Rare and CP Correlated Charm Meson Decays

Results from CLEO-c
and
Opportunities for BES-III

Jim Napolitano, CLEO-c Collaboration
Rensselaer Polytechnic Institute, Troy, NY USA

CLEO-c

Rare Decays

Challenge to match physics goals against production rates and detection efficiencies. Two examples:

- Rare decay $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \Pi^{+} \Pi^{-} \mathrm{e}^{+} V_{\mathrm{e}}$

The "Last remaining semileptonic decay" according to Heavy Quark Effective Theory

See Phys Rev Lett 99(2007)I9180I

- Forbidden decays $\mathrm{D}^{+} \rightarrow \mathrm{h}^{ \pm} \mathrm{e}^{\mp} \mathrm{e}^{+}$

Physics beyond the Standard Model
See Phys Rev Lett 95(2005)22I802

$D^{0} \rightarrow K^{-} \Pi^{+} \Pi^{-} e^{+} V_{e}$

Heavy Quark Effective Theory (HQET) predicts that $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{I}}(\mathrm{I} 270) \mathrm{eV}$ e dominates decays to "excited" mesons

Clear signal, low background, but not very many events.

$\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} e^{+} \nu_{e}\right)=$
$\left[2.8_{-1.1}^{+1.4}(\right.$ stat $) \pm 0.3($ syst $\left.)\right] \times 10^{-4}$

$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \Pi^{+} \Pi^{-} \mathrm{e}^{+} \mathrm{V}_{\mathrm{e}}$

Heavy Quark Effective Theory (HQET) predicts that $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{I}}(\mathrm{I} 270) \mathrm{eV}$ e dominates decays to "excited" mesons

Clear signal, low background, but not very many events.

$\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} e^{+} \nu_{e}\right)=$
$\left[2.8_{-1.1}^{+1.4}(\right.$ stat $) \pm 0.3($ syst $\left.)\right] \times 10^{-4}$

$\mathrm{D}^{+} \rightarrow \mathrm{h}^{ \pm} \mathrm{e}^{\mp} \mathrm{e}^{+}$

Well-known windows "beyond the Standard Model" from Flavor Changing Neutral Currents \& Lepton Number Violation

CP Correlations

Exploit unique properties of production mechanism

$$
e^{+} e^{-} \rightarrow \psi(3770) \rightarrow\left(D^{0} \bar{D}^{0}\right)_{\ell=1}
$$

Examples:

- Observation of CP Correlations
- Dalitz Plot structure of $\mathrm{D}^{0} \rightarrow K s \pi^{+} \Pi^{-}$

Application to $C P$ violation in $B \rightarrow D K$

- Charm mixing and CP violation

Analyses in progress at CLEO-c
Opportunities for BES III

The Essential Point

Interference of amplitudes comes "for free" when we integrate decay rate over all times.
$\psi(3770)$ has $C P=+l$, and then so does $\left(D^{0} \bar{D}^{0}\right)_{\ell=1}$
\Rightarrow Must have $C P\left(\bar{D}^{0}\right)=-C P\left(D^{0}\right)$
(assuming there is no CP violation)
Also: Flavor must be anti-correlated, but "wrong sign" flavor can enter through double Cabibbo suppression and charm mixing.

Observation of CP Correlations

"Wrong" CP consistent with zero, but...
...it "doubles up" when it should!

Flavor appears unaffected, and is in fact small.

Yield / Prediction with no CP Correlation

Exploit with "tag side" D"

Example: CP odd

Exploit with "tag side" D"

Example: CP odd

Example: CP even

Exploit with "tag side" D"

Example: CP odd

Example: CP even

Example: Flavor

Exploit with "tag side" D"

Example: CP odd

Example: CP even

Example: Flavor

Also semileptonic tags for "pure" flavor, as well as many other decay CP eigenstates

Dalitz Plot structure of $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \Pi^{+} \pi^{-}$

Interesting mode: Flavor and CP content depends on the position of the decay in phase space.

$$
\text { e.g. }\left(K^{*}\right)^{-} \Pi^{+} \text {is "charm" but } K s \rho \text { is " } C P=-I \text { " }
$$

Dalitz Plot structure of $\mathrm{D}^{0} \rightarrow \mathrm{~K} s \Pi^{+} \Pi^{-}$

Interesting mode: Flavor and CP content depends on the position of the decay in phase space.

$$
\text { e.g. }\left(K^{*}\right)^{-} \Pi^{+} \text {is "charm" but } K_{s} \rho \text { is " } C P=-l \text { " }
$$

Useful "application": Determine γ / φ_{3} from $B \rightarrow D K$

Example \#I: Model Dependent Approach

 $e^{+} e^{-} \rightarrow\left(K_{\mathrm{S}} \pi^{+} \pi^{-}\right)\left(K_{\mathrm{S}} \pi^{+} \pi^{-}\right) \begin{aligned} & \text { Two "large" } \\ & \text { branching ratios }\end{aligned}$

Example \#I: Model Dependent Approach

 $e^{+} e^{-} \rightarrow\left(K_{\mathrm{S}} \pi^{+} \pi^{-}\right)\left(K_{\mathrm{S}} \pi^{+} \pi^{-}\right) \begin{aligned} & \text { Two "large" } \\ & \text { branching ratios }\end{aligned}$

Fit to the "double Dalitz" plot with correlations.

$\mathrm{M}^{2}\left(\mathrm{Ks}^{+}{ }^{+}\right)$

$M^{2}\left(\Pi^{+} \pi^{-}\right)$

Analysis in progress.

Example \#2: Model Independent Approach

 See E.White, Q. He, et al, arXiv:07I I. 2285 (Charm 2007)

Example \#2: Model Independent Approach

 See E.White, Q. He, et al, arXiv:07I I. 2285 (Charm 2007)

Symmetric binning by phase.

Tag Mode	$K_{S} \pi^{+} \pi^{-}$	$K_{L} \pi^{+} \pi^{-}$
$K^{+} K^{-}$	61	194
$\pi^{+} \pi^{-}$	33	90
$K_{S} \pi^{0}$	108	263
$K_{S} \eta$	29	21
$K_{L} \pi^{0}$	190	-

Events for $398 \mathrm{pb}^{-1}$

Example \#2: Model Independent Approach

 See E.White, Q. He, et al, arXiv:07 I I. 2285 (Charm 2007)

Symmetric binning by phase.

Tag Mode	$K_{S} \pi^{+} \pi^{-}$	$K_{L} \pi^{+} \pi^{-}$
$K^{+} K^{-}$	61	194
$\pi^{+} \pi^{-}$	33	90
$K_{S} \pi^{0}$	108	263
$K_{S} \eta$	29	21
$K_{L} \pi^{0}$	190	-

Events for
$398 \mathrm{pb}^{-1}$

Charm Mixing and CP violation

$$
\begin{aligned}
& x=\frac{\Delta M}{\Gamma} \quad y=\frac{\Delta \Gamma}{2 \Gamma} \quad \begin{array}{l}
\text { Standard mixing } \\
\text { parameters }
\end{array} \\
& \frac{\left\langle K^{-} \pi^{+} \mid \bar{D}^{0}\right\rangle}{\left\langle K^{-} \pi^{+} \mid D^{0}\right\rangle}=-r e^{-i \delta} \quad \begin{array}{l}
\text { "Strong phase" } \\
\begin{array}{l}
\text { First measurement } \\
\text { from CLEO-c }
\end{array} \\
x^{\prime=}=x \cos \delta+y \sin \delta \\
y^{\prime=}=-x \sin \delta+y \cos \delta
\end{array}
\end{aligned}
$$

Formalism

See:Asner \& Sun, Phys.Rev. D73(2006)034024 (Recently updated on arXiv as hep/ph:0507238v3)

$$
\begin{aligned}
\Gamma^{C-}(j, k) & =Q_{M}\left|A^{(-)}(j, k)\right|^{2}+R_{M}\left|B^{(-)}(j, k)\right|^{2} \\
\Gamma^{C+}(j, k) & =Q_{M}^{\prime}\left|A^{(+)}(j, k)\right|^{2}+R_{M}^{\prime}\left|B^{(+)}(j, k)\right|^{2}+C^{(+)}(j, k) \\
A^{(\pm)}(j, k) & \equiv\left\langle j \mid D^{0}\right\rangle\left\langle k \mid \bar{D}^{0}\right\rangle \pm\left\langle j \mid \bar{D}^{0}\right\rangle\left\langle k \mid D^{0}\right\rangle \\
B^{(\pm)}(j, k) & \equiv \frac{p}{q}\left\langle j \mid D^{0}\right\rangle\left\langle k \mid D^{0}\right\rangle \pm \frac{q}{p}\left\langle j \mid \bar{D}^{0}\right\rangle\left\langle k \mid \bar{D}^{0}\right\rangle \\
C^{(+)}(j, k) & \equiv 2 \Re\left\{A^{(+) *}(j, k) B^{(+)}(j, k)\left[\frac{y}{\left(1-y^{2}\right)^{2}}+\frac{i x}{\left(1+x^{2}\right)^{2}}\right]\right\}
\end{aligned}
$$

Formalism

See:Asner \& Sun, Phys.Rev. D73(2006)034024 (Recently updated on arXiv as hep/ph:0507238v3)

$$
\begin{aligned}
& \Gamma^{C-}(j, k)=Q_{M}\left|A^{(-)}(j, k)\right|^{2}+R_{M}\left|B^{(-)}(j, k)\right|^{2} \\
& \Gamma^{C+}(j, k)=Q_{M}^{\prime}\left|A^{(+)}(j, k)\right|^{2}+\left.\left|R_{M}^{\prime}\right| B^{(+)}(j, k)\right|^{2}+C^{(+)}(j, k), \\
& \text { Charm Mixing }
\end{aligned}
$$

$$
\begin{aligned}
A^{(\pm)}(j, k) & \equiv\left\langle j \mid D^{0}\right\rangle\left\langle k \mid \bar{D}^{0}\right\rangle \pm\left\langle j \mid \bar{D}^{0}\right\rangle\left\langle k \mid D^{0}\right\rangle \\
B^{(\pm)}(j, k) & \equiv \frac{p}{q}\left\langle j \mid D^{0}\right\rangle\left\langle k \mid D^{0}\right\rangle \pm \frac{q}{p}\left\langle j \mid \bar{D}^{0}\right\rangle\left\langle k \mid \bar{D}^{0}\right\rangle \\
C^{(+)}(j, k) & \equiv 2 \Re\left\{A^{(+) *}(j, k) B^{(+)}(j, k)\left[\frac{y}{\left(1-y^{2}\right)^{2}}+\frac{i x}{\left(1+x^{2}\right)^{2}}\right]\right\}
\end{aligned}
$$

Formalism

See:Asner \& Sun, Phys.Rev. D73(2006)034024 (Recently updated on arXiv as hep/ph:0507238v3)

$$
\begin{aligned}
& \Gamma^{C-}(j, k)=Q_{M}\left|A^{(-)}(j, k)\right|^{2}+R_{M}\left|B^{(-)}(j, k)\right|^{2} \\
& \Gamma^{C+}(j, k)=Q_{M}^{\prime}\left|A^{(+)}(j, k)\right|^{2}+\left.\left|R_{M}^{\prime}\right| B^{(+)}(j, k)\right|^{2}+C^{(+)}(j, k), \\
& \text { Charm Mixing }
\end{aligned}
$$

$$
\begin{aligned}
& A^{(\pm)}(j, k) \equiv\left\langle D^{0}\right\rangle\left\langle k \mid \bar{D}^{0}\right\rangle \pm\left\langle j \mid \bar{D}^{0}\right\rangle\left\langle k \mid D^{0}\right\rangle \\
& B^{(\pm)}(j, k)=\frac{p}{q}\left\langle\left\langle\mid D^{0}\right\rangle\left\langle k \mid D^{0}\right\rangle \pm \frac{q}{p}\left\langle\left\langle\mid \overline{D^{0}}\right\rangle\left\langle k \mid \overline{D^{0}}\right\rangle\right.\right. \\
& C^{(+)}(j, k) \equiv 2\left\{\left\{A^{(+) *}(j, k) B^{(+)}(j, k)\left[\frac{y}{\left(1-y^{2}\right)^{2}}+\frac{i x}{\left(1+x^{2}\right)^{2}}\right]\right\}\right. \\
& \text { CPViolation }
\end{aligned}
$$

Preliminary Results

See W. Sun, Charm 2007

Preliminary Results

See W. Sun, Charm 2007

\section*{Quantity Standard Fit Extended Fit | $N\left(10^{6}\right)$ | $1.046 \pm 0.019 \pm 0.013$ | $1.044 \pm 0.019 \pm 0.012$ |
| :--- | :--- | :--- |
| | $1.03 \pm 0.19 \pm 0.08$ | $0.93 \pm 0.32 \pm 0.0$ | $\cos \delta \quad 1.03 \pm 0.19 \pm 0.08$ $0.93 \pm 0.32 \pm 0.04$}

Conclusions and Outlook

Many more results are yet to come from CLEO-c. Stay tuned.

The opportunities for BES-III are tremendous. Unique windows on charm mixing and possible physics beyond the Standard Model.

Thank you!

