):
  - b time distribution is exponential only in the approximation
  - $\triangleright$  lifetime is  $\tau = 1/\Gamma$ ;  $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$
- Measurement of lifetime difference between decays to non-CP and CP eigenstates
  - mixing parameter:

$$y_{CP} = \frac{\tau(non - CP)}{\tau(CP)} - 1$$

$$\triangleright$$
 in CP conservation limit:  $y_{CP}=\pm y=(\Gamma_2-\Gamma_1)/2\Gamma$ 

⊳ sign depends on CP eigenvalue: CP-even (+), CP-odd (-)



## Decays to CP eigenstates \_



$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \left| \langle f | \mathcal{H} | D^0 \rangle + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}{}^0 \rangle \right|^2$$

## $p/q \neq 1 \Rightarrow \mathsf{CP}$ violation:

- Time distribution is exponential only approximately
  - > approximation very good, since mixing and CPV are small
- Difference also in lifetimes of  $D^0/\overline{D}{}^0 \to CP$ -eigenstates

With  $p/q = (1 + \frac{A_M}{2})e^{i\phi}$  and  $A_M, x, y \ll 1$ :

$$y_{CP} = (\pm y)\cos\phi - \frac{1}{2}A_M(\pm x)\sin\phi$$

$$A_{\Gamma} = \frac{1}{2} A_{M}(\pm y) \cos \phi - (\pm x) \sin \phi$$

- Notes:
  - > we assumed no direct CPV
  - $\triangleright$  we used phase convention  $CP|D^0\rangle=-|\overline{D}^0
    angle$



## Decays to CP eigenstates \_\_\_



## Some decays suitable for measurement

- Criteria:
  - branching fraction possibility to fit decay vertex (min. two charged tracks) narrow resonances (CP-odd decays)
- CP-even decays:

$$D^0 \to K^+ K^- \quad Br = 0.38\%$$
  
 $D^0 \to \pi^+ \pi^- \quad Br = 0.14\%$ 

◆ CP-odd decays:

$$D^0 \to K_s^0 \omega; \ \omega \to \pi^+ \pi^- \pi^0 \quad Br = 0.68\%$$
  
 $D^0 \to K_s^0 \phi; \ \phi \to K^+ K^- \quad Br = 0.15\%$ 

- Some drawbacks of CP-odd decays:
  - $\triangleright$  smaller efficiency ( $K_s^0$ ,  $\pi^0$  reconstruction)
  - > contribution of other resonances (interference!)
    - → different CP states; non-CP states
  - $\triangleright$  large differences in kinematics of particles used for vertex fit and  $K^-\pi^+$ 
    - → large differences in resolution functions



## Experimental method \_\_\_\_



- $D^{*+} \to \pi^+ D^0$ 
  - $\triangleright$  tag the flavor of  $D^0/\overline{D}{}^0$  at production
  - background suppression
- $D^0$  proper decay time t measurement:

$$t = \frac{l_{dec}}{c\beta\gamma} \; , \qquad \beta\gamma = \frac{p_{D^0}}{M_{D^0}}$$

 $\sigma_t$  ... decay-time uncertainty (from vtx cov. matrices)



Observables:

$$m = m(K\pi)$$
$$q = m(K\pi\pi_s) - m(K\pi) - m_{\pi}$$



$$p_{D^{*+}}^{CMS} > 2.5 \; GeV/c$$



## Belle measurement in $D^0 \to K^+K^-, \pi^+\pi^-$ (540 fb<sup>-1</sup>)



PRL 98, 211803 (2007)

#### **Event Selection**

- ullet Selection criteria optimized on tuned Monte Carlo figure of merit: statistical error on  $y_{CP}$
- ◆ Background estimated from sidebands in m
- Signal yields (purities)

| channel | KK   | $K\pi$ | $\pi\pi$ |
|---------|------|--------|----------|
| signal  | 110K | 1.2M   | 50K      |
| purity  | 98%  | 99%    | 92%      |









# Belle measurement in $D^0 \to K^+K^-, \pi^+\pi^-$ (540 fb<sup>-1</sup>)



#### Lifetime fit

Parametrization of proper decay time distribution

$$\frac{dN}{dt} = \frac{N}{\tau}e^{-t/\tau} * R(t) + B(t)$$

- Resolution function
  - $\triangleright$  constructed from normalized distribution of event proper time uncertainty  $\sigma_t$
  - $\triangleright$  ideally,  $\sigma_t$  of event represents uncertainty with Gaussian p.d.f
  - $\triangleright$  examining pulls  $\rightarrow$  p.d.f.=sum of 3 Gauss.

$$R(t) = \sum_{i=1}^{n} f_i \sum_{k=1}^{3} w_k G(t; \sigma_{ik}, t_0) , \quad \sigma_{ik} = s_k \sigma_k^{pull} \sigma_i$$

### $\sigma_t$ distribution for $D^0 \to K^-\pi^+$



• R(t) studied in detail with  $D^0 \to K\pi$  and special MC samples - also in changing running conditions (two different SVD, small misalignments)







## Simultaneous $KK/\pi\pi/K\pi$ binned likelihood fit

quality of fit:  $\chi^2 = 1.084$  (289)



 $D^0 \to K\pi$  lifetime very stable in slightly different running periods









#### Results

|               | y <sub>CP</sub> (%)      | $A_{\Gamma}$ (%)              |
|---------------|--------------------------|-------------------------------|
| KK            | $1.25 \pm 0.39 \pm 0.28$ | $0.15\pm0.34\pm0.16$          |
| $\pi\pi$      | $1.44\pm0.57\pm0.42$     | $-0.28 {\pm} 0.52 {\pm} 0.30$ |
| $KK + \pi\pi$ | $1.31\pm0.32\pm0.25$     | $0.01 {\pm} 0.30 {\pm} 0.15$  |

Evidence for  $D^0 - \overline{D}{}^0$  mixing (regardless of possible CPV)

$$y_{CP} = (1.31 \pm 0.32 \pm 0.25) \%$$

 $>3\sigma$  above zero (4.1 $\sigma$  stat. only)

$$A_{\Gamma} = (0.01 \pm 0.30 \pm 0.15) \%$$

no evidence for CP violation







## Prospects for $D^0 \to K^+K^-, \pi^+\pi^-$ (several ab<sup>-1</sup>)



## Systematics of Belle measurement (540 fb<sup>-1</sup>)

| source                                | $y_{CP}$ | $A_{\Gamma}$ | scales with  |
|---------------------------------------|----------|--------------|--------------|
| Acceptance                            | 0.12%    | 0.07%        | MC stat.     |
| Equal $t_0$ assumption                | 0.14%    | 0.08%        |              |
| M window position                     | 0.04%    | 0.003%       |              |
| Signal/sideband background difference | 0.09%    | 0.06%        | MC, RD stat. |
| Opening angle distributions           | 0.02%    |              | RD stat.     |
| Background statistical fluctuations   | 0.07%    | 0.07%        | RD stat.     |
| (A)symmetric resolution function      | 0.01%    | 0.01%        |              |
| Selection variation                   | 0.11%    | 0.05%        | RD stat.     |
| Binning of $t$ distribution           | 0.01%    | 0.01%        |              |
| Total                                 | 0.25%    | 0.15%        |              |

 $\triangleright$  Equal  $t_0$  assumption 0.14% equal to stat. error at 3 ab<sup>-1</sup>

 $\triangleright$  M window position 0.04% equal to stat. error at 35 ab<sup>-1</sup>

Systematics due to equal  $t_0$  assumption the only one critical



## Prospects for $D^0 \to K^+K^-, \pi^+\pi^-$ (several $ab^{-1}$ )



## Equal $t_0$ assumption

- $t_0$  = resolution function offset; assumed the same for  $K^+K^-$ ,  $K^-\pi^+$ ,  $\pi^+\pi^-$
- ♦ The widths of r.f. may differ slightly (free fit parameters)
- $\blacklozenge$  Ideally,  $t_0 = 0$
- ullet MC (ideal detector alignment) shows some small offsets ( $|t_0|/\tau \approx 0.2\%$ ), but are the same (consistent) for the three final states
- ♦ RD show larger offsets different in different running periods (up to 2% in both directions), but consistent between final states
- In one of the running period the resolution function was found to be also slightly asymmetric
- Asymmetric parametrization

$$R(t) = \sum_{i=1}^{n} f_i \sum_{k=1}^{3} w_k G(t; \sigma_{ik}, x_k) , \qquad \sigma_{ik} = s_k \sigma_k^{pull} \sigma_i$$

with

$$x_1 = t_0 - \frac{w_2}{w_1 + w_2} \Delta t$$
,  $x_2 = t_0 + \frac{w_1}{w_1 + w_2} \Delta t$ ,  $x_3 = t_0$ 

and free parameters:  $t_0$ ,  $\Delta t$ ,  $s_1$ ,  $s_2$ ,  $s_3$  (for symmetric:  $\Delta t = 0$ )







- ♦ By introducing small vertex detector misalignments (within the current alignment precision!) we were able to reproduce with MC the offsets and asymmetry seen in RD
- Example: enlarging the radius of the second superlayer by 15  $\mu$ m results in  $t_0/\tau=0.8\%$  and slightly asymmetric r.f.
- ♦ Note that current alignment precision satisfies completely the requirements needed for CPV measurements in B meson sector (much smaller statistics!)

#### To conclude:

- Detector resolution function and corresponding systematic uncertainties studied in details and well understood
- lacktriangle The systematics due to equal  $t_0$  assumption can be reduced by improving the alignment precision
- Systematic uncertainties seems will not be dominating the precision of  $y_{CP}$  and  $A_{\Gamma}$  measurements with several ab<sup>-1</sup> expected in the near future at Belle.



#### Conclusions



- lacktriangle Measurements of  $D^0$  mixing in decays to CP eigenstates discussed.
- CP-even final states  $(K^+K^-, \pi^+\pi^-)$  are more favourite than CP-odd.
- Evidence for  $D^0$  mixing found in decays to CP-even eigenstates  $K^+K^-, \pi^+\pi^-$

$$y_{CP} = 1.31 \pm 0.32 \pm 0.25 \% (3.2\sigma)$$

- CPV search: no evidence found.
- Prospects for future measurements also discussed; with improved vertex detector alignment precision, I think, systematics will not dominate the precision of measurement with an order-of-magnitude increased data statistics.





## Background

♦ A comparison of timing distributions

MC signal region background - MC side bands



DATA side bands - MC side bands



◆ Difference to result, if using background from tuned MC

$$KK = \pi\pi = KK + \pi\pi$$
 $\Delta y_{CP} = -0.10\% = +0.09\% = -0.04\%$ 





## Run periods

$$P(t) = \frac{1}{\tau}e^{-t/\tau} * R(t) \qquad \Rightarrow \qquad \langle t \rangle = \tau + t_0$$

- lacktriangledown By inspecting < t > of  $K\pi$ , four different running conditions clearly visible
- Attributed to small SVD misalignments

## "mean" of $K\pi$ timing distr.



#### fitted $K\pi$ lifetimes



fitted r.f. offsets







## Measured $y_{CP}$ versus run periods







 $\Rightarrow y_{CP}$  consistent between run periods





## Test for equal $t_0$ assumption for each of the run periods



 $\Rightarrow t_0$  is final state independent





### Fitted lifetimes of KK, $K\pi$ , $\pi\pi$

 $\bullet$  Results for  $t_0$  being free for each of the final states



⇒ lifetimes consistent between different run periods

|              | KK        | $K\pi$          | $\pi\pi$  |
|--------------|-----------|-----------------|-----------|
|              | 404.0±2.2 | $408.7 \pm 0.6$ | 402.8±3.3 |
| $\chi^2/ndf$ | 0.48      | 1.35            | 0.66      |

 $\Rightarrow$  lifetimes of KK and  $\pi\pi$  consistent (and smaller than  $K\pi$ )

$$y_{CP} = 1.25 \pm 0.48 \ \%$$
 (central value similar, error 50% larger)





#### Statistical method

- $y_{CP}$  and  $A_{\Gamma}$  can be determined from mean of the timing distributions (e.g. without fitting the data), and the error from r.m.s
- Assumptions:
  - timing distribution is a convolution of exponential with some resolution function + some background
  - > resolution function offsets of final states are the same and small

$$P(t) = p \frac{1}{\tau} e^{-t/\tau} * R_s(t) + (1-p)B(t) \quad \Rightarrow \quad \langle t \rangle = p(\tau + t_0) + (1-p) \langle t \rangle_b$$
$$\tau + t_0 = \frac{\langle t \rangle - (1-p) \langle t \rangle_b}{n} = \langle t \rangle_s$$

• In lifetime difference  $t_0$  cancels, thus if  $t_0 \ll \tau$ 

$$y_{CP} = \frac{\langle t \rangle_{K\pi} - \langle t \rangle_{KK}}{\langle t \rangle_{KK}}$$

Result with this method

$$y_{CP} = 1.35 \pm 0.33_{stat} \%$$