Host Galaxies of AGN at Low Redshift

- Morphologies and companions
- Star Formation
- Bars in host galaxies

(Koss et al. 2011)
Lectures available at:
http://www.chara.gsu.edu/~crenshaw/beijing_agn.html

Morphologies

- Seyfert galaxies are found primarily in early type (large bulge) spirals.
- Consistent with larger black hole masses and higher possible luminosities
- LINERs are found in all types of spirals and even some ellipticals
- "Dwarf" Seyferts (e.g., NGC 4395 with $\mathrm{M} \approx 10^{5} \mathrm{M}_{\odot}$) found in late type spirals and even dwarf galaxies.
- In general, AGN host galaxies and inactive galaxies have similar, if not identical, morphologies at low $z(<0.1)$.

Companions and Mergers

ULIRGS

Companions and Mergers

- Most ULRIGs are found in merging systems, often major mergers (two large galaxies).
- Quasars and radio galaxies also prefer companions compared to inactive galaxies.
- Results on Seyfert galaxies have been contradictory.

Local AGN activity likely arises from minor mergers (i.e., large galaxies absorbing smaller ones like their own satellites).

Star Formation

- Is there a correlation between AGN activity and star formation?
- One might expect a correlation because both can be fueled by the same event (e.g., mergers, bars).

Stellar Populations

(Sparke \& Gallagher, p. 268)

- Young populations ($<1 \mathrm{Gyr}$) revealed by strong UV continuum flux, Balmer absorption lines, H α emission, [OII] emission
- Star formation also indicated by mid-IR PAH features, far-IR emission
- The star formation rate (SFR) scales with these strengths of these features

Older Populations

(Sparke and Gallagher, p. 267)

- Strength of $4000 \AA$ break given by parameter D4000 (Kauffmann et al. 2003)
- For stars <1 Gyr in age, the opacity from metal lines at $4000 \AA$ is low, due to ionization, and thus D4000 is low.

Results from SDSS

Kauffmann et al 2003, MNRAS, 346, 1055

- SFR correlated with L[O III] (AGN luminosity)
- Fraction of hosts with stellar populations <1 Gyr increases with AGN luminosity (see also Veilleux 2008, astro-ph)

SDSS Results: Seyferts vs. LINERs

(Kewley et al. 2006, MNRAS, 372, 961)

- LINERs have larger D4000, and thus older populations.
- LINERs are also more massive and less dusty and than Seyferts

Star Formation - The "Blister" Model

(Elmegreen and Lada, 1977, ApJ, 214, 725)

Mid-IR: PAH Emission Features

ISO spectrum of starburst region in M82

- Polycyclic Aromatic Hydrocarbons (PAHs): linked benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ rings: naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right) \ldots$ ovalene $\left(\mathrm{C}_{32} \mathrm{H}_{14}\right) \ldots$
- Seen in emission in photodissociation regions (PDRs)

Spitzer Observations: Star Formation

(Netzer et al. 2007, ApJ, 666, 806)

- Far-IR continum and PAH features measure SFR.
- Optical continuum radiation primarily from AGN.
- Strong correlation between SF and AGN activity

Stellar Bars

- Large-scale stellar bars can funnel gas (and dust) into the nucleus..

Stellar Bars - A Case Study

- Bars should provide an efficient means to fuel the nuclei of active galaxies (Shlosman et al. 1990, Nature, 345, 679).
- Most studies find a similar fraction of bars in Seyferts and normal spiral galaxies (e.g., Hunt \& Malkan, 1999, ApJ, 516, 660).
- What happens if we look at subtypes? - BLS1s and NLS1s
- Most NLS1s are accreting near their Eddington limits (Pounds et al., 1995, MNRAS, 277, L5).
- Is there a connection between NLS1s and properties of their host galaxies (i.e., to support the high accretion rates)?
- Krongold et al. $(2001$, AJ, 121, 702) found no difference in the frequency of companion galaxies in NLS1s and BLS1s.
- What about bars inNLS1 and BLS1 host galaxies ?

Sample

- HST/WFPC2 optical images from the STScI archives
- 91 Seyfert 1 galaxies (13 NLS1s) at $\mathrm{z}<0.035$ (Malkan et al. 1998, ApJS, 117, 25)
- 6 NLS1s at $\mathrm{z}<0.085$ (Veron-Cetty et al. (2001, A\&A, 372, 730)
- Measurements of FWHM $(\mathrm{H} \beta)$ emission from the literature

$$
\begin{aligned}
& \text { MCG 6-26-12 (NLS1) } \\
& \text { HST/WFPC2 } \\
& \text { F606W filter } \\
& \text { PC chip - } 34^{\prime \prime} \times 34 "
\end{aligned}
$$

NLS1 Images

MCG 6-26-12 (22.7 $\times 22.7 \mathrm{pc})$

Mrk $42(17.0 \times 17.0 \mathrm{kpc})$

Mrk 335 ($17.8 \times 17.8 \mathrm{kpc})$

MS 01442-0055 (28.3 $\times 28.3 \mathrm{kpc})$

Results

- 91% of the Seyfert 1 s are spirals
- 33% of the Seyfert 1 spirals have bars (similar to normal spiral galaxies)
- The bars begin at $\sim 1 \mathrm{kpc}$ from the nucleus and extend to $5-10 \mathrm{kpc}$.
- 65% of the NLS1 spirals have bars
- 25% of the BLS1 spirals have bars
- The fraction of Seyfert 1 spirals with bars decreases with increasing FWHM (Hß)

Seyfert 1s - Fraction with Bars vs. FWHM (Hß)

(Crenshaw et al. 2003, AJ, 126, 1690)

Dust Morphologies in the Nuclear Regions of Seyfert 1s

 Direct Images and Structure Maps (Pogge \& Martini 2002, ApJ, 569, 624)

NGC 6212

- Flocculent dust spiral

ESO 438-G9

- Grand design dust spiral

Nuclear Dust Spirals

(Deo et al. 2006, 132, 321)

- NLS1s show higher fraction of grand design nuclear dust spirals
- NLS1s show higher fraction of nuclear star forming rings
- Consistent with more efficient fueling of their nuclei compared to BLS1s to support their claimed higher Eddington ratios.

Speculation - Evolutionary Scenario

- NLS1s show evidence of recent bursts of star formation (Mathur, 2000, MNRAS, 314, L17), from high N V/ C IV ratios (Wills et al., 1999, ApJ, 515, L53) and high mid-IR brightness (Moran et al. 1996, ApJ, 106, 341).
- NLS1s appear to have smaller SMBH mass to bulge mass ratios (Wandel, 2002, ApJ, 565, 762).
- Outer rings are much more common in BLS1s ($\sim 40 \%$) than normal galaxies ($\sim 10 \%$) (Hunt \& Malkan, 1999, ApJ, 516, 660).

1. Start with a small SBMH in an inactive galaxy.
2. A stellar bar forms in a few $\times 10^{8}$ years due to a tidal disruption or asymmetrical distribution of gas in the inner disk (Combes \& Elmegreen, 1993, A\&A, 271, 391).
3. The bar drives gas into the nucleus, initiating star bursts and the NLS1 phase over $\sim 10^{8}$ years .
4. Once $\sim 5 \%$ of the disk' s mass has been redistributed into the nucleus, the bar is destroyed (Norman et al., 1996, ApJ, 462, 114) .
5. The mass of the SMBH has increased by several to 10 times, but the fueling flow has been reduced, so that the AGN is now a BLS1. The outer rings take several $\times 10^{9}$ years to form, and are the remnants of the earlier disturbance.
