Belle2 TRG System

Y. Iwasaki (KEK)

TRG/DAQ Workshop 2011/01/25 Zhongguanyuan Global Village, PKU

Requirements and Strategy

- **Requirements** (\square = ok, \square = under study or unknown)
 - I High efficiency almost 100% for Upsilon 4S events
 - No deadtime -> pipeline
 - Redundant and independent TRG logics -> 3 main TRG
 - X Max. average rate 30 kHz @ 8x10³⁵ cm⁻²s⁻¹
 - Limit from DAQ
 - Good background reduction
 - Flexible TRG logics to manage BG rates
 - Low level event reconstruction to identify BG

● ☑ Latency

~5 usec

- Limit from SVD front-end
- I Timing precision less than 10 nsec
 - Request from SVD front-end
- Event separation 200 nsec
 - Request from DAQ
- Belle triggering scheme is employed again
 - Sub-Triggers + Global Decision Logic
 - Basic idea is same, but each components will be improved Data flow : parallel -> high-speed serial Data rate : 16 Mbps -> 190 Mbps (CDC wire case) Logic : hard-coded -> FPGA #cables and modules : O(1000) -> O(100)

Physics Processes and TRG Logics

Process	σ (nb)	Rate (Hz) @ L=8x10 ³⁵
Upsilon(4S)	1.2	960
Continuum	2.8	2200
μμ	0.8	640
ττ	0.8	640
Bhabha *	44	350
Υ-Υ [*]	2.4	19
Two photon **	80	15000
Total	67	~20000

 * Rate of Bhabha and $\gamma\text{-}\gamma$ are pre-scaled by factor 100

** Rates are estimated by the luminosity component in Belle L1 trigger rate

- Physics triggers
 - Upsilon 4S + continuum
 - Three-track
 - Total energy
 - Isolated cluster
 - Tau pair
 - Two-track

• Calibration triggers

- Bhabha
 - Pre-scaled by Bhabha trigger (ECL)
- γ-γ
 - Pre-scaled by γ-γ trigger (ECL)
- Mu pair
 - Two-track
- Random trigger

• Veto

- Beam injection
- Two photon events if necessary
 - Low level reconstruction is necessary

TRG History in Belle

TRG Rate Estimation Based on Belle History

Lum	Lum.	N/S=	~0.5	N/S=~6				
(cm ⁻² s ⁻¹)	Comp.	BG	Total	BG	Total			
1x10 ³⁴	190 Hz	100 Hz	290 Hz	1100 Hz	1300 Hz			
1x10 ³⁵	1.9 kHz	1.0 kHz	2.9 kHz	11 kHz	13 kHz			
8x10 ³⁵	7.2 kHz	8 kHz	15 kHz	88 kHz	95 kHz			

• No reliable estimation

- for the beam induced background
- We will simulate spent beams when IR in KEKB is fixed

• If history repeats,

- Early stage : lower currents with bad vacuum \rightarrow N/S = ~ 6
- Final stage : high currents with good vacuum \rightarrow N/S = ~0.5
- We can tighten the TRG conditions
 - New tools : CDC 3D tracking, low level reconstruction for BG reduction
 - Suppress two-photon events : these are the signal in Belle

Belle2 TRG System

Belle II Trigger System Version 3.4 : 2011/01/19 Y.Iwasaki

New in Belle II

 \sim 5 μ sec after beam crossing

-

GDL

2010/08/03 GDLS Schematic Version 1.07 Y. Iwasaki

Sub-Trigger Summary Info.

Sub-Trigger	Туре	Bit Width	Clock (MHz)						
	# Low Pt Tracks	3							
	# Middle Pt Tracks	3							
CDC	# High Pt Tracks	3							
	Charge Sum	3							
	Back-to-Back	Ι							
	Opening Angle	Ι							
ECL	E Low	Ι							
	E High	I							
	E Lum	I	42 5						
	# Isolated Clusters	4							
	Bhabha	Ι							
	Cosmic	Ι							
	Timing	5 *							
ТОР	Timing	5 *							
IOr	# Hits	3							
KLM	# Muon Hits	3							
	# Hadron Hits								
	Cosmic								
Total		30							

* 1 bit : hit or not, 4 bit : time counts (LSB 1ns)

Sub-Trigger Finer Info.

Sub-Trigger	Туре	Bit Width	Channels	Clock (MHz)	Flow (Gbps)
	Low Pt Tracks	2 *	64 [#]		8
CDC	Middle Pt Tracks	2 *	64	62.5	8
	High Pt Tracks	2 *	64		8
ECL	Trigger Cell	12 **	576	16	110
Barrel PID	Hit Pattern	I	128	62.5	8
KLM ***	Track Segments	I	\sim 300	62.5	\sim 20
					\sim 180 (in total)

- * : for charge + and charge –
- ** : energy deposit in a trigger cell
- *** : under discussion
- [#] : 1 bit / wedge, 64 wedges

Clock for TRG

• Usage

- Trigger system clock
- Reference clock for the high-speed serial links (RocketIO and HSSIO)
 - Bad clock quality kills entire TRG system

• Clock sources

- DAQ group : 127 MHz (source is RF clock)
 - For normal operation
- TRG local : 125.0 MHz
 - For development and debugging
- All sub-trigger masters should use TRG clock
 - If sub-trigger uses DAQ clock directly, no guarantee to communicate with GDL all the time

Clock : To Be Checked / Tested

- Clock signal from DAQ
 - Level ? : we prefer LVCMOS or LVTTL (single-ended)
 - Connector type : we prefer LEMO with NIM cable

• *#* receivers of TRG clock

- At least one in each sub-trigger
- How do you receive TRG clock?
- Do you need the clock distributors(fan-out module)?

• TRG clock with serial links

- We have to test TRG clock distribution with two clock sources
 - RocketIO(GTP, GTX, GTH), HSSIO
 - Cable length (up to 5m?)

Sub-TRG	#TRG clock
GDL	2
CDC	19
ECL	?
TOP	?
KLM	?

	GTP (3.2 Gbps)	GTX (6.4 Gbps)	GTH (11 Gbps)
TRG local clock	ok	ok	not yet
DAQ clock	not yet	not yet	not yet

TRG Local Clock Generator Proto-type

- 6U VME w/o J0
- Clocks
 - 125 MHz x 4
 - 152 MHz x 4
 - Each has differential and single-ended output
- Production type
 - 125 MHz only
 - Single-ended output only
 - # output : 32ch

Clock Distributor Proto-type

- 6U VME w/o J0
- 2 differential input
 - 8 differential fanout
- 2 single-ended input
 - 8 single-ended fanout
- Production version
 - Single-ended only
 - 1 input
 - 32 ch fanout

TRG Read-Out

• Data to be read (from GDL)

- Edge timing of input and output
 - Summary info. from sub-triggers : N_{TDC} ~100
 - Summary info. of GDL : N_{TDC} ~200
 - Total TDC : \sim 300 channel

• TDC data

- Clock : 125MHz (= GDL system clock)
- 16 bits for one edge
 - 15 bits for time counter, 1 bit for edge type
- Time window : ~33 usec
- Data size
 - 16 bits x 300 TDC x 4 edges = 2.5 kB / event
- For debug, we like to read all sub-trigger finer info.
 - Not for normal runs
 - O(1000)
 - Is it possible?
 - Do we need special lines?

Universal Trigger board 2 (UT2)

- **6U VME board**
- FPGA is Virtex5(XC5VLX220T)

Optical RocketIO

- 3Gbps x 16 I/O pairs ... 5000 channels in 16MHz ... 2000 channels in 40MHz
- Differential I/O x 64 pairs
- NIM x 3 I/O pairs
- Delivered in 2009 March
 - Three boards were fabricated
 - There were many minor troubles but fixed almost
 - RocketIO BERT ... 10⁻¹² level

UT3β

- Universal Trigger Board 3 beta
 - 6U VME module w/o J0
 - +5V only
- Xilinx Virtex-6 LX240T
- 24 GTX
 - 150 (6.25 x 24) Gbps IO
 - 6 optical connectors
 - 1 opt. connector has 4 opt. links
- Clock IO
 - Internal and external for GTX
- NIM IO
 - 2 in, 2 out
- LVDS IO
 - 32 x 2 in/out
- 3 boards fabricated
 - 2 boards delivered

UT3y

- Final proto-type of the Universal Trigger board
- FPGA : Virtex-6 HXT (FF1923 package)
 - 3 FPGA choices
- IO
 - Clock : 1 in, 1 out
 - NIM : 2 in, 2 out
 - LVDS : 64(32x2) in/out, 256(32x8) in/out optional daughter board
 - RocketIO
 - 24 GTH (268 Gbps)
 - 40 GTX (264 Gbps) on the optional daughter board
- Waiting for V6HX delivery (early 2011)

Board	υτзβ		UT3y	
FPGA	V6LX240T	V6HX255T	V6HX380T	V6HX566T
Logic Cells	241,152	253,440	382,464	566,784
GTX (max 6.6 Gbps)	24	24	40	40
GTH (max 11.18 Gbps)	0	24	24	24

VME CPU

F Won

• VME CPUs are necessary to control trigger modules

- Disk-less CPU with network boot or USB based one?
- One CPU / crate, O(10) CPU are necessary

• Server for VME CPU

- Main server and back-up server
- What has to be done when the main server dies?
 - Detailed procedure should be defined and practiced

• Requirements

- Cheap, no fast CPU, stable, Intel CPU
- Network booting from a server PC

• KU is responsible

- We will experiment with exiting VME boards from GE (KU had some experience with it)
- We will (eventually) setup a prototype system by summer of 2011 (one server +a couple of VME cpus) but try on Feb 2011 when EW visits KEK
- If server can be near to VME cpus and not scattered too much: we can think of cpu-less usb based VME master (KU has one module)
- For our study we plan to use Scientific Linux: let us know if you have other recommendations

Schedule

Dete	2009				2010 2011								20)12		2013				2014				2015				
Date	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12
GDL Hardwares																												
UT2 Proto-type	3 n	nodu	lles																									
UT3 Proto-type beta				3 n	nodu	lles																						
UT3 Proto-type gamma								3 n	nodu	ules																		
UT3 Production												ļ	5 mo	dule	s													
Clock Generator												1	2 mo	dule	s													
Clock Distributor												ļ	5 mo	dule	s													
TRG VME CPU Server																												
GDL in Test Bench																												
Installation & Commissioning																												
Operation																							_					
GDL Firmwares																												
Core Firmwares																												
Read-out																												
Monitors																												
System Test																												
Operation																												
Low-Level Reconstruction Study																												
Low-Level Reconstruction Operation																												

Summary

• TRG in Belle2 is similar to that in Belle

- All components will be replaced with recent technologies
 - FPGA with high-speed serial links is our core technology
 - Amount of data flow is O(100) larger than that in Belle
- Hardware development is on schedule
 - Production will be started in next fiscal year for some modules
- For background reduction, we will try to reconstruct events with CDC and ECL
 - CDC TRG will give 3D track parameters
 - CDC track will be matched to ECL clusters
 - How powerful to reduce BG ?

Appendix

Injection Veto

- Two phases
 - First phase : veto n turns completely W0 = n * 10 usec n = 10~100
 - Second phase : veto periodically W1 = ∼1 usec

 $m \sim 300$

- Three parameters (n, m, W1) : SKEKB dependence
- Veto pattern is generated in GDL
- The first phase only in Belle case (n=350)
- Veto signal is sent to SEQ to calculate dead-time