Recent results on UHECRs from the Pierre Auger Observatory

Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration

LHAASO Workshop, Beijing, Feb. 2011

UHE Detectors

With time, gain not only in detection surface...

Late 60s-80s:

Haverah Park
Early 60s: Volcano Ranch

USA, New Mexico, 1800 m a.s.l.

19 scintillators

+ 1 shielded
Spacing $\approx 450 \mathrm{~m}$
Area:
2 (8) km2

Australia, 250 m a.s.l. 54 buried scintillators

UK, Leeds, 220 m a.s.l.

62 water Cherenkov
Spacing $\approx 500 / 2000$ m

> Late $60 s-70 s:$ SUGAR

$$
\begin{aligned}
& \text { Spacing } \approx 1600 \mathrm{~m} \\
& \text { Area: } 55 \mathrm{~km} 2
\end{aligned}
$$

Early 70s - now

> Yakutsk

Russia, 100 m a.s.I.
58 scintillators + 6 muon detectors + 45 Cherenkov PMTs Spacing \approx 150/500/1000 m Area: 17 km2

Late 70s- 2004
AGASA

111 scintillator detectors
+27 muon detectors
Spacing $\approx 1000 \mathrm{~m}$
Area: 100 km 2

Early 80s-1995
Fly's Eye
USA, Utah, 100 m a.s.l.

2 fluorescence telescopes (67 mirrors \& 880 PMTs + 36 mirrors \& 464 PMTs)
Spacing $\approx 3.4 \mathrm{~km}$

...but also in quality/precision

Early 60s: Volcano Ranch Pulse amplitude, arrival times
LDF -> Ne -> rough estimation of energy

Late 60s-80s:
Haverah Park
Measurement of EAS photons/electrons/ muons

Late 60s-70s: SUGAR
Largest array at the time, muon sensitive Unique in Southern emisphere

Early 70s - now

Yakutsk
First "complex" detector (multicomponent).

3 nested subarrays, with different spacing.

First calorimetric approach (Cherenkov)

Late 70s- 2004
AGASA
Largest array in the past
Multi-component
measurement
(e.m. and muonic)
(em. and muonic)

Early 80s-1995
Fly's Eye
First succesful
employ of fluorescence First "stereo"

1970
1980
1990

Exposures at UHE

Energy Spectrum

REFERENCE PAPERS:
The Pierre Auger Coll.,
PHYS. LETTERS B 685 (2010) 239-246, PRL 101061101 (2008)

Energy measurement

«HYBRID PICTURE» OF THE SAME SHOWER, ALLOWING THE CALIBRATION OF THE SHOWER SIZE

American Museum a Natural History 9
fluorescent detectors

From $S(1000)$ to the shower size : the Constant Intensity Cut method

AT A FIXED ENERGY, S(1000) DECREASES WITH ZENITH ANGLE (ATTENUATION CURVE)

TAKING PROFIT OF THE ISOTROPIC DISTRIBUTION OF CRS, INTENSITY MUST BE THE SAME IN TERMS OF COS^2(TH) INTERVALS.

EMPIRICAL EXTRACTION OF THE ATTENUATION CURVE ABOVE THE SATURATION ENERGY

Shower size calibration into energy

CALORIMETRIC MEASUREMENT OF THE ENERGY WITH THE FD.
CALIBRATION OF THE SD ENERGY THROUGH A SUBSET OF HIGH QUALITY HYBRID EVENTS. NO DEPENDENCE ON HADRONIC MODELS

Energy spectrum, 10 years ago...

SMOOTH ANKLE AT A FEW EEV (10 EEV?)
SUPPRESSION OF THE FLUX ABOVE ~50 EEV??? (AGASA, HP)

Energy spectrum, today


```
SHARP ANKLE AT ~4 EEV
SUPPRESSION OF THE FLUX ABOVE ~5O EEV (HiRES, AUGER)
```


Energy Spectrum

COHERENT OBSERVATIONS OF THE ANKLE AND OF THE FLUX SUPPRESSION WITH HIRES, AUGER, AND TA (MODULO SYSTEMATIC UNCERTAINTIES ON THE ENERGY SCALE).

FUTURE WORK WILL PROFIT FROM THE LOWER ENERGY THRESHOLD THANKS TO THE INFILLED ARRAY

Mass Composition

REFERENCE PAPER:
The Pierre Auger Coll.,
PRL 104091101 (2010)

From longitudinal profile to mass composition

SLANT DEPTH OF SHOWER MAXIMUM (<XMAX>);
ELONGATION RATE ($\mathrm{D}<\mathrm{XMAX}>/ \mathrm{DLOGE}$);
RMS OF XMAX DISTRIBUTION AT FIXED ENERGY:
OBSERVABLES SENSITIVE TO COMPOSITION

$X_{\max } \sim \ln \left(E_{0}\right)-\ln (A) \quad$ (MC Sim.)

From longitudinal profile to mass composition

Xmax res.: $20 \mathrm{~g} / \mathrm{cm} 2$

HIgH PRECISION THANKS TO HYBRID AND/OR STEREO MEASUREMENTS
(~ 20-25 G/СМ2)

Composition: Xmax vs E

Composition: Xmax vs E caveat: hadronic interaction models

Composition: RMS(Xmax) vs E

MORE EVIDENCE OF THE INCREASE OF THE AVERAGE MASS WITH ENERGY

Angular distributions

REFERENCE PAPER:
The Pierre Auger Coll.,
ASTROPART. PHYS. 34 (2011) 627-639

Large scale anisotropies : Search for first harmonic modulations

CHALLENGE: ESTIMATION OF THE EXPOSURE WITH HIGH ACCURACY
1- MONITORING OF THE NUMBER OF ELEMENTAR CELLS => GEOMETRICAL EXPOSURE CALCULATION IN EACH DIRECTION
2- SHOWER SIZE CORRECTIONS AS A FUNCTION OF ATMOSPHERIC PRESSURE AND DENSITY

2 POSSIBLE SOURCES OF SPURIOUS MODULATIONS AT THE SIDEREAL FREQUENCY:

1- POLLUTION BY THE SOLAR FREQUENCY (=> CANCELED BY THE 6-YRS EXPOSURE TIME)
2- SIDEBAND MECHANISM DUE TO ANY ANNUAL VARIATION OF THE DAILY MODULATION

Search for first harmonic modulations

NO SIGNIFICANT AMPLITUDES
=>

UPPER LIMITS

FUTURE WORK WILL PROFIT FROM THE LOWER ENERGY THRESHOLD THANKS TO THE INFILLED ARRAY

What about the phases ?

PHASE IS ~2.5 MORE SENSITIVE THAN AMPLITUDE TO A GENUINE SIGNAL DILUTED WITHIN THE BACKGROUND NOISE

FUTURE WORK WILL PROFIT FROM THE LOWER ENERGY THRESHOLD THANKS TO THE INFILLED ARRAY

Angular distributions at UHE

REFERENCE PAPERS:
The Pierre Auger Coll., SCIENCE 318938 (2007),
ASTROPART. PHYS. 29 (2008) 188-204, ASTROPART. PHYS. 34 (2010) 314 -326

Angular distributions at UHE

AUger: using 27 CR AbOVE 56 EEV collected through 31 August 2007 -> CORRELATION WITH THE POSITIONS OF NEARBY QUASARS AND AGNS ($12^{\text {TH }}$ VCV)

CORRELATION PARAMETERS: ENERGY (55 EEV), ANGULAR SEPARATION (3.1º), DISTANCE (75 MPC) FIXED WITH EARLY DATA

TEST WITH LATER DATA, BUILT TO REJECT ISOTROPY WITH 1% PROBABILITY OF DOING IT INCORRECTLY: TEST PASSED (9/13 CORRELATED EVENTS)
--> ISOTROPY REJECTED AT 99\% C.L.

Angular distributions at UHE

SINCE THE «SCIENCE» PUBLICATION
CORRELATION DOWN: FROM (69 12) \% TO (38
(21\% OF RANDOM CORRELATION FROM ISOTROPIC EXPECTATIONS)
CORRESPONDING PROBABILITY $\mathrm{P}=0.003$

Angular distributions at UHE

SEARCH FOR CORRELATIONS WITH OTHER (MORE COMPLETE) CATALOGS OF EXTRA-GALACTIC OBJECTS

FITTING THE 69 EVENTS ON MAP DENSITIES BUILT FROM SOURCE MODELS BASED ON 2MRS AND SWIFT-BAT CATALOGS AND INCLUDING THE GZK EFFECT
2 FREE PARAMETERS : DEFLECTION ANGLE (MAGNETIC FIELD) AND «ISOTROPIC FRACTION» (INCOMPLETENESS, HEAVIER ELEMENTS, ...)

$$
\text { 2MRS -> }\left(1.5^{\circ}, 64 \%\right) ; \text { SWIFT -> }\left(7.8^{\circ}, 56 \%\right)
$$

Angular distributions at UHE

AUGER: SEARCH FOR THE LARGEST EXCESS (ABOVE 57 EEV):
12 EVENTS IN A 13° CELL (1.7 EXPECTED): IT LIES AT 4° FROM CEN A CENTERING ON CEN A: LARGEST EXCESS WITHIN 18° (13 EVENTS VS 3.2 EXPECTED)

Angular distributions at UHE

SEARCH FOR AUTO-CORRELATION :

NO SIGNIFICANT CLUSTERING

Photons/Neutrinos ?

REFERENCE PAPERS:
The Pierre Auger Coll.,
ASTROPART. PHYS. 27 (2007) 155-168,
ASTROPART. PHYS. 29 (2008) 243-256,
PRL 100211101 (2008),
PRD 79102001 (2009),
ASTROPART. PHYS. 31 (2009) 399-406

Photon limits

BOTTOM IS UP TOP IS DOWN

Neutrino limits

BOTTOM IS UP TOP IS DOWN

Outlook

Observation of a sharp ankle and of the flux suppression at UHE

Sharpness of the ankle unnatural with a gal/Xgal transition

- Spectral features between 0.1 and I EeV ?
- Origin of the suppression still uncertain

Mass composition

- Rather unexpected lightening of the composition at EeV energies (iron knee at 0.1 EeV)
- Dedicated measurements needed to understand the end (?) of the galactic component
- Increase of the average mass above $\sim 1.5 \mathrm{EeV}$ (but quid of the hadronic interaction models ?)

Angular distributions

Correlations at UHE, but large isotropic component (mixing of masses ?, ...)

- Suggestion of a dipolar modulation over a large energy range through the phase alignment
- If Xgal, very low anisotropies are expected between ~ 3 and $\sim 50 \mathrm{EeV}$. Gal.

UHECRS UNDERSTANDING REQUIRES BETTER KNOWLEDGE OF ANY SPECTRAL FEATURES, MASS COMPOSITION AND ANGULAR DISTRIBUTIONS OF CRS BETWEEN ~O.O1 AND 1 EEV

Spectre en énergie, maintenant

KASCADE-Grande, ECRS 2010

«SECOND GENOU»: GENOU DE FER VERS O. 1 EEV «MÉNISQUE» À ~ 10 PEV !

