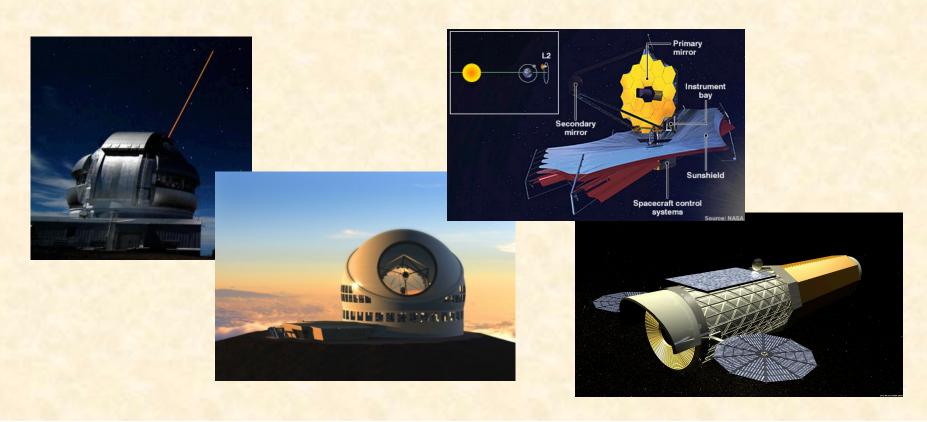
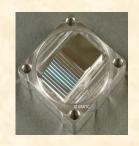
Future Observations of AGN

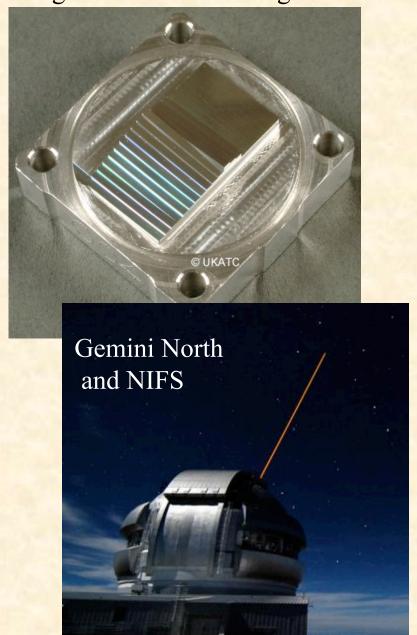
• Integral Field Units (IFUs)

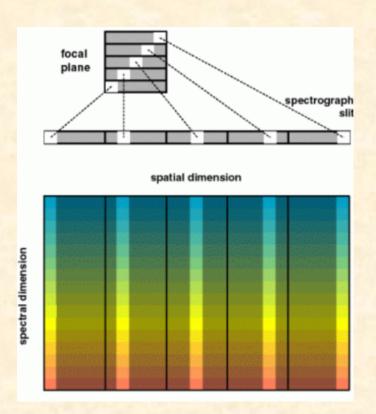
James Webb Space Telescope (JSWT)

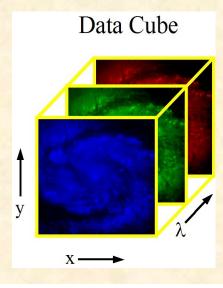


Giant Segmented Mirror Telescopes (GSMT)


• International X-ray Observatory (IXO)

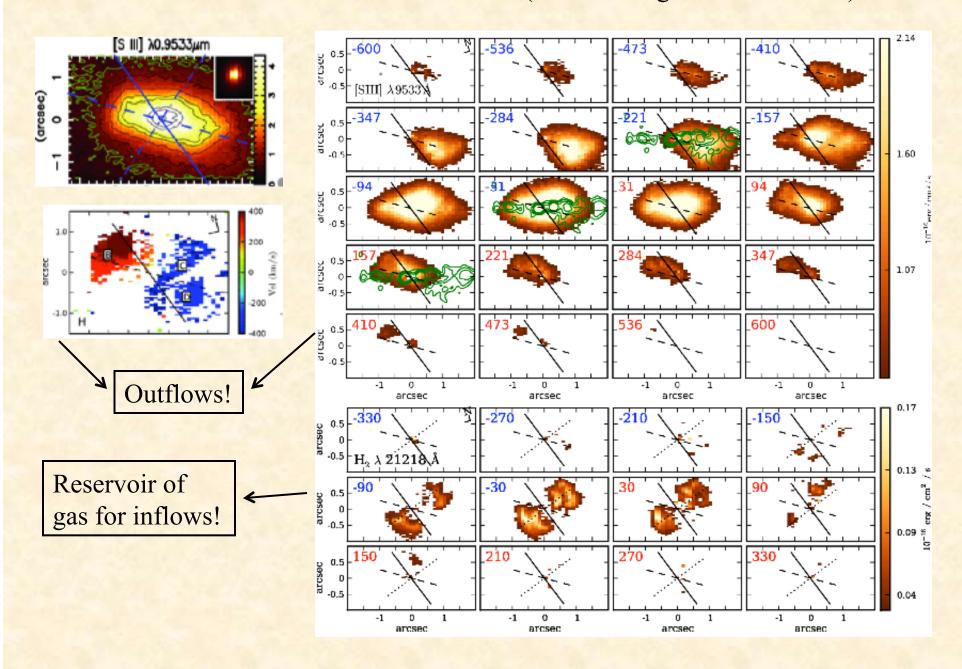

Integral Field Units



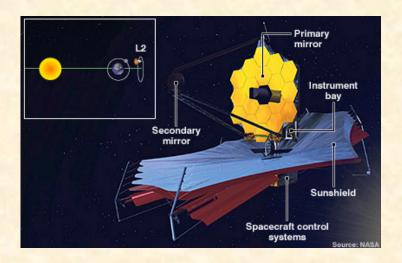


- Three Basic Types
 - Lenslets: microlens array can be tilted around the optical axis so that spectra do not run into each other (allowed length of spectra is small) Ex) WHT Sauron
 - Fiber Optics: fibers transfer light to the spectrograph slit
 (there are gaps between the fibers) Ex) Gemini GMOS
 - Image Slicers: instrument mirror segmented into thin vertical slices that are slightly tilted with respect to each other (difficult to fabricate) Ex) Gemini NIFS
- Best used with adaptive optics (AO) on large telescopes to give angular resolution of ~0.1"

Integral Field Unit – Image Slicer



Near-infrared Integral Field Spectrometer (NIFS)


- Only available on Gemini North
- Spectral Resolving Power ~ 5000 over 3" x 3" at ~ 0.1" angular resolution
- Spectra in Z $(0.9 1.1 \mu m)$, J $(1.1 1.3 \mu m)$, H $(1.5 1.8 \mu m)$, and K $(2.0 2.4 \mu m)$ bands
- Works with adaptive optics system ALTAIR using natural or laser guide stars
- For AGN, access to:
 - [S III] emission in Z band to map ionized gas in the NLR
 - H₂ emission lines in K band to map warm molecular gas
 - CO bandheads and other stellar features in H and K bands to map stellar velocities and dispersions for determining black hole masses.

NGC 4151 Observations with NIFS (Storchi-Bergmann et al. 2010)

James Webb Space Telescope (JWST)

- 6.5-m IR telescope at L2
- Segmented mirror
- Arian 5 launch (ESA)
- NASA/ESA/CSA sponsors

- Angular resolution ≈ 70 mas at 2 μ m
- Four main instruments:
 - NIRCam (near-IR camera): $0.6 5 \mu m$ (also wavefront sensor)
 - NIRSpec (near-IR spectrograph): $0.6 5 \mu m$; R = 1000 multiobject spectroscopy, R = 2700 IFU, or R = 2700 long slit mode
 - MIR (Mid-IR Instrument): $5 27 \mu m$, camera and imaging spectrograph
 - TFI (Tunable Filter Imager): $1.5 5 \mu m$ narrow-band imaging

James Webb Space Telescope (JWST)

AGN Science

- General goals: find first stars and first galaxies; track evolution of SMBHs and galaxies
- Redshifts, luminosities, and AGN fraction for highly obscured sources
- Properties of host galaxies at all redshifts; track morphologies, mergers, and star formation
- Investigate M_{BH} vs. M_{galaxy} relations as a function of z to probe growth and coevolution of SMBHs and galaxies

In danger of being cancelled by the U.S. Congress:

Year	Launch	Budget
1997	2007	0.5 Billion
1998	2007	1
1999	2008	1
2000	2009	1.8
2002	2010	2.5
2003	2011	2.5
2005	2013	3
2006	2014	4.5
2008	2014	5.1
2010	2015	6.5
2011	2018	8.7

(see Jane Rigby's presentation at: https://webcast.stsci.edu/webcast/detail.xhtml?talkid=2607&parent=1)

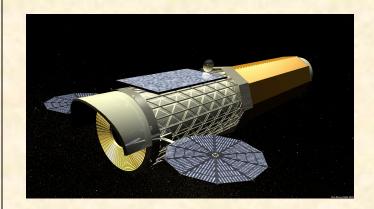
Giant Segmented Mirror Telescope

Giant Magellan Telescope

Thirty Meter Telescope

U.S. 2010 Astronomy Decadal Survey - Ground-based Priorities:

- LSST Large Survey Synoptic Telescope
- Mid-scale innovations program
- GSMT Giant Segmented Mirror Telescope
- ACTA
 – Atmospheric Čerenkov Telescope Array


AGN Science:

- High spatial resolution images and spectra in the IR (much better sens.)
- Spectropolarimetry of many more AGN (currently photon-starved)

International X-ray Observatory (IXO)

U.S. 2010 Astronomy Decadal Survey – Space-based Priorities:

- 1) WFIRST Wide Field IR Survey Telescope
- 2) Explorer Programs
- 3) LISA Laser Interferometer Space Antenna
- 4) IXO International X-ray Observatory

- Collaboration between NASA, ESA, and JAXA
- Grazing incidence telescope with effective area of 3 m², 5 " resolution
- Microcalorimeter spectrometer: array covering several arcmin of the sky at spectral reolving power of ~1000
- Other possible instruments: Wide-field imaging, high-resolution timing, and polarimetry

AGN Science:

- Broad Fe Kα emission: black hole spin and accretion disk inclinations
- Nature of the soft X-ray excess
- Warm absorber properties and variability