Belle II DAQ Requirements Summary

Mikihiko Nakao (KEK-IPNS)

mikihiko.nakao@kek.jp

January 26, 2011 Belle II Trigger/DAQ workshop, Beijing

Outline

- Dataflow numbers (Belle2link, COPPER, event-builder, datasize)
- Timing constraints (to synchronize and to minimize deadtime)
- Frontend interface (Belle2link, timing link, JTAG)
- Cabling (dataflow, timing, power, ground)
- Slow control (CPU, localrun, database)

Assumptions

- 20 times background, occupancy from detector groups
- **30 kHz L1 trigger rate at** 8×10^{35} cm⁻²s⁻¹
 - 20 kHz is expected by scaling Belle I, 0.5 kHz at 2 × 10³⁴ (too simplified? but these are the numbers from Y.Iwasaki)
 - Factor 3+ reduction at HLT
 - Factor 6 reduction is difficult without sacrificing efficiency, at least 5 kHz for physics+calib triggers (B:1.0, udsc:2.2, τ:0.6, μ:0.6, e⁺e⁻:0.4, two-photon:~0)
 - PXD data reduction according to the HLT physics type?

Dataflow numbers

Dataflow numbers are the baseline information to design the Belle II DAQ system, namely, to determine:

- Number of modules to be produced
- COPPER and event-builder layout design
- Dataflow balancing (bandwidth and latency)
- Cabling and electronics near the detector
- Datasize and offline computing

But there are several questions due to simplification:

- Background level is not precisely known
- Non-uniformity of the occupancy
- Expected / Nominal / Maximum?
- Special operation (e.g., local run)

The Table

	#ch	000	#link	/link	FNS	#CPR	ch sz	ev sz	total	/CPR
		[%]		[B/s]			[B]	[B]	[B/s]	[B/s]
PXD	8M	2	40	364M		—	4	320k	14.4G	
SVD	243456	1.9	40	13.8M	HSLB	40	4	18.5k	555M	13.8M
CDC	15104	10	302	0.6M	HSLB	75	4	6k	175M	2.3M
BPID	8192	2.5	128	7.5M	DSP	16	16	4 k	120M	8M
EPID	77760	1.3	138	0.87M	HSLB	35	0.5	4k	120M	15M
ECL	8736	33	52	7.7M	HSLB	26	4	12k	360M	15M
BKLM	21696	1	86	9.7M	DSP	6	8	2K	60M	10M
EKLM	16800	2	66	19.5M	DSP	5	4	1.4k	42M	5.3M
TRG					HSLB	60				

- Occupancy: nominal values
- Margins: B2link bandwidth, COPPER throughput
- Maintained in Belle II Twiki any updates?

Occupancy Non-uniformity

- The closer to the beampipe, the higher the occupancy
- Frontend electronics layout driven by detector configuration and cabling, not by occupancy
 - PXD
 - SVD

 - e ECL
- Design the system according to the maximum?
- Is there anything else that can be done?

Number of modules and crates

- Timing distribution and JTAG link
 - FTSW: 1-to-8 (cat7/opt) / 1-to-12 (opt/cat7) / 1-to-20 (cat7/cat7)
 - One cat7/opt module in E-hut per detector Several opt/cat7 module near the detector
 - CDC 1-to-4 × 1-to-4 × 1-to-20 (timing) 1-to-4 × 1-to-4 × 1-to-20 (JTAG)
 - (10-module 6U crate \times 4 near the detector, total=40)
 - ECL $1-to-6 \times 1-to-12$, opt/cat7 in the collector crate
 - To be decided for other detectors
- COPPER modules and crates
 - 263 COPPER modules according to The Table
 - SVD:3 CDC:5 BPID:1 EPID:3 ECL:2 BKLM:1 EKLM:1 TRG:4 crates, total=20 crates (Belle I used 15)
 - 20 FTSW modules are needed

Backend configuration

- \sim 15MB/s/COPPER \times 16 /crate \sim 2 \times GbE
 - 2 readout PC per COPPER crate?
 - Or is the readout PC fast enough to handle 2 GbE / PC?
- **ightarrow 40 imes GbE is expected**

Clock

- Source: RF clock (508.877 MHz) and revolution (99.390 kHz)
- TTD clock RF/4 127.219 MHz, how to generate is not decided yet (also referred to as system clock)
- TTD local clock when RF is not available Frequency close to the RF (127.2 MHz) from on-board Xtal Should be available at a remote test bench, too
- Derived clock easily done by DCM/PLL in FPGA Available in the timing receiver core at the frontend board
- Distributed to frontend boards and COPPER Should be distributed to trigger boards, too
- Jitter requirement: BPID (<10ps), others to meet RocketIO
- Phase drift not compensated, to be offline corrected

Pipeline constraints

Based on SVD and COPPER Need to be revised for ECL by next B2GM

- Trigger interval: 6×32 -MHz-clock (190 ns)
 - More than one triggers for same timing window at PXD/ECL
- To avoid flow control: 5 triggers simultaneously processed
 - 6th trigger is not issued (blocked at master TTD)
 - Readout latency: 840 imes 32-MHz-clock (26.6 μ s)
 - Maximum time to get ready for the 6th trigger
 - If it takes twice more time, one more trigger has to be in pipeline
 - Relaxed with deeper buffer (ECL, EPID, ...)
- Maximum event fragment size: 16 kB per datalink
- No event reordering

Event fragment size

- Cannot allow arbitrary large event fragment
 - Iatency in the data transmission
 - number of buffers to allocate
- 16 kB/link would be a good candidate
 - Based on the COPPER buffer size
 - ECL requested to read out all channel at low frequency
 - Need to specify average event fragment size and absolute maximum

Frontend interface

- FPGA Virtex 5 (GTP-RocketIO, ISERDES, SEU recovery) Spartan 6? (GTP-RocketIO, ISERDES2, cost)
- Connectors SFP, RJ-45 for timing (+ RJ-45 for JTAG)
- Xtal 125 MHz? (close to 127 MHz, widely available)
- AC coupling REFCLK and RJ-45 timing signal (no AC coupling for the JTAG link, no signal during the run)
- EEPROM for serial-id of the board (ATMEL AT24C01B, 2-wire protocol proposed by SVD)
- Power and ground

Belle2link / timing signal physical interface at the frontend readout board

20101216 version

Power / Ground

- Ground loop must be avoided
- For signals (Belle2link/timing/JTAG-link) no ground connection between E-hut and detector
- Slow control devices and trigger boards should not make the ground loop, too
- For power supplies, ground are from power supplies
 - CDC power supplies (HV and LV) are in E-hut
 - CDC end-plate as the ground plane for frontend boards
 - Power/ground for timing boards to be common to the CDC frontend
 - What is the plan for other detectors?
- If there is a station on the detector, timing module would like to share the location for power/ground
- Ground connection between forward & backward? Ground connection between top & bottom?

Fast/slow control path

- A 6U VME crate in E-hut for every subdetector
 VME CPU (Linux)
 - FTSW to control frontend boards and COPPERs
 - JTAG programming controller
 - Trigger control for the local run
- One sub-detector master PC (readout PC)
 - Server for COPPERs
 - Slow control manager through Belle2link
- Many other VME CPU and PC are foreseen
 - Propose to form a "CPU" group with interested people (those who do not care should follow the suggestion)

Summary

- The dataflow table is stable and useful to design DAQ (no good info / tool yet to update our assumptions)
- Timing requirement has to be revised based on numbers given by ECL
- Hardware spec of the frontend boards is ready (firmware spec is urgently needed)
- Getting ready to think about module allocation and cabling
- Numbers are maintained at TWiki, any feedback is welcome