

AGN Family

- Classification
- AGN Types
- Interpretation

Lectures available at:

AGN Classification

AGN have been classified in the past on the basis of:

- Appearance of their optical spectra (Sey 1 vs. Sey 2)
- Luminosity (Seyfert → Quasar)
- Radio Power (Radio Loud vs. Radio Quiet)
- Morphology (FR I vs. FR II; host galaxy type)
- A number of other properties

Ultimately, we want a more physical description, e.g.:

- Black hole mass (M)
- Luminosity (L)
- Eddington Ratio $(L/L_{Edd} \sim L/M)$
- Radio Power

Seyfert Galaxies

• Nucleus - absolute blue magnitude: $M_B > -21.5$ (to distinguish from quasars)

- $L_{Bol} = 10^{43} 10^{45} \text{ ergs s}^{-1}$
- "Classic" Seyferts: z < 0.1 (SDSS has many higher z Seys.)
- Broad permitted lines (FWHM = 800 8000 km s⁻¹) from BLR
- Narrow permitted and forbidden lines (FWHM = 200 500 km s⁻¹) from NLR
 - Seyfert 1: both BLR and NLR, strong nonstellar continuum
 - Seyfert 2: only NLR, weak continuum (mostly stellar)
- Spectropolarimetry (Antonucci 1985) shows hidden BLR in some Seyfert 2s:
 - Balmer lines scattered into the line of sight by electrons and/or dust
 →Unified model

- Additional Osterbrock types:
 - Seyfert 1.5: narrow permitted components are easily seen
 - Seyfert 1.8: weak broad Hα and Hβ
 - Seyfert 1.9: only weak broad Hα detectable
 - Narrow-line Seyfert 1 galaxies (NLS1s) (not Seyfert 2s!)
 - FWHM (BLR) = 800 2000 km/sec
 - Strong Fe II (high density region like other BLRs)
 - strong excess below 1 –2 keV and rapid X-ray variability
- Seyferts are weak radio sources (radio blobs rather than jets)
- Strong X-ray sources at E > 2 keV
 - Seyfert 2 galaxies are often weak in soft X-rays (E < 2 keV), due to absorption by a large column of gas (e.g., the torus)
- Seyfert host galaxies are almost always spirals

Seyfert 1.5 - BLR+NLR

Seyfert 1.9

Quasars

- At redshifts z = 0.1 to ~ 7
- Higher luminosities than Seyferts: $L = 10^{45} 10^{47}$ ergs s⁻¹
- Quasars (quasi-stellar radio sources): discovered first by radio surveys, emission-line spectra revealed high redshifts
- QSOs (quasi-stellar objects): discovered optically from their strong blue continua, broad emission lines, X-ray flux, etc.
 - The terms "quasars" and "QSOs" have become interchangeable; now we use radio—loud quasars (RLQ) and radio-quiet quasars (RQQ)
 - Radio loud: $vF_v(6 \text{ cm})/vF_v(4400 \text{ Å}) \ge 10$
 - Only 5 10% of all quasars are RLQ
- Quasars have spectra like Seyfert 1 galaxies, but
 - stellar absorption features not easily detected
 - narrow-lines tend to be weak
- Type 2 quasars (no broad lines) have also been detected

Quasar Spectrum

Radio Galaxies

- Low-luminosity analogs of RL quasars
 (Seyferts are low-luminosity analogs of RQ quasars)
- Characterized by compact radio core, lobes, and (often) jets
 - 1. FR I: lower luminosity; bright in center and weak toward edges
 - 2. FR II: high luminosity; brighter at edges
 - 3. Dividing line: $L_v = 10^{32}$ ergs s⁻¹ Hz⁻¹
- Radio galaxies with emission lines are similar to Seyferts, but are typically found in giant ellipticals (E or cD)
- Broad-line radio galaxies (BLRG): similar to Seyferts 1s, but
 - 1. Balmer profiles are broader and more flat-topped
 - 2. Fe II emission is weaker
 - 3. Hα/Hβ ratios higher (steeper Balmer decrement)
- Narrow-line radio galaxies (NLRG): optical spectra are essentially identical to Seyfert 2s

NLRG

BLRG

Blazars

- Defined by 1) strong variability (time scales one day or less) from radio to X-rays and high polarizations (1-4%)
- Moderate to strong radio sources (radio loud)
- Two classes:
 - 1) BL-Lac objects: no strong emission or absorption lines
 - likely beamed FR Is
 - 2) Optically-violent variables (OVVs): highly polarized, variable, but have broad emission lines like quasars
 - likely beamed FR IIs
- Continuous spectra are less complicated than those of quasars likely synchrotron radiation plus Compton "upscattering"
- Interpretation: relativistically beamed jets close to our line of sight (overwhelms other emission components)
- Two types of BL Lacs:
 - High-frequency BL Lacs (HBLs): synchrotron peak in X-rays (or XBLs)
 - Low-frequency BL Lacs (LBLs): synchrotron peak in radio (or RBLs)

Blazar SEDs (Urry 1998)

Inverse Compton Models:

- Syncrotron SelfCompton (SSC)
- External Compton (EC): seed photons from accretion disk, BLR, Cosmic Microwave Background (CMB), etc.

Radio Galaxy Unification

FR IIs: OVV, RLQSO, BLRG, NLRG

FR Is:
BL Lac, WLRG,
(weak-lined
radio galaxy)

LINERS

- Low-ionization nuclear emission-line regions (LINERs) (Heckman 1980)
 - Strong low-ionization lines like Seyferts: [O I], [S II], [N II]
 - However, high-ionization lines are weak e.g., ([O III]/H β < 3)
- Lower luminosities than Seyferts: $10^{39} 10^{42}$ ergs s⁻¹
 - Difficult to detect against background of host galaxy
- Recent evidence shows that most LINERs are AGN
 (previous explanations include very hot stars and shock heating)
- About 1/3 of all luminous galaxies (including Ellipticals) contain LINERs!
- Broad Balmer emission detected in ~20% (type 1 LINERs)
- LINERs are more radio-loud than Seyferts
- There are some transition objects, which may a combination of starbursts (H II galaxies) and AGN

LINER (NGC 1052)

AGN – Approximate Space Densities (Local)

Type of Object	# per Mpc ³
Field galaxies	10-1
Luminous spirals	10-2
LINERs	3 x 10 ⁻³
Seyfert galaxies	10 ⁻⁴ (~1% of spirals)
Radio galaxies	10-6
Radio-quiet quasars (QSOs)	10-7
Radio-loud quasars	10-9

(Osterbrock, p. 310)