

Measurements of \overline{D}^0 - D^0 mixing and searches for *CPV*: HFAG combination of all data

Alan Schwartz University of Cincinnati

BES-Belle-CLEO-BaBar Joint Workshop on Charm Physics IHEP, Beijing November 26th, 2007

the HFAG charm group
 D⁰ meson mixing
 old and new measurements
 combining all results assuming no *CPV* combining all results allowing for *CPV*

http://www.slac.stanford.edu/xorg/hfag/charm/index.html

HFAG charm group http://www.slac.stanford.edu/xorg/hfag/charm/index.html

Began fall 2006 with representatives from relevant experiments:

- **BABAR** *Milind Purohit* (+E791), *Brian Petersen*
- **BELLE** Bostjan Golob, Alan Schwartz
- BES Changzheng Yuan
- CDF Mark Mattson
- **CLEO-c** Lawrence Gibbons, David Asner
- **D0** Brendan Casey
- FOCUS Daniele Pedrini

Although the "youngest" HFAG group, now one of the largest

Neutral meson mixing I:

$$\begin{array}{c|c} c & & u \\ \hline d,s,b & & u \\ \hline u & \hline d,\overline{s},\overline{b} & & \overline{c} \end{array}$$

Flavor eigenstates are not mass eigenstates:

$$irac{\partial}{\partial t}\left(egin{array}{c} |D^0
angle \ |\overline{D}{}^0
angle
ight) = \left(\mathrm{M} - rac{i}{2}\Gamma
ight) \left(egin{array}{c} |D^0
angle \ |\overline{D}{}^0
angle
ight)$$

$$\begin{split} |D_1\rangle &= p|D^0\rangle + q|\overline{D}^0\rangle & |D_1(t)\rangle &= |D_1\rangle e^{-(\Gamma_1/2 + im_1)t} \\ |D_2\rangle &= p|D^0\rangle - q|\overline{D}^0\rangle & |D_2(t)\rangle &= |D_2\rangle e^{-(\Gamma_2/2 + im_2)t} \\ |D^0\rangle &= \frac{1}{2p} \left(|D_1\rangle + |D_2\rangle\right) & |\overline{D}^0\rangle &= \frac{1}{2q} \left(|D_1\rangle - |D_2\rangle\right) \\ |D^0(t)\rangle &= e^{-(\overline{\Gamma}/2 + i\overline{m})t} \left\{ \cosh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|D^0\rangle + \left(\frac{q}{p}\right) \sinh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|\overline{D}^0\rangle \right\} \\ |\overline{D}^0(t)\rangle &= e^{-(\overline{\Gamma}/2 + i\overline{m})t} \left\{ \left(\frac{p}{q}\right) \sinh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|D^0\rangle + \cosh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|\overline{D}^0\rangle \right\} \\ \overline{m} &\equiv \frac{1}{2} \left(m_1 + m_2\right) \qquad \overline{\Gamma} \equiv \frac{1}{2} \left(\Gamma_1 + \Gamma_2\right) \qquad \Delta m \equiv m_2 - m_1 \qquad \Delta\gamma \equiv \Gamma_2 - \Gamma_1 \end{split}$$

A. J. Schwartz

Neutral meson mixing II

$$egin{aligned} &\langle f|H|D^0(t)
angle \ = \ e^{-(\overline{\Gamma}/2+i\overline{m})\,t}\,\left\{\cosh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f+\left(rac{q}{p}
ight)\sinh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\bar{\mathcal{A}}_f
ight\}\ &\langle ar{f}|H|\overline{D}{}^0(t)
angle \ = \ e^{-(\overline{\Gamma}/2+i\overline{m})\,t}\,\left\{\left(rac{p}{q}
ight)\sinh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_{ar{f}}+\cosh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\bar{\mathcal{A}}_{ar{f}}
ight\}\ &\mathcal{A}_f\ \equiv \ \langle f|H|D^0
angle \ &ar{\mathcal{A}}_f\ \equiv \ \langle f|H|\overline{D}{}^0
angle\ &ar{\mathcal{A}}_{ar{f}}\ &ar{f}\ &ar{$$

Since $\Delta m t \ll 1$ and $\Delta \gamma t \ll 1$, expand $\cos(\Delta m t)$, $\cosh(\Delta \gamma/2)t$, $\sin(\Delta m t)$, $\sinh(\Delta \gamma/2)t$:

$$\begin{split} R(D^0(t) \to f) &\propto e^{-\overline{\Gamma}t} \left\{ 1 + \left[y \operatorname{Re}(\lambda) - x \operatorname{Im}(\lambda) \right] (\overline{\Gamma}t) + |\lambda|^2 \frac{(x^2 + y^2)}{4} (\overline{\Gamma}t)^2 \right\} \\ R(\overline{D}^0(t) \to \overline{f}) &\propto e^{-\overline{\Gamma}t} \left\{ 1 + \left[y \operatorname{Re}(\overline{\lambda}) - x \operatorname{Im}(\overline{\lambda}) \right] (\overline{\Gamma}t) + |\overline{\lambda}|^2 \frac{(x^2 + y^2)}{4} (\overline{\Gamma}t)^2 \right\} \end{split}$$

A. J. Schwartz

D⁰ mixing measurements

• Wrong-sign semileptonic $D^0(t) \rightarrow K^+l^-\nu$ decays measures x^2+y^2 , no *DCS* contamination

Wrong-sign hadronic $D^{0}(t) \rightarrow K^{+}\pi^{-}$ decays measures $x' = x \cos \delta + y \sin \delta$, $y'=y \cos \delta -x \sin \delta$, where δ is a strong phase difference, and R_{D}

Decays to *CP* eigenstates: $D^0(t) \rightarrow K^+K^-, \pi^+\pi^$ measures $y \cos\phi$ and $x \sin\phi$, where ϕ is a weak phase difference

Dalitz plot analysis of $D^0(t) \rightarrow K^0 \pi^+ \pi^-$ decays measures *x*, *y*, |q/p|, and ϕ

CHARM'07

CLEO*c*

- Wrong-sign hadronic $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$, $K^+\pi^-\pi^0$ decays measures x^2+y^2 , x, y
- Quantum correlations in $e^+e^- \rightarrow D^0 \overline{D^0}(n\pi^0), D^0 \overline{D^0}\gamma(n\pi^0)$ measures $R_M, y, R_D, \cos\delta$

HFAG references I

$D^0(t) \rightarrow K^+ l^- v$

- * E. M. Aitala et al. (E791 Collab.), Phys. Rev. Lett. 77, 2384 (1996).
- * C. Cawlfield et al. (CLEO Collab.), Phys. Rev. D 71, 077101 (2005).
- * U. Bitenc et al. (Belle Collab.), Phys. Rev. D 72, 071101 (2005).
- * B. Aubert et al. (BaBar Collab.), arXiv:0705.0704 (submitted to Phys. Rev. D).

not used (superseded):

* B. Aubert et al. (BaBar Collab.), Phys. Rev. D 70, 091102 (2004).

$D^0(t) \rightarrow K^+ \pi^-$

- * E. M. Aitala et al. (E791 Collab.), Phys. Rev. D 57, 13 (1998).
- * R. Godang et al. (CLEO Collab.), Phys. Rev. Lett. 84, 5038 (2000).
- * J. M. Link et al. (E831 FOCUS Collab.), Phys. Lett. B 618, 23 (2005).
- * L. M. Zhang et al. (Belle Collab.), Phys. Rev. Lett. 96, 151801 (2006).
- * A. Abulencia et al. (CDF Collab.), Phys. Rev. D 74, 031109(R) (2006).
- * B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 98, 211802 (2007).

not used (low statistics/superseded/no preprint):

- * J. C. Anjos et al. (E691 Collab.), Phys. Rev. Lett. 60, 1239 (1988).
- * D. Cinabro et al. (CLEO Collab.), Phys. Rev. Lett. 72, 1406 (1994).
- * R. Barate et al. (ALEPH Collab.), Phys. Lett. B 436, 211 (1998).
- * J. M. Link et al. (E831 FOCUS Collab.), Phys. Rev. Lett. 86, 2955 (2001).
- * J. Li et al. (Belle Collab.), Phys. Rev. Lett. 94, 071801 (2005).
- * B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 91, 171801 (2003).
- * K. Tollefson (CDF Collab.), presented at LP'07, Daegu, S. Korea, 13 August 2007.

HFAG references II http://www.slac.stanford.edu/xorg/hfag/charm/index.html

$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-, K^+ \pi^- \pi^0$

- * X. C. Tian et al. (Belle Collab.), Phys. Rev. Lett. 95, 231801 (2005).
- * B. Aubert et al. (BaBar Collab.), hep-ex/0607090 (unpublished).
- * W. Lockman (BaBar Collab.), presented at LP'07, Daegu, S. Korea, 13 August 2007.

not used (low statistics/superseded):

- * E. M. Aitala et al. (E791 Collab.), Phys. Rev. D 57, 13 (1998).
- * G. Brandenburg et al. (CLEO Collab.), Phys. Rev. Lett. 87, 071802 (2001).
- * S. A. Dytman et al. (CLEO Collab.), Phys. Rev. D 64, 111101 (2001).
- * B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 97, 221803 (2006).

$D^0(t) \rightarrow K^+ K^-, \pi^+ \pi^-$

- * E. M. Aitala et al. (E791 Collab.), Phys. Rev. Lett. 83, 32 (1999).
- * J. M. Link et al. (E831 FOCUS Collab.), Phys. Lett. B 485, 62 (2000).
- * S. E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).
- * K. Abe et al. (Belle Collab.), Phys. Rev. Lett. 88, 162001 (2002).
- * M. Staric et al. (Belle Collab.), Phys. Rev. Lett. 98, 211803 (2007).
- * W. Lockman (BaBar Collab.), presented at LP'07, Daegu, S. Korea, 13 August 2007.

not used (superseded):

- * K. Abe et al. (Belle Collab.), hep-ex/0308034 (unpublished).
- * B. Aubert et al. (BaBar Collab.), Phys. Rev. Lett. 91, 121801 (2003).

HFAG references III http://www.slac.stanford.edu/xorg/hfag/charm/index.html

Dalitz plot analysis of $D^0(t) \rightarrow K^0 \pi^+ \pi^-$ decays

* D. M. Asner et al. (CLEO Collab.), Phys. Rev. D 72, 012001 (2005). (hep-ex/0503045 revised April 2, 2007)

* L. M. Zhang et al. (Belle Collab.), Phys. Rev. Lett. 99, 131803 (2007).

$e^+e^- \rightarrow \psi(3770) \rightarrow D^0 D^0(n\pi^0), D^0 D^0 \gamma(n\pi^0)$

* W. Sun (CLEO Collab.), presented at Charm'07 Workshop, Cornell University, 5 August 2007.

not used (superseded):

* D. M. Asner et al. (CLEO Collab.), Int. J. Mod. Phys. A21 5456 (2006).

HFAG combination of all results

Two methods:

- (1) convert all measurements to log(likelihood) functions in a 3-dimensional space of (x, y, δ) . Add all log(likelihood) functions together. Final likelihood function can be projected onto axes to give (conservative) confidence intervals.
 - ADVANTAGE: correlations and non-Gaussian errors are automatically accounted for
 - **DISADVANTAGE:** must obtain log(likelihood) function from experiments. Binning will be different \Rightarrow requires interpolation.
- (2) do MINUIT fit of 8 parameters $(x, y, \delta, R_D, A_D, |q/p|, \phi, \delta_2)$ to 26 observables. ADVANTAGE: uses published measurements; easy to include/exclude *CPV*
 - **DISADVANTAGE:** must obtain correlation matrix from experiments. Does not account for non-Gaussian errors.

A. J. Schwartz

HFAG input values I:

	Index	Observable	Value		So	urce		
\mathbf{V} $\mathbf{V}^+\mathbf{V}^-/\mathbf{\sigma}^+\mathbf{\sigma}^-$	1	У СР	(1.234 ± 0.275)%	World avera	age (COMBOS co π ⁺ π ⁻	mbination) of D results	$0^0 \rightarrow K^+ K^- /$	
\rightarrow A A / π π	2	Α _Γ	(0.123 ± 0.248)%	World average (COMBOS combination) of $D^0 \rightarrow K^+ = \pi^+ \pi^-$ tesults				
$K^0_{\ S}\pi^+\pi^-$	(3-5) 6	x (no CPV) y (no CPV) lq/pl (no dCPV) Arg(q/p)=\$ (no dCPV) x y lq/pl \$	$\begin{array}{c} (0.811 \pm \\ 0.334)\% \\ (0.309 \pm \\ 0.281)\% \\ 0.95 \pm \\ 0.22 + 0.10 \\ -0.09 \\ (-0.035 \pm \\ 0.19 \pm \\ 0.09) \\ tadians \\ (0.81 \pm \\ 0.09) \\ tadians \\ (0.81 \pm \\ 0.09) \\ tadians \\ (0.37 \pm \\ 0.25 + 0.10 \\ -0.15)\% \\ 0.86 \pm \\ 0.30 + 0.10 \\ -0.09 \\ (-0.244 \pm \\ 0.31 \pm \\ 0.09) \\ tadians \\ \end{array}$	No CPV: CPV-all 1 -0.007 -0.255α +0.216 (Note: α =	World average (C → K ⁰ π ⁺ lowed: Belle D ^C cottelation -0.007 1 -0.019α -0.280 : (lq/p+1) ² /2 is a v	COMBOS combin π^- tesults $p \to K^0 \ s \pi^+ \pi$ coefficients: -0.255α -0.019α 1 -0.128α variable transform	nation) of D ⁰ - tesults; +0.216 -0.280 -0.128α 1 nation factor)	
$D^0 \rightarrow K^+ l^- v$	7	R _M	(0.0173 ± 0.0387)%	World aver	age (COMBOS co tes	ombination) of I sults	$0^0 \rightarrow K^+ l^- \gamma$	

10

HFAG input values II:

			(2 39 +					
	8	x"	0.61 ± 0.32)%	BaBar K	2+π-π	0 tesult; c -0.34	orrelation coef	fficient =
$\sum D^{*} \to \mathbf{K}^{*} \pi^{*} \pi^{*}$		у"	(−0.14 ± 0.60 ± 0.40)%	Note: x"=	x cos θ" +	y sin θ",	y" = y cosθ"	— x sin θ".
${\displaystyle \sum^{\bullet}} \hspace{0.1 cm} D^{0} {\displaystyle ightarrow} \hspace{0.1 cm} K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \hspace{0.1 cm} \pi^{\scriptscriptstyle +} \hspace{0.1 cm} \pi^{\scriptscriptstyle -} \hspace{0.1 cm} $	9	R _M	(0.019 ± 0.0161)%	BaBar $K^+ \pi^- \pi^+ \pi^-$ tesult				
			(0.199 ± 0.173 ± 0)%	CLEOc	Ψ(377 0)	r e sults; co	orrelation coef	ficients:
IFO		R _M	(-5.207± 5.571±	1	-0.06	44	0.0072	0.0607
$(3770) \rightarrow D^0 D^0 (n\pi^0).$	10	у	2.737)%	-0.0644	1		-0.3172	-0.8331
$D^0 D^0 \gamma(n\pi^0)$		r cos δ	1.739 ± 0.938)%	0.0072	-0.31	72	1	+0.3893
			(8.878 ± 3.369 ± 1.579)%	0.0607	-0.83	31	+0.3893	1
		Rp	(0.303 ± 0.0189)%	BaBar	K ⁺ π ⁻ to	esults; coi	rtelation coeff	icients:
	11		(-0.024 ±		1	+0.77	-0.87	
N .		x	0.052)%		+0.77	1	-0.94	
$D^0 \!$,	(0.98 ± 0.782)%		-0.87	-0.94	1	
		An	(-2.1 ± 5.4)%					
	12	x ^{, 2} -	(-0.020± 0.050)%	BaBat K+	π - tesul	ts; correla above	tion coefficier	its same as
		y' -	(0.96 +					

13	R _D x ^{+ 2+} y ⁺	(0.364 ± 0.018)% (0.032 ± 0.037)% (-0.12 ± 0.58)%		Belle +0 -0	K ⁺ π ⁻ τ 1).655).834	results; cottela +0.655 1 -0.909	tion coefficients: -0.834 -0.909 1	
14	A p x' ²⁻ y' -	(2.3 ± 4.7)% (0.006 ± 0.034)% (0.20 ± 0.54)%	Belle	Κ+ π -	results;	cotrelation cos	fficients same as ab	ove.

HFAG world average values:

We also calculate WORLD AVERAGE values of mixing parameters using the COMBOS program. We appy this to similar measurements from different experiments:

TO BE UPDATED:

A. J. Schwartz

HFAG method #1: combining likelihood functions

In $\mathcal{L}(\mathsf{R}_{D'}, \mathbf{x'}^{2}, \mathbf{y'})$ for $D^{0}(t) \rightarrow K^{+}\pi^{-}$ measurements:

- project onto (x'², y') plane by allowing R_D to always take its preferred value
- map likelihood values to (x,y,δ) volume
- project onto (x,y) plane by allowing δ to always take its preferred value:

Adding –2In \angle functions from $K^{+}\pi^{-}$, semileptonic decays, $K_{s}\pi^{+}\pi^{-}$, y_{CP} , $K^{+}\pi^{-}\pi^{0}$, $K^{+}\pi^{-}\pi^{+}\pi^{-}$, ψ (3770):

–**2 In** ⊥

A. J. Schwartz

HFAG method #2: MINUIT fit

Do global MINUIT fit: 8 parameters (x, y, δ , δ_2 , R_D , A_D , |q/p|, φ), 26 observables:

$$\begin{split} R_M &= \frac{1}{2}(x^2 + y^2) \\ 2y_{CP} &= \left(|q/p| + |p/q| \right) y \cos \phi - \left(|q/p| - |p/q| \right) x \sin \phi \\ 2A_{\Gamma} &= \left(|q/p| - |p/q| \right) y \cos \phi - \left(|q/p| + |p/q| \right) x \sin \phi \\ x_{K^0 \pi \pi} &= x \\ y_{K^0 \pi \pi} &= y \\ |q/p|_{K^0 \pi \pi} &= |q/p| \\ \operatorname{Arg} (q/p)_{K^0 \pi \pi} &= \phi \\ \end{split}$$
$$\begin{aligned} x'^{\pm} &= \left(\frac{1 \pm A_M}{1 \mp A_M} \right)^{1/4} (x' \cos \phi \pm y' \sin \phi) \qquad A_M &= \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2} \\ y'^{\pm} &= \left(\frac{1 \pm A_M}{1 \mp A_M} \right)^{1/4} (y' \cos \phi \mp x' \sin \phi) \qquad \left(\begin{array}{c} x' \\ y' \end{array} \right) = \left(\begin{array}{c} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) \\ \frac{1}{2} \left[R(D^0 \to K^+ \pi^-) + \overline{R}(\overline{D}{}^0 \to K^- \pi^+) \right] &= R_D \\ \frac{R(D^0 \to K^+ \pi^-) + \overline{R}(\overline{D}{}^0 \to K^- \pi^+)}{R(D^0 \to K^- \pi^+)} &= A_D \end{split}$$

A. J. Schwartz

HFAG method #2: MINUIT fit

FCN= 24.43161 FROM MINOS STATUS=SUCCESSFUL 2127 CALLS 150920 TOTAL EDM= 0.26E-05 STRATEGY=1 ERROR MATRIX UNCERTAINTY= 4.4%

EXT	PARAMETE	R	PARABOLIC	MINOS EI	RORS
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE
1	Х	0.95990 %	0.24840	-0.28459	0.27081 %
2	у	0.81043 %	0.18261	-0.18719	0.18254 %
3	delta	0.41333 ra	d 0.19682	-0.21706	0.20009 rad
4	rd	0.33468 %	0.0061084	-0.0093041	0.0092887 %
5	ad	-2.2165	2.3845	-2.4993	2.4876
6	qovp	0.85944	0.16656	-0.14889	0.17661
7	phi	-0.16410	0.15085	-0.16173	0.14231
8	delta2	0.59056 ra	d0.43650	-0.44818	0.43464 rad

NO DIRECT CPV:

EXT	PARAMETE	R	PARABOLIC	MINOS EF	RORS
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE
1	Х	0.96523 %	0.27871	-0.28553	0.27196 %
2	у	0.81941 •⁄	0.18589	-0.18754	0.18416 %
3	delta	0.44107 r	ad 0.20435	-0.21628	0.20215 rad
4	rd	0.33462 %	0.0092147	-0.0092496	0.0091855 %
5	ad	0.0000	fixed		
6	qovp	0.94615	0.14159	-0.13438	0.14883
7	phi	-0.046634	0.094019	-0.099127	0.092676
8	delta2	0.59479 ra	a d 0.43535	-0.44674	0.43337 rad

Observable		χ ²	$\Sigma \chi^2$
f[y_CP] =	2.66	2.66
f[A_Gamma] =	0.12	2.78
f[x(K0p+p-)] =	0.19	2.97
f[y(K0p+p-)] =	2.26	5.23
f[q/p (K0p+p-)] =	0.00	5.23
f[Arg(q/p) (K0p+p-)] =	0.53	5.76
f[R_M(semilept)] =	0.06	5.82
f[x(K+p-p0)] =	1.04	6.86
f[y(K+p-p0)] =	1.74	8.60
f[RM/ysq/rsq/rcd (p	si_3770	0)] = 5.64	14.24
f[K+pi- BaBar+] =	2.55	16.79
f[K+pi- BaBar-] =	1.77	18.55
f[K+pi- Belle+] =	3.97	22.52
f[K+pi- Belle-] =	1.44	23.96
f[R_M(K+p-p+p-)] =	0.48	24.43

A. J. Schwartz

HFAG 2-dim. likelihood plots (MNCONTOUR-like):

HFAG 1-dim. likelihood curves (MNCONTOUR-like):

A. J. Schwartz

Summary

All data [semileptonic decays, $K^{+}\pi^{-}$, $K_{s}\pi\pi$, y_{cP} , $K^{+}\pi^{-}\pi^{0}$, $K^{+}\pi^{-}\pi^{+}\pi^{-}$, ψ (3770)]:

y projection

Conclusions:

Evidence is consistent and convincing that D° 's mix; effect is dominated by non-perturbative processes. Unless |x| >> |y|, may be hard to identify new physics.

Since y_{CP} is positive, CP-odd state is longer-lived (like other neutral meson systems); but positive x/y implies CP-odd is lighter (unlike K⁰ system)

No evidence yet for CPV (a true sign of NP)

A. J. Schwartz

Belle $D^0(t) \rightarrow K^+\pi^-$ allowing for CPV (400 fb⁻¹)

$$\begin{split} \lambda \ &= \left(\frac{q}{p}\right) \frac{\overline{\mathcal{A}}_{f}}{\mathcal{A}_{f}} \ &= \left|\frac{q}{p}\right| \sqrt{R_{D}} e^{i(\phi+\delta)} & \bar{\lambda} \ &= \left(\frac{p}{q}\right) \frac{\mathcal{A}_{\bar{f}}}{\overline{\mathcal{A}}_{\bar{f}}} \ &= \left|\frac{p}{q}\right| \sqrt{\overline{R}_{D}} e^{i(-\phi+\delta)} \\ R_{D^{0} \to f} \ &\propto e^{-\overline{\Gamma} t} \left\{ R_{D} + \sqrt{R_{D}} \left|\frac{q}{p}\right| (y'\cos\phi - x'\sin\phi)(\overline{\Gamma} t) + \left|\frac{q}{p}\right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ R_{\overline{D}^{0} \to \bar{f}} \ &\propto e^{-\overline{\Gamma} t} \left\{ \overline{R}_{D} + \sqrt{\overline{R}_{D}} \left|\frac{p}{q}\right| (y'\cos\phi + x'\sin\phi)(\overline{\Gamma} t) + \left|\frac{p}{q}\right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \end{split}$$

$$\begin{split} A_D &\equiv (R_D - \overline{R}_D) / (R_D + \overline{R}_D) \neq 0 \qquad CPV \text{ in the decay amplitude (direct } CPV) \\ A_M &\equiv (|q|^4 - |p|^4) / (|q|^4 + |p|^4) \neq 0 \qquad CPV \text{ in mixing} \\ \phi \neq 0 \qquad CPV \text{ in mixed/direct interference} \end{split}$$

6 total parameters; in practice, we fit for R_{D} , R_{D} and

$$\begin{aligned} x'^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (x'\cos\phi\pm y'\sin\phi) \\ y'^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (y'\cos\phi\mp x'\sin\phi) \end{aligned}$$

from these we calculate A_{D} , A_{M} , ϕ , x' and y'

(note sign ambiguity for x' $^{\pm}$)

A. J. Schwartz

Older HFAG, with CPV

D⁰ meson mixing:

e.g., Bianco et al., Riv.Nuov.Cim.26N7-8 (2003)

$$C = \begin{matrix} d, s, b \\ \hline d, \overline{s}, \overline{b} \\ \hline c \end{matrix}$$

"box" diagram: Δm

• doubly-Cabibbo-suppressed w/r/t Γ_p

• GIM cancellation:
$$V_{cd}^* V_{ud} + V_{cs}^* V_{us} + V_{cb}^* V_{ub} = 0$$

$$x \lesssim y \sim { 10^{-6} - 10^{-3} \ ({
m short \ distance}) \over 10^{-3} - 10^{-2} \ ({
m long \ distance})}$$

but mixing dominated by long-distance contributions (both Δm and $\Delta \Gamma$)

A. J. Schwartz