$-$

Belle II

Status on the 3D fitter

TRG/DAQ Workshop Jan 262011
Jaebak Kim(*),
Eunil Won, Byeongrok Ko, Kyungtae Kim
Korea University

Last B2GM

- Things to do
- New basf2 CDC geometry has to be in
- Move C++ program into integer space
- Write VHDL
- Use timing information to reach z0 resolution $\sim \mathrm{O}(4 \mathrm{~cm})$
- Write identical C++ into tsim cdc

Last B2GM

- Things to do
- New basf2 CDC geometry has to be in

DONE

- Move C++ program into integer space
- Write VHDL

IN PROGRESS
IN PROGRESS

- Use timing information to reach z0 resolution $\sim \mathrm{O}(4 \mathrm{~cm})$
- Write identical C++ into tsim cdc

IN PROGRESS (KIKTI)
IN PROGRESS
(KGKI)

New basf2 CDC geometry

- I calculated multiple perfect tracks using the geometry in the basf2 for the CDC given by KKT. (in order to test the 3d-fitter)
- I put the track data into the 3 d -fitter to see if the fitter worked correctly with the BELLE2 geometry
- (In doing so, I was able to improve the fitter.)
- Track info
$-p_{T}:[0.5 \sim 2.5] \mathrm{GeV}$
- Track angle: [0~360]deg
- z/r slope: Gaussian (mean: -0.09359,sig: 0.01)

New basf2 CDC geometry(cont'd)

- Previous fitter (Results using basf2 geometry)

New basf2 CDC geometry(cont'd)

- Improved fitter (Results using basf2 geometry)

New basf2 CDC geometry(cont'd)

- The current code uses this relation
- $(z t o s t r a w-z) * \tan \theta_{s t}=r * \tan \left(\left|\phi_{f i t}-\phi\right|\right)$
- $(z$ tostraw $-z) * \tan \theta_{s t}=r * 2 * \sin \left(\frac{\left|\phi_{f i t}-\phi\right|}{2}\right)<\bigcup_{\text {Accurate }}^{\text {More }}$

New basf2 CDC geometry(cont'd)

- We will do this test again using the data from tsim, and also when the $\mathrm{C}++$ code is changed into integer space.

Move C++ to integer + VHDL

- I am planning to move the $\mathrm{C}++$ code into integer space step by step, while writing VHDL for each step I go.
- In doing so, I can made sure that the $\mathrm{C}++$ code and VHDL will give the same output.
- We have two C++ versions. I will change one of them to VHDL and see which one will be better later.

Move $\mathrm{C}++$ to integer $+\mathrm{VHDL}\left(\right.$ cont'd $\left.^{\prime}\right)$

- I have made some toy components for the 3D fitter firmware at a 130 Mhz clock on a Virtex 5 220T chip. (UT2 board)
- Speed the 42 Mhz board clock to 130 Mhz using DCM (To match with other trigger logic boards)
- An LUT(Look up table) using BRAM(Block RAM)
- An LUT using CLB(Configurable Logic Block) (Distributed RAM)
- Multiplication using DSP slices in Virtex chip

Move $\mathrm{C}++$ to integer + VHDL (cont'd)

- The board clock is 42 Mhz so I speeded it up to 120Mhz using DCM.
- From 23.81ns => 42 Mhz ,
- To 8.3ns => 120 Mhz

Move $\mathrm{C}++$ to integer + VHDL (cont'd)

- LUT using BRAM
- These LUT's will be used for atan, cos, sin functions.

Move C++ to integer + VHDL (cont'd)

- LUT using CLB (Distributed RAM)
- These LUT will be used for storing constants that change for each super layer.

Move $\mathrm{C}++$ to integer + VHDL (cont'd)

- Signed integer multiplication using DSP slices in Virtex Chip
- Multiplication can be done in one clock

Move C++ to integer + VHDL (cont'd)

- I am changing the $\mathrm{C}++$ code into integer space step by step while writing the VHDL for each step.
- I will show how I transformed the phi into integer space.

Move $\mathrm{C}++$ to integer + VHDL (cont'd)

- I need to change the phi input into integer space.
- To do this I need to know the Max and Min values of the phi input.
- I need to choose how many integers I will use.
- $\emptyset_{\text {int }}=\frac{\emptyset_{\text {int max }}}{\emptyset_{\text {float max }}} * \emptyset_{\text {float }}$
- I round the $\emptyset_{\text {int }}$ to make them integers.
- I am just quantizing $\emptyset_{\text {float }}$.

Move C++ to integer + VHDL (cont'd)

- Also, to have better resolution for the integer values, we transform \emptyset_{i} into $\emptyset_{i r e l}=\emptyset_{i}-\emptyset_{A 3}$ ($\emptyset_{A 3}$-Third superlayer for axial wires)
- If we do so the $\emptyset_{\text {float max }}$ will be smaller. Then $\emptyset_{\text {int }}$ will have better resolution.
- That is, the space between quantized \emptyset will be smaller.

Use timing information to reach z0 resolution $\sim \mathrm{o}(4 \mathrm{~cm})$

- To estimate the needed timing information resolution for z 0 resolution to be 4 cm , I made an input track for the 3d trigger and smeared them 2000 times.

Red: Smeared track Blue: Actual track

Use timing information to reach z0 resolution $\sim o(4 \mathrm{~cm})$ (cont'd)

- Results (when drift speed is $40 \mu \mathrm{~m} / \mathrm{ns}$)
$\mathrm{Pt}=2 \mathrm{GeV} / \mathrm{c}$

Time_rms(ns)	z0_rms(cm)	
22.5	2.310	
27.5	2.823	
35	3.594	
40	4.107	

$$
\mathrm{Pt}=0.5 \mathrm{GeV} / \mathrm{c}
$$

Time_rms(ns)	z0_rms(cm)	
22.5	2.349	
27.5	2.871	
35	3.655	
40	4.177	

Use timing information to reach z0 resolution $\sim o(4 \mathrm{~cm})$ (cont'd)

- The results show we need ~ 38 ns time information resolution when the drift speed is $40 \mu \mathrm{~m} / \mathrm{ns}$
- This was done with float numbers in the fitter code, so we will do it again after the code is changed into integer space.
- Further studies on how to get the time information resolution is being done by KyungTae.

Summary

- Basf2 CDC geometry has been implemented and tested in the 3D fitter.
- We were able to improve the 3D fitter.
- We made toy VHDL modules for the fitter.
- We are changing the code into integer space.
- We were able to calculate the needed time resolution for z 0 to be $\sim \mathrm{O}(4 \mathrm{~cm})$.

New basf2 CDC geometry(cont'd)

- Basic equations to get axial wire position.
$-p_{T}\left(\frac{\mathrm{GeV}}{c}\right)=0.3 * z(e) * B(T) * \rho(m)=0.3 * 1.5 * \rho$
- Simple perfect track : $x^{2}+(y-\rho)^{2}=\rho^{2}$
- CDC TS position: $x^{2}+y^{2}=r^{2}$

New basf2 CDC geometry(cont'd)

- Equation to calculate stereo wire position $-($ ztostraw $-z) * \tan \theta_{s t}=r * 2 * \sin \left(\frac{\left|\phi_{f i t}-\phi\right|}{2}\right)$

$\theta_{s t}$ is greatly exaggerated

Blue Cylinder: CDC
Gold: Sense wire
Dash line: The wire if the stereo wire was an axial wire.

New basf2 CDC geometry(cont'd)

- Equation to calculate stereo wire position

Blue Cylinder: CDC
Gold: Sense wire
Dash line: The wire if the stereo wire was an axial wire.

New basf2 CDC geometry(cont'd)

- Equation to get z.
- Using data from the Belle tsim, we have found the relation between r and z .
$-\mathrm{z}=-0.09358{ }^{*} \mathrm{r}$
$-z$ theta $=\frac{\pi}{2}-\tan \left(\frac{z}{r}\right.$ slope $)$

- Now we can calculate the stereo wire position.

New basf2 CDC geometry(cont'd)

- Results
$-2 \mathrm{GeV}$
(m)

$-0.5 \mathrm{GeV}$

