AGN Kinematics

- BLR profiles and kinematics
- Outflows seen in Absorption (AGN Winds)
- Emission-Line Outflows in the NLR
- Combined Absorber and NLR Outflows Studies

BLR Profiles and Kinematics

Wide variety, many with bumps
Many BLRGs have double-peaked
profiles (after subtraction of NLR)
Wings are logarithmic, but many
kinematic models can reproduce them
(Capriotti, et al. 1990, ApJ, 241, 903)

What is the BLR?

- bloated (irradiated) stars?
- surface of accretion disk?
- clouds in an outflowing wind?

Need more information on, size, geometry, and kinematics
→ Use variability and reverberation mapping

⁽Peterson, p. 69)

Reverberation Mapping

(Peterson, p. 83)

- Consider a δ -function continuum at τ = 0, and a thin spherical shell BLR
- When the ionizing continuum reaches the shell, it responds instantaneously
- The observer sees isodelay surfaces at $\tau = (1 + \cos\theta)r/c \rightarrow$ paraboloid
- Intersection with the shell gives an annulus with surface area $2\pi r^2 \sin\theta d\theta$
- If emissivity (ϵ) is same at all locations, the emission-line response is:

- CCF from above will give a box with centroid (lag) of $\tau = r/c$
- In general, $\Psi(\tau)$ gives the emission-line light curve for a δ -function continuum (Blandford & McKee 1982, ApJ, 255, 419)
- Observationally, the continuum is not a δ -function, so the emissionline light curve is a convolution of the continuum and transfer function:

 $L(t) = \int_{-\infty}^{\infty} \psi(\tau) C(t - \tau) d\tau \quad (L = \text{line flux}, C = \text{continuum flux})$ Deconvolution requires high S/N spectra at high temporal resolution Observationally, we usually settle for the CCF:

 $CCF = \int_{-\infty}^{\infty} L(\tau) C(t - \tau) d\tau \rightarrow \text{peak gives an average "lag"} \rightarrow \text{"radius"}$ "It can be shown that" (Peterson, p. 84):

 $CCF = \int_{-\infty}^{\infty} \psi(\tau) \operatorname{ACF}(t - \tau) d\tau \quad (ACF \text{ is for the continuum})$

 \rightarrow CCF gives a characteristic size, Ψ gives the geometry.

Attempt to recover the transfer function for Hβ in NGC 5548 data set (Horne et al. 1991, ApJ, 367, L5)
Lack of response at 0 time delay indicates 1) Lack of gas in line of sight (disk?) or

2) Optically thick gas in line of sight

Lags for Different Emission Lines

(Onken & Peterson, 2002, ApJ, 572, 746)

FWHM ~ $r^{-0.5}$

- → Suggests gravitational motion (or at least $1/r^2$ force)
- \rightarrow But radiation pressure could be important (Marconi et al. 2008)

Determining the kinematics directly \rightarrow (Radial) velocity-dependent Ψ $L(v,t) = \int_{-\infty}^{\infty} \Psi(v,t)C(t-\tau)d\tau$, where L(v,t) is the velocity-dependent profile

Examples of model $\Psi(v,\tau)$ (Welsh & Horne, 1991, ApJ, 379, 586):

- Determine $\Psi(v,\tau)$ observationally and compare with models
- A few projects claim success, but no clear consensus yet (severe data requirements!)

Outflows in AGN: Types 1) Jets in Radio-Loud Galaxies and Quasars

• Highly collimated, low density plasma traveling at relativistic speeds

- Blueshifted absorption troughs extending up to ~0.2c
- Observed in ~10% of radio-quiet quasars
- Possibly occur in most quasars, covering ~10% of the AGN sky

- Discovered as excess absorption lines near z of quasar ($z_{abs} \approx z_{emis}$)
- Narrow absorption (FWHM < 300 km s⁻¹) within 5000 km s⁻¹ of z_{emis}
- Mostly blueshifted, which indicates outflow from nucleus

4) "Intrinsic Absorption" in Seyfert Galaxies

(Hutchings, et al., 2002, AJ, 224, 2543

- Originally detected in optical spectra of NGC 4151 (Oke & Sargent 1968)
- Blueshifted He I and H I Balmer lines ($n_e > 10^8 \text{ cm}^{-3} \rightarrow \text{rare in Seyferts}$)
- UV absorption in resonance lines much more common (\sim 50% of Seyferts) ₁₂

Types of UV Absorption Lines - Summary

- 1. Galactic: Milky Way disk and halo ("high velocity clouds")
- 2. Intervening $(z_{abs} \ll z_{emis})$
 - Metal-line systems ("damped Lyα"): galactic halos and disks
 - "Lyα forest": IGM clouds (also some O VI, other high-ionization lines)
- 3. Seyfert "intrinsic" absorption lines
 - Mass outflow: up to -4000 km s⁻¹ (probably related to QSO associated)
 - Intrinsic to host galaxy (very narrow, within 300 km s⁻¹ of galaxy z)
- 4. Quasar narrow absorption lines ("NALs"): FWHM \leq 300 km s⁻¹
 - "Associated": mass outflow up to 5000 km s⁻¹
 - "High-velocity NALS": mass outflow up to 50,000 km s⁻¹
- 5. Quasar Broad Absorption Lines
 - Hi-BALs: velocity widths > 2000 km s⁻¹, outflow up to ~0.2;, highionization lines (C IV, N V, etc.)
 - Low-BALs: same as above, plus Mg II and other low-ionization lines
 - Mini-BALs: velocity widths between ~500 and 2000 km s⁻¹

IUE/HUT Observations of Intrinsic UV Absorption

(Kriss et al., 1995, ApJ, 454, L7)

- *IUE* discovered absorption spanning a wide range in ionization (O I to N V)
- *HUT* extended the ionization range to O VI, in the far-UV
- Ulrich (1988) found that 3 10% of *IUE* Seyferts have intrinsic absorption

- 60% of Seyfert 1 galaxies show intrinsic absorption; those that show UV absorption also show X-ray absorption.
- Global covering of the continuum source and BLR: $C_g = 0.5 1.0$
- Most absorbers are highly ionized (C IV, N V); only 10% show Mg II ¹

15

HST/STIS High-Resolution Spectra

High Resolution Spectra

- Multiple outflowing components detected in UV and far-UV.
- Similar velocity coverage for X-ray absorbers; however X-ray absorbers have higher ionization parameters (U) and column densities (N_H)
- Comparison of UV doublets indicates partial covering of BLR in some cases
- Mass outflow rates are comparable to accretion rates (~ 0.01 to 0.1 M_{\odot}/yr) 17

5) X-ray "Warm Absorbers" in Seyferts

(George, et al. 1998, ApJS, 114, 73

- Absorption by highly-ionized gas first claimed by Halpern (1984)
- Confirmed by ASCA detections of O VII and O VII edges (see above)
- Mathur (1994) claimed a connection between X-ray and UV absorbers
- Blueshifted absorption lines seen by *Chandra* confirmed outflow

Chandra 900 ks Spectrum of NGC 3783

How do we get more Info? \rightarrow Variability Monitoring

- Nearly all Seyfert 1 galaxies with intrinsic UV absorption show components with variable equivalent widths (EWs)
- Sources of EW (or ionic column density) variations:
 1) Variations in the ionizing continuum flux (variable U)
 2) Transverse motion of cloud across the BLR + continuum (variable N_H or covering factor in the line of sight)
- Variable ionizing continuum: can determine density (n_e) and distance from source (r) from time scale of variability (t)

$$n_e \approx \frac{1}{\alpha t_{rec}}$$
 $U = \frac{\int_{\nu_0}^{\infty} L_{\nu} / h\nu d\nu}{4\pi r^2 c ne}$ (U from photoion. models)

• Transverse motion: can determine the transverse velocity $v_T = \sqrt{C_{BLR}} d_{BLR}/t$, where C_{BLR} is the los covering factor

NGC 4151 - Variability in Ionizing Flux

• Low-ionization lines "appear at low continuum \rightarrow variable U

NGC 3783 – Variability due to Transverse Motion

Comp. 1 transverse velocity: $v_T = \sqrt{C_{BLR}} d_{BLR} / \Delta t \ge 550 \text{ km s}^{-1}$

22

Why are AGN outflows important?

- Quasar outflows have likely:
 - 1) contributed to the heavy-element abundance of the IGM (Hamann & Ferland, 1999, ARA&A, 37, 487)
 - 2) influenced formation of structure in the early Universe (Scannapieco & Peng 2004, ApJ, 608, 62)
 - 3) regulated the growth of supermassive black holes and galactic bulges (Ciotti & Ostriker, 2001, ApJ, 551, 131)
- Seyfert galaxies are the best AGN for probing the machinery of mass outflow in the form of AGN winds.
 - 1) Of all AGN, they have the largest apparent brightness.
 - 2) They are nearby (z < 0.1), and offer the best hope of directly resolving the outflowing gas.

So what are the absorbers?

- What is their origin?
 - Accretion disk, BLR, torus, NLR?
 - Some absorption lines come from the host galaxy's disk or halo (within ~300 km s⁻¹ of systemic velocity)
- What are their dynamics?
 - Radiatively-driven, thermal wind, hydromagnetic flows?
 (see Crenshaw, Kraemer, & George, 2003, ARA&A, 41, 117)
- Specific models?
 - Accretion-disk winds, evaporation from torus
- WE NEED TO KNOW THEIR LOCATIONS
 - Current indications: most are at distances of tenths to tens of parsecs from their SMBHs
 - Not near the accretion disk! [but high ionization, high velocity (~0.1c) outflows might be acc. disk winds]

Accretion-Disk Wind Movie

Emission-Line Outflows in the NLR

- Previous ground-based studies have claimed infall, rotation, parabolic orbits, outflow, etc.
- The problem: they relied on spatially integrated line profiles, since the NLR is only a few arcsecs across.
- HST/Space Telescope Imaging Spectrograph has angular resolution ~ 0.1".
- Large ground-based telescopes + adaptive optics (AO) + integral-field units (IFUs) also approach this resolution
 - → strong evidence for outflows in the NLR (Crenshaw et al. 2010, ApJ, 708, 419)

NGC 1068: NLR – [O III] Image

NGC 1068: STIS Long-Slit Spectrum (Hβ, [O III])

SW

→ outflow

Biconical Outflow Model for the NLR in NGC 1068

- Outflow matches the general trend.

- Radial acceleration followed by deceleration.

Kinematics of the Narrow-Line Region in NGC 4151

(Das et al. 2005, AJ, 130, 945)

incl = 45°, $\theta_{max} = 33^\circ$, $\theta_{min} = 15^\circ$, $v_{max} = 800$ km/sec, $r_t = 96$ pc

Mrk 573 – Ionized Spirals in the NLR

(Fischer et al. 2010, AJ, 140, 577)

- NLR geometry due to intersection between host disk and ionizing bicone.
- Kinematic indicate "in situ" acceleration of gas from the dust spirals.

What is the importance of NLR outflows?

- Provide AGN feedback on scales of hundreds of parsecs
 → may regulate black hole growth, terminate star formation, and explain black-hole mass/bulge correlations
- Provide alternate explanation for double-peaked NLR emission lines (Crenshaw et al. 2010)
 - → Often used to claim double SMBHs in distant merging galaxies
- Kinematic models can determine the *inclination* of the AGN system (bicone, torus, and presumably accretion disk)
 - → Investigate how intrinsic properties (SED, BLR velocities, absorber column densities) change with polar angle

Combined Studies of Absorbers and NLR Gas

- The absorbers and inner NLR have similar kinematics and locations in Seyferts (tenths to tens of pc, Crenshaw & Kraemer 1985).
- However, the NLR tends to have lower ionization parameters
 (U) and higher column densities (N_H) than UV absorbers.
- NLR global covering factor is typically only $C_g = 0.02$, whereas $C_g = 0.5$ for Seyfert UV absorbers.

 \rightarrow The UV absorbers may be a high-ionization, diffuse component of the inner NLR (or "intermediate-line region).

What are our goals?

- What is the structure and kinematics of AGN Winds?
- What is their impact in terms of AGN feedback?

Simple Geometric Model - UV absorber in NGC 4151

- $r = 0.1 \text{ pc}, \theta = 45^{\circ}, v_r = v_{los} = -490 \text{ km s}^{-1},$
- Assume $v_{\Phi} = 0$, then $v_{\theta} = v_T = 2100 \text{ km s}^{-1}$ ($v_T = 10,000 \text{ km s}^{-1}$ also shown)

Feedback Constraints: UV/X-ray Absorbers What are their mass outflow rates and kinetic luminosities?

•

$$M_{out} = 8\pi r N_H \mu m_p C_g v_r, \quad L_{KE} = \frac{1}{2} M_{out} v_r^2$$

 $C_g = \text{global covering factor} \approx 0.5$

Sample	
--------	--

 Table 1.
 AGN Fundamental Parameters

Name	$\log (L_{bol} / \text{ergs s}^{-1})$	$\log (M_{BH})$	L/L_{Edd}	(\dot{M}_{acc}) $(\mathrm{M}_{\odot}~\mathrm{yr}^{-1})$	Reference
NGC 3516	44.16	7.50	0.036	0.026	1
NGC 3783	44.25	7.47	0.047	0.032	2
NGC 4051	42.81	6.24	0.030	0.001	1
NGC 4151	43.87	7.66	0.013	0.013	3
NGC 4395	40.77	5.56	0.001	1.06E-5	4
$\mathrm{Mrk}\ 279$	44.87	7.54	0.169	0.134	4
NGC 5548	43.90	7.64	0.014	0.014	1
${\rm Mrk}~509$	45.27	8.16	0.104	0.336	2
Akn 564	44.61	6.42	1.242	0.074	5
NGC 7469	44.71	7.09	0.335	0.093	2

Table 2.AGN Feedback Parameter	ers
--------------------------------	-----

Name \dot{M}_{out} $(M_{\odot} \text{ yr}^{-1})$ $\log (L_{KE}$ /ergs s^{-1}) $\dot{M}_{out}/\dot{M}_{acc}$ L_{KE}/L_{bol} NGC 3516 $9.8E-03 - 7.7E+00$ $39.13 - 42.76$ $0.4 - 300$ $9.2E-06 - 4.0E-02$ NGC 3783 $1.0E+01 - 5.9E+01$ $42.75 - 43.18$ $320 - 840$ $3.2E-02 - 8.5E-02$ NGC 4051 $2.1E-03 - 6.6E-02$ $38.11 - 39.84$ $1.8 - 56$ $2.0E-05 - 1.1E-03$ NGC 4151 $6.5E-01 - 1.3E+00$ $40.70 - 41.48$ $48 - 100$ $6.8E-04 - 4.1E-03$ NGC 4395 $1.7E-05 - 2.8E-04$ $36.58 - 37.04$ $1.63 - 26$ $6.4E-05 - 1.9E-04$ NGC 5548 $>1.6E+00$ >41 >110 $>4.6E-03$					
NGC 3516 $9.8E-03 - 7.7E+00$ $39.13 - 42.76$ $0.4 - 300$ $9.2E-06 - 4.0E-02$ NGC 3783 $1.0E+01 - 5.9E+01$ $42.75 - 43.18$ $320 - 840$ $3.2E-02 - 8.5E-02$ NGC 4051 $2.1E-03 - 6.6E-02$ $38.11 - 39.84$ $1.8 - 56$ $2.0E-05 - 1.1E-03$ NGC 4151 $6.5E-01 - 1.3E+00$ $40.70 - 41.48$ $48 - 100$ $6.8E-04 - 4.1E-03$ NGC 4395 $1.7E-05 - 2.8E-04$ $36.58 - 37.04$ $1.63 - 26$ $6.4E-05 - 1.9E-04$ NGC 5548 $>1.6E+00$ >41 >110 $>4.6E-03$	Name	\dot{M}_{out} (M _{\odot} yr ⁻¹)	$\log (L_{KE})$ /ergs s ⁻¹)	$\dot{M}_{out}/\dot{M}_{acc}$	L_{KE}/L_{bol}
NGC 7469 $<1.1E+01$ <42 <120 $<4.6E-03$	NGC 3516 NGC 3783 NGC 4051 NGC 4151 NGC 4395 NGC 5548 NGC 7469	9.8E-03 - 7.7E+00 1.0E+01 - 5.9E+01 2.1E-03 - 6.6E-02 6.5E-01 - 1.3E+00 1.7E-05 - 2.8E-04 >1.6E+00 <1.1E+01	39.13 - 42.76 42.75 - 43.18 38.11 - 39.84 40.70 - 41.48 36.58 - 37.04 >41 <42	0.4 - 300 320 - 840 1.8 - 56 48 - 100 1.63 - 26 >110 <120	9.2E-06 - 4.0E-02 3.2E-02 - 8.5E-02 2.0E-05 - 1.1E-03 6.8E-04 - 4.1E-03 6.4E-05 - 1.9E-04 >4.6E-03 <4.6E-03

Conclusions

- Outflow rates are much higher than accretion rates → most of the infalling gas gets blown out before it reaches the inner accretion disk
- Kinetic luminosities are likely high enough to provide the 0.5 5% required in feedback models (see Hopkins & Elvis 2010)
- Outflow rates in NLR can be higher than those from UV absorbers → in situ acceleration in NLR (see direct evidence in Fischer et al. 2010, AJ, 140, 577)