New PrPMC evaluation

yamagata, T.Higuchi, and M.Nakao

COPPER requires PrPMC

- COPPER consists of
 - COPPER board
 - Belle2 will use COPPER-III
 - FINESSE
 - Trigger card "TTRX"
 - PrPMC to operate all other hardwares

EPC6315

- Belle uses PrPMC EPC6315
 - PentiumIII 600MHz
 - 256M RAM
 - diskless boot
 - built-in e100

But we don't want to use it any more

Why new one?

- EPC6315 is disappearing from the market.
- BIOS is not updated at all since 1st release.
- Vender aftercare is extremely poor.
- Difficult to keep contact with reseller in Japan.
- Low C/P (about 100k JPY)

PSL09

- PentiumM
- ESB6300
- e1000

- Throughput reaches the limit of 32bit PCI bus.
- Much expensive (about 200k JPY).

Then....

- We bid the development of new PrPMC.
 - Atom CPU
 - US15W chipset (Poulsbo)
 - Intel Gigabit Ether (not realtek!)
 - Must be driven by RH9 or RHEL3
 - co-works with COPPER-III
 - But must be cheap (about 100k JPY)

New features for our happiness

- VGA with COPPER
- KBD (USB or PS/2) with COPPER
- bootable from network
- bootable from USB CD drive
- bootable from flash (internal or CF)

Struggles of the company

- Power supply from COPPER
- BIOS
- Speed step (new)

Power supply

- COPPER supplies 5V + 3.3V
- PrPMC specification limits the current per pin.
- Atom + Poulsbo requires more power
 - DC-DC converter is necessary
 - but space of PrPMC is awfully small

Power-on sequence

- Atom + US15W has many power lines
- There is a correct sequence to turn-on of these lines.
- But it is not clearly described in anywhere.

If sequence is wrong,

- Electrical resistance becomes zero
- Too many current go through CPU + chipsets
- Burned them to broken
- Firstly they build three as the prototype
- Two of them burned

BIOS

- US15W can loads EFI or BIOS from SPIO interfaces
- The company doesn't have SPIO aware BIOS
 - Mostly EFI is used for SPIO
- bridge chip for BIOS-ROM is required

SpeedStep

- SpeedStep is a technology by Intel to reduce the power consumption. It changed CPU clock dynamically.
- If it is turned on BIOS (default: ON), the system will freeze during CPU is fully consumed by user processes.
- Solution
 - BIOS default has changed (default: OFF)
 - One capacitor will be replaced to avoid the freezing with SpeedStep ON.

About Linux kernel

- We will use linux 2.4 for Belle II.
- Yes, we want to use linux 2.6.
 - Tick for task switch is 10ms in 2.4, 1ms in 2.6.
- but I don't have enough time to rewrite and validate the COPPER driver for 2.6.
 - It uses deprecated kernel functions
 - other drivers (TTRX + AMT3) seems to work well, confirmed
- This requires several dirty works for network boot and ethernet handling.

Ethernet

- We surveyed ethernet chip of Atom PC/ boards in the markets
- 1st: realtek, which consumes CPU.
- 2nd: 82574 family, slightly expensive.
- 3rd: USB ethernet, netbooks.
- We choose 82574 to save CPU consumption

82574

- e1000 doesn't handle it, but e1000e does.
- Also GRUB-0.9x doesn't handle it.
- e1000e can't be statically linked in linux kernel.
- Traditional network boot scheme requires statically linked ethernet driver.

Patchy scheme

- e1000e driver is loaded via initrd
- linuxrc on initrd assign IP addr by
 - /sbin/ifconfig (yamagata)
 - /sbin/dhclient (Company, kernel differs from that for EPC6315)

Performance test

- FINESSE-JIG + NIM trigger
 - Trigger card is not TTRX, but another one for J-PARC experiments.
 - External NIM signal as trigger
 - BUSY signal is extracted as NIM signal
 - we can confirm the low level behavior of COPPER and FINESSEs.

Configuration

Data is **not** sent to network

Result (at last autumn)

Trigger vs event size

Why the trigger rate is slow?

BUSY signal from Trigger card

Maybe Trigger card problem, replace it to TTRX

Still BUSY is long

- With the correct BUSY handshake, maximum trigger rate is only 24kHz.
- Why JIG generates so long BUSY?
- Anyway, really JIG is busy during the BUSY signal is active?

Guess "Nimbus BUSY"

JIG keeps BUSY active longer than actually it is busy.

Ignoring BUSY from FINESSE

- With
 - ignoring from FINESSE JIGs
 - periodical trigger generated by TTRX
 - checking the consistency of
 - # of events from FINESSE-JIG
 - # of trigger from TTRX
 - checking checksum, header, footer.
- If # of events are consistent, FINESSE-JIG can accept next trigger during NIMBUS BUSY.
- Yes, the guess is correct, even though the length of NIMBUS is not clear.
- We can test throughput with the faster trigger.

Result

event_size:trigger

How about CPU power?

- New PrPMC has built-in GbE
- Can it sends rawdata from FINESSE without reduction to network?
- 1Gbps traffic requires 1GHz CPU processing power of Pentium III and Intel GbE NIC.
 - This heavily depends on Network controller.
 - Cheap NIC consumes more.
- Processing power of ATOM is smaller than that of PentiumIII

Brief test

- 8kB/ev data * 8kHz trigger => 64MB/s throughput
- Two process model
 - read COPPER and write it to stdout
 - send data from stdout to another host via network
 - concatinated by pipe
- CPU idle is 18%
 - It is about 62% when the first process discards data without writing stdout (not writing to /dev/null)
- 1Gbps will use (62 18) * 100 / 64 = 68.5 % of CPU
 - it is larger than 62%
 - 1Gbps reading COPPER + transmission to network may not be possible.
- Maybe it will decrease using large MTU

Summary

- New PrPMC seems to be better than EPC6315
 - Faster CPU power
 - Faster NIC
 - Higher throughput
 - Good response from vendor and reseller
 - Better C/P