Gamma Ray Observation with Tibet AS Y Experiment --- Past Results and Upgrading Project ---

Zhaoyang Feng, IHEP, CAS, China

For the Tibet AS Y Collaboration

~ Contents ~

- •What we have done
- Tibet III + MD project
 Gamma ray point source so
 - Gamma ray point source sensitivity
 - Cosmic ray electron and DM electron sensitivity

Tibet MD: Tibet underground Muon Detector array

THE 2nd WORKSHOP OF AIR SHOWER DETECTION AT HIGH ALTITUDES

17-19 February 2011

The Tibet AS_Y Collaboration

M.Amenomori,¹ S.Ayabe,² X.J.Bi,³ D.Chen,⁴ S.W.Cui,⁵ Danzengluobu,⁶ L.K.Ding,³ X.H.Ding, ⁶ C.F.Feng,⁷ Zhaoyang Feng,³ Z.Y.Feng,⁸ X.Y.Gao,⁹ Q.X.Geng,⁹ H.W.Guo,⁶ H.H.He,³ M.He,⁷ K.Hibino,¹⁰ N.Hotta,¹¹ HaibingHu,⁶ H.B.Hu,³ J.Huang,¹² Q.Huang,⁸ H.Y.Jia,⁸ F.Kajino,¹³ K.Kasahara,¹⁴Y.Katayose,⁴ C.Kato,¹⁵ K.Kawata,¹² Labaciren,⁶ G.M.Le,¹⁶ A.F. Li,⁷ J.Y.Li,⁷ Y.-Q. Lou,¹⁷ H.Lu,³ S.L.Lu,³ X.R.Meng,⁶ K.Mizutani,^{2,18} J.Mu,⁹ K.Munakata,¹⁵ A.Nagai,¹⁹ H.Nanjo,¹ M.Nishizawa,²⁰ M.Ohnishi,¹² I.Ohta,²¹ H.Onuma,² T.Ouchi,¹⁰ S.Ozawa,¹² J.R.Ren,³ T.Saito,²² T.Y.Saito,²³ M.Sakata,¹³ T.K.Sako,¹² T.Sasaki,¹⁰ M.Shibata,⁴ A.Shiomi,¹² T.Shirai,¹⁰ H.Sugimoto,²⁴ M.Takita,¹² Y.H.Tan,³ N.Tateyama,¹⁰ S.Torii,¹⁸ H.Tsuchiya,²⁵ S.Udo,¹² B. Wang,⁹ H.Wang,³ X.Wang,¹² Y.G.Wang,⁷ H.R.Wu,³ L.Xue,⁷ Y.Yamamoto,¹³ C.T.Yan,¹² X.C.Yang,⁹ S.Yasue,²⁶ Z.H.Ye,¹⁶ G.C.Yu,⁸ A.F.Yuan,⁶ T.Yuda,¹⁰ H.M.Zhang,³ J.L.Zhang,³ N.J.Zhang,⁷ X.Y.Zhang,⁷ Y.Zhang,³ Yi Zhang,³ Zhaxisangzhu,⁶ and X.X.Zhou⁸

- (1) Dep. of Phys., Hirosaki Univ., Hirosaki, Japan
- (2) Dep. of Phys., Saitama Univ., Saitama, Japan
- (3) Key Lab. of Particle Astrophys., IHEP, CAS, Beijing, China
- (4) Fac. of Eng., Yokohama National Univ., Yokohama , Japan
- (5) Dep. of Phys., Hebei Normal Univ., Shijiazhuang, China
- (6) Dep. of Math. and Phys., Tibet Univ., Lhasa, China
- (7) Dep. of Phys., Shandong Univ., Jinan, China
- (8) Inst. of Modern Phys., South West Jiaotong Univ., Chengdu, China
- (9) Dep. of Phys., Yunnan Univ., Kunming, China
- (10) Fac. of Eng., Kanagawa Univ, Yokohama, Japan
- (11) Fac. f of Educ., Utsunomiya Univ., Utsunomiya, Japan
- (12) ICRR., Univ. of Tokyo, Kashiwa, Japan
- (13) Dep of Phys., Konan Univ., Kobe, Japan

- (15) Dep. of Phys., Shinshu Univ., Matsumoto, Japan
- (16) Center of Space Sci. and Application Research, CAS, Beijing, China
- (17) Phys. Dep. and Tsinghua Center for Astrophys., Tsinghua Univ., Beijing, China
- (18) Advanced Research Inst. for Sci. and Engin., Waseda Univ., Tokyo, Japan
- (19) Advanced Media Network Center, Utsunomiya University, Utsunomiya, Japan
- (20) National Inst. of Info., Tokyo, Japan
- (21) Tochigi Study Center, Univ. of the Air, Utsunomiya, Japan
- (22) Tokyo Metropolitan College of Industrial Tech., Tokyo, Japan
- (23) Max-Planck-Institut fuer Physik, Muenchen, Germany
- (24) Shonan Inst. of Tech., Fujisawa, Japan
- (25) RIKEN, Wako, Japan
- (14) Fac. of Systems Eng., Shibaura Inst. of Tech., Saitama, Japan (26) School of General Educ., Shinshu Univ., Matsumoto, Japan

Tibet AS ¥ Experiment

Tibet China (90.522°E, 30.102°N) 4300 m a.s.l., since 1989 Number of Scinti. Det. $0.5 \text{ m}^2 \text{ x } 789$ 707 mm 5mm Thick Lead į. Scintillator Angular Resolution for gamma rays ~0.9 deg.@3 TeV 500 mm ~0.5 deg.@10 TeV ~0.2 deg.@100 TeV Energy Resolution for gamma rays ~100% @3 TeV Fast Timing Density PMT ~60% @10 TeV PMT HV Cable ~40% @100 TeV F.O.V. ~2 sr Signal _able

Effective Area for AS ~37,000 m²

Energy Spectrum of Gamma Rays from Crab Nebula

ApJ, **525**, L93-L96 (1999) ApJ, 692, 61 (2009)

Other point source:

Flare of Mrk501

ApJ, 532, 302-307 (2000)

Flare of Mrk421

ApJ, 598, 242-249 (2003)

Northern Sky Survey & Cygnus Region

MGRO J1908+06

Tibet AS y : marginal excess ~4.4 o (pre-trial)

Subsequently Milagro: clear excess(~7.4 or)

Figure 1. The significance for an event excess as a function of right ascension and declination in a $1^{\circ} \times 1^{\circ}$ region with the position [R.A. = 287.1°, decl. = 5.5° (J2000)] in the center observed between 2000 October and 2001 September. For the each bin, the significance is calculated for the area of the circle with radius 1.4° and the bin center as the central point. The contour lines are drawn with a step of 0.5σ .

J.L. Zhang for the Tibet AS ¥ Collaboration, 28th ICRC, vol. 4, pp 2405 - 2408 (2003) Amenomori et al., 29th ICRC, vol. 4, pp 93 - 96 (2005) Amenomori et.al, ApJ 633,1005 (2005)

New Anisotropy Component and Corotation Evidence of the GCR (Science 314(2006)439-443)

Observation of TeV Gamma Rays From the Early 27 Fermi Bright Galactic Source

ApJ, 709:L6–L10, 2010

Result on y Emission at 100TeV without Having MUON Detector

(Zhaoyang Feng et al, ICRC2009) **Upper: Hints of** Preliminary **100TeV** y emission? Declination (degree) TibetMD would answer -1 this question -2 -3 -4 Right¹⁵⁰ Ascension(degree)²⁵⁰ Π4 Middle : EAS-1000 prototype array from 100TeV to 10 PeV. **R**24 -10 O 100 120 140 160 180 200 220 240 300 320 340 360 Lower: Y ray observation by satellite -10experiment EGRET -30 at GeV energy. -50

-70

380 346 392 300 280 280 240 220 200 180 180 140 120 100 80 80 40 20

The Tibet AS Y Experiment,

- Crab, Mrk501, Mrk421 observed
- marginal excess of three Milagro sources.
- Possible diffuse γ-ray signal from Cygnus region
- Hints of 100TeV ¥ emission

But

No new significant TeV γ -ray point source discovered

Advantages and disadvantage

- High altitude
- High duty cycle
- large FOV
- Big area

But

Poor ability for y /p discrimination

Future

TibetMD: Improve ability for y /p discrimination

- 100 TeV-region gamma ray astronomy
- Knee physics (combining YAC, see Dr. Huang Jing's talk at this afternoon.)

Tibet MD: 10,000m² underground Muon Detector Measuring muon number in air shower

MD array

- --- 12 x 16 =192 muon detectors (~10,000 m²)
- --- 2.5m underground (~515g/cm², ~19 X_0)

Each muon detector

- --- Water pool, made of concrete
- --- 7.2m x 7.2m x 1.5m depth
- --- 20" inch PMT x 2 (HAMAMATSU R3600)

Threshold

--- 1 GeV for Vertical Muon

Tibet MD: 10,000m² underground Muon Detector Measuring muon number in air shower

MD-I

MD array

- --- 12 x 16 =192 muon detectors (~10,000 m²)
- --- 2.5m underground (~515g/cm², ~19 X_0)

Each muon detector

- --- Water pool, made of concrete
- --- 7.2m x 7.2m x 1.5m depth
- --- 20" inch PMT x 2 (HAMAMATSU R3600)

Threshold

--- 1 GeV for Vertical Muon

Inside View of MD Prototype@2007

Number of muons vs. Shower Size (Simulation) (full-scale)

 $\Sigma \rho_{FT}$:Sum of particle density of all scintillation det.

∝ Shower Size <u>(a measure of energy)</u>

 $\Sigma N_{\rm PE}$:Sum of photoelectrons of all muon det.

 \propto the number of muons in air showers

<u>Survival Efficiency</u> (Simulation)

Energy	1.9TeV	10 TeV	100 TeV
$\Sigma N_{PE} \operatorname{cut}$ value	10PEs	~30 PEs	~910 PEs
BG rejection	95.4%	~99.7%	>~99.99%
γ survival	59%	~61%	~99%
Sensitivity	2.8 ftimes improved	~11 times improved	BG free

5σ or 10 ev. Sensitivity to Point-like Gamma-ray Source(Crab)

Origin of Cosmic Rays – A Fundamental Problem. Where do galactic cosmic rays under the knee region come from? Ieptonic VS hadronic origin of gamma-ray emission from celestial source?

Multi-wavelength Observation

Origin of Cosmic Rays – A Fundamental Problem. Where do galactic cosmic rays under the knee region come from? Ieptonic VS hadronic origin of gamma-ray emission from celestial source?

Multi-wavelength Observation

•100TeV gamma ray----A new window in electromagnetic wave observation

•Observation of 100TeV----greatly improve our knowledge to the question: where is the origin of CR? Very preliminary from now on

Let's see

Multi-TeV - 100 TeV cosmic ray electron and DM electron detection by

Tibet-III + MD

Peaks in electron spectrum

Dark Matter signal
Cosmic ray propagation effect
Nearby pulsar production
CRs(knee)+ γ -> e⁺ e⁻ (H.B.Hu et al)

Peaks in electron spectrum Pulsar Production **VS** CRs(knee)+ y -> e⁺ e⁻ Production

arXiv:0812.4457

ApJ 700:L170-L173, 2009

Electron spectrum@>Multi-TeV: sensitive in testing the models

Detection of Cosmic Ray Electron and Electron **Generated by Dark Matter**

MC study:

Cosmic ray electron:

extrapolation of electron spectrum measured by HESS Electron generated by DM :

- Calculated in a model independent way
- $x x \rightarrow e+e-$, Natural Scale: $\langle \sigma v \rangle = 3*10-26cm-3s-1$ 2)
- 3) Einasto distribution, only considering the main halo
- Considering transportation in Galaxy (GALPROP) **4**)

With MD-I (5 pools),

Data selection to get maximum S/B ratio: ●R<50m

Zenith angle<25° (secTheta<1.1)</p>

Sensitivity for Cosmic Ray Electron

Sensitivity for Indirect Detection of DM Cosmic ray electron VS electron fluxes from DM annihilation

Summary

• Tibet AS Y Experiment has been successfully operated since 1989

Crab, Mrk501 , Mrk421 observed Marginal excess of three Milagro sources. Possible diffuse gamma-ray signal from Cygnus region Hints of 100TeV γ emission

• Tibet III + MD: 10000 m² underground Muon Detector

Gamma ray point source: Sensitivity is 5-20% Crab @ 10-100 TeV (full-scale) or 10%-20% Crab @ 10-100 TeV (MD-I, 5 pools)

Cosmic ray electron: Would be detected in high significance Sensitive in testing the models related to the astrophysics origin of e+/e- excesses

DM electron: Could be detected by TibetIII+MD, If it follows the DM models used to explain the ATIC and PAMELA excess.

Status

MD-I (5 pools) were constructed in 2010 Setting up the MD detectors and resuming data taking in this year

Thanks for your attention!

Potential power in detecting the electrons from nearby pulsar

Fermi LAT	Class	R.A.	Decl.	Tibet-III	Milagro ^a	Source
Source		(deg)	(deg)	Signi.	Signi.	Associations
(0FGL)		_	_	(σ)	(σ)	
J0030.3+0450	PSR	7.600	4.848	1.7	-1.7	
J0357.5+3205	PSR ^b	59.388	32.084	-1.7	-0.1	
J0534.6+2201	PSR	83.653	22.022	6.9	17.2	Crab
J0617.4+2234	SNR	94.356	22.568	0.2	3.0	IC 443
J0631.8+1034	PSR	97.955	10.570	0.3	3.7	
J0633.5+0634	PSR ^b	98.387	6.578	2.4	1.4	
J0634.0+1745	PSR	98.503	17.760	2.2	3.5	Geminga
J0643.2+0858		100.823	8.983	-1.2	0.3	-
J1830.3+0617		277.583	6.287	-0.2	0.2	
J1836.2+5924	PSR ^b	279.056	59.406	-0.3	-0.9	
J1855.9+0126	SNR	283.985	1.435	0.7	2.2	W44
J1900.0+0356		285.009	3.946	1.0	3.6	
J1907.5+0602	PSR ^b	286.894	6.034	2.4	7.4	MGRO J1908+06
						HESS J1908+063
J1911.0+0905	SNR	287.761	9.087	1.7	1.5	G43.3 - 0.2
J1923.0+1411	SNR	290.768	14.191	-0.3	3.4	W51
						HESS J1923+141
J1953.2+3249	PSR	298.325	32.818	-0.0	0.0	
J1954.4+2838	SNR	298.614	28.649	0.6	4.3	G65.1+0.6
J1958.1+2848	PSR ^b	299.531	28.803	0.1	4.0	
J2001.0+4352		300.272	43.871	-0.5	-0.9	
J2020.8+3649	PSR	305.223	36.830	2.2	12.4	MGRO J2019+37
J2021.5+4026	PSR ^b	305.398	40.439	2.2	4.2	
J2027.5+3334		306.882	33.574	-0.3	-0.2	
J2032.2+4122	PSR ^b	308.058	41.376	2.4	7.6	TeV J2032+4130
						MGRO J2031+41
J2055.5+2540		313.895	25.673	-0.0	-0.0	
J2110.8+4608		317.702	46.137	0.3	1.1	
J2214.8+3002		333.705	30.049	-1.0	0.6	
J2302.9+4443		345.746	44.723	-0.0	-0.6	
LAT PSR J2238+59°	PSR ^b	339.561	59.080	2.5	4.7	

 Table 1

 Summary of the Tibet-III Array Observations of the Fermi Sources

Crab, full scale

Electron, 1yr operation

Signal and background of electron

