

第三届全国辐射探测微电子学术交流会

中科大粒子物理实验 ASIC研究进展

<u>秦家军</u>赵雷

中国科学技术大学 核探测与核电子学国家重点实验室 2023年10月22日 广西•南宁

- ▶ 高精度时间测量ASIC
- ▶ 高精度电荷测量ASIC
- ▶ 波形数字化SCA ASIC
- ▶ MAPS硅像素读出ASIC
- ▶数据传输ASIC
- ▶总结和展望

▶ 高精度时间测量ASIC

- ▶ 高精度电荷测量ASIC
- ▶ 波形数字化SCAASIC
- ▶ MAPS硅像素读出ASIC
- ▶ 数据传输ASIC

▶ 总结和展望

高精度时间测量技术

全差分型跨阻饱和放大ASIC

▶ 用于MRPC读出的高带宽全差分型跨阻饱和放大ASIC

前放: 共栅极, 低输入阻抗; 冷端匹配, 输入阻抗可调 甄别: 采用多级饱和放大的方式实现甄别

全差分型跨阻饱和放大ASIC

- ▶ 测试结果
 - ◇ 高带宽: ~ 500 MHz
 - ◇ 可调输入阻抗: 30~200Ω, 实现阻抗匹配
 - ◇ 动态范围: 100~1000 fC (2 ns脉宽, 50Ω输入阻抗)
 - ◇ 高时间精度: jitter < 10 ps @ ± 10 mVpp/50Ω</p>

TDC ASIC研究(1)

- ▶ 延时链结构TDC
 - ◇ 16通道
 - ◇ 时间精度: <60 ps RMS
 - ◇ 功耗: 128 mW

TDC ASIC研究(2)

- ▶ 游标结构
 - ◇ 6通道
 - ◇时间精度:~10 ps
 - ◇ 功耗: ~10 mW/channel

放大甄别+TDC ASIC

- ▶ 下一步计划
 - ◇ 将放大甄别电路和TDC电路集成
 - ◇ 预期目标: 8通道, 整体时间测量精度好于10 ps @200 fC

用于LGAD读出的原型ASIC研究

- ▶ LGAD: 低增益雪崩探测器
 - ◇ 探测器小颗粒度:~mm2
 - ◇ 窄脉冲: 典型信号宽度 600 ~ 1200 ps
 - ◇ 微弱信号: 典型电荷量 ~10 fC
 - ◇ 高时间精度: jitter < 25 ps @ 10 fC
- 已完成5×5原型ASIC(模拟前端 +TDC)的设计

- ▶ 测试结果表明其功能正常,全通道时间精度好于20 ps
 - ◇ TDC精度好于10 ps
 - ◇ TOA jitter 好于20ps @10fC 4pF

10

40

0 Channel Number

▶ 高精度时间测量ASIC

▶ 高精度电荷测量ASIC

- ▶ 波形数字化SCAASIC
- ▶ MAPS硅像素读出ASIC
- ▶ 数据传输ASIC

▶ 总结和展望

STCF RICH前端读出ASIC

- 针对预研中的超级粲陶工厂(STCF),粒 子鉴别器(PID)计划采用基于MicroMegas 的环形成像型切伦科夫探测器(RICH)。
- 需要对庞大且较高颗粒度的读出通道进行高 精度的电荷和时间信息测量。
- 完成了32通道的模数混合读出芯片原型,同
 时集成前端模拟调理电路与模数转换电路。

芯片结构框图

 测试结果

 通道数
 32

 动态范围
 48 fC

 等效电荷噪声 @20 pF
 < 0.2 fC RMS</td>

 定时精度 @20 pF
 < 0.9 ns RMS</td>

 死时间
 ≤ 50 µs

芯片实测性能

芯片显微图

更大动态范围的前端读出芯片

为适应将来更高增益下的探测器读出需求,更高动态范围(2 pC与10 pC)的16通 道芯片也已研制并流片完成。

芯片结构框图

10 pC动态范围下等效电荷噪声

		2 pC 动态范围	10 pC 动态范围		
设计目标 实测结果		实测结果	设计目标	实测结果	
ENC@ 100 pF	< 1 fC	<0.75 fC @ 成形时间≥470 ns	< 5 fC	< 3.00 fC @ 成形时间≥480 ns	
积分非线性	积分非线性 < 2% 1.33 %		< 2%	1.31 %	
死时间 ≤ 100 μs ≤ 10 μs		≤ 10 µs	≤ 100 µs	≤ 10 µs	
单通道功耗	≤ 15 mW	~ 8 mW/ch	≤ 15 mW	~ 8 mW/ch	

详见报告:用于MPGD探测器的前端读出芯片原型研究 李嘉铭

▶ 高精度时间测量ASIC

▶ 高精度电荷测量ASIC

▶ 波形数字化SCA ASIC

▶ MAPS硅像素读出ASIC

▶ 数据传输ASIC

▶ 总结和展望

- ▶ 已完成多版的ASIC电路设计
- ▶ 设计参数:
 - ◇ 差分输入
 - ◇ 采样率 5 Gsps
 - ◇ 采样深度256
 - ◇ 12-bit 粗计数器
 - ◇ 片内数字化

延时单元 第三届全国辐射探测微电子学术交流会

比较器偏置隔离

测试结果 ◇ 噪声~0.7 mV RMS ◇ 输入动态范围 1.2 V ◇ 功耗200 mW 2 3 Channel 2 6 7 8 50 100 150 200 250 Cell $\times 10^4$ 4 RMS: 0.62 mV 3.5 3 2.5 Count

第三届全国辐射探测微电子学术交流会

1.5 1 0.5

Δ

-3

-2

-1

0

Noise(mV)

1

0.9

0.8

0.7

0.6

0.5

2

3

- ▶ 测试结果
 - ◇ 时间精度 < 6 ps (刻度后)

▶ 高精度时间测量ASIC

- ▶ 高精度电荷测量ASIC
- ▶ 波形数字化SCAASIC

▶ MAPS硅像素读出ASIC

▶ 数据传输ASIC

▶ 总结和展望

STCF MAPS研究

▶ STCF物理目标

Process	Physics Interest	Optimized	Requirements	
	-	Subdetector	•	
$ au o K_s \pi \nu_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:	
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	> 99% at p_T > 0.3 GeV/c; > 90% at p_T = 0.1 GeV/c	
 $D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \mu\text{m}$ at 1 GeV/c	

▶ STCF IKT备选方案之一为MAPS

与中科大徐来林教授合作研究

MAPS设计需求

 平均单层物质量≤0.35% X₀
 功耗: ≤ 100 mW/cm²
 位置分辨: ≤ 100 µm
 时间分辨: ≤ 50 ns
 ToT 测量功能

Pixel Sensor

- ▶ Sensor尺寸考虑
 - ◇ 位置分辨要求不高→选择较大尺寸像素,减少读出电路规模,进而降低功耗
 - ◇ 尝试比较多种规格sensor

Diameter=2 µm Spacing=2 µm

A: 28×30

B: Pixel-based 170×31

C: Pixel-based 96×60

D: Strip-based 170×31

E: Strip-based 96×60

▶ Sensor工艺考虑

- ◇ 需求: 高阻外延层、四阱工艺
- ◇ 基于国外成熟工艺(TJ180)进行仿真设计
 - ・ 外延层电阻率1kΩ·cm
- ◇ 探索国产工艺(NexChip)
 - · 合肥晶合FCIS, 外延层电阻率10Ω·cm

TJ-MAPS芯片结构

▶ TowerJazz180nm工艺: 高阻外延、4阱、6层金属

第三届全国辐射探测微电子学术交流会

列优先级读出 22

▶ 功耗分析

◇预计功耗<60 mW/cm²

贡献项	功耗	备注	
模拟功耗(像素内)	26.7 mW/cm^2		
外围数字电路功耗	21.1 mW		
动态功耗	2.4 mW/cm^2	30.5 MHz/chip	
时间戳分发功耗	12.0 mW/cm^2	Buffer=8	
PLL	7.3 mW		
LVDS	$9.4 \mathrm{mW} \times 2$	800 Mbps	
合计功耗	52.9 mW/cm^2	芯片尺寸~4 cm ²	

以180×30 μm²、有源区连接为例,全尺寸芯片功耗分析

TJ-MAPS芯片设计进展

าเทว	
IIDZ	
ΠPZ	

	Chip1	Chip2		Chip3		Chip4
Pixel size (µm×µm)	28.1x30.1	96.4x59.6		170.0x31.0		Mixed
Sensor	A	Е	С	D	В	A+B+C+D+E
Pixel array	16x30	8x12	8x12	60x8	60x7	Mixed
Readout	Column-drain	Column-drain		Column-drain		Analog readout
ToA & ToT	Х	\checkmark		\checkmark		X
Chip area (mm ²)	1.5x1.4	2.5x1.6		2.8x3.1		1.2x1.4

FCIS-MAPS芯片结构

▶ 合肥晶合90nm FCIS工艺: 低阻外延、3阱、4层金属

FCIS-MAPS&3T芯片设计进展

▶ MAPS与3T芯片已基本完成

- $\diamond~3008 \mu m$ $\times~2937~\mu m$ & 3432 μm $\times~2910~\mu m$
- ◇ 预期流片时间: 2024 Q1

与山东大学合作设计

▶ 高精度时间测量ASIC

- ▶ 高精度电荷测量ASIC
- ▶ 波形数字化SCAASIC
- ▶ MAPS硅像素读出ASIC
- ▶数据传输ASIC

▶ 总结和展望

数据汇总与传输ASIC

- NICA MPD
- ▶ 内径迹探测器(Inner Tracker)
 - 2 barrels (IB,OB)
 - 5 cylinder layers
- ▶ 外桶(Outer Barrel)
 - MAPS ASIC based
 - ◇ 共42个模组(Staves)

- ▶ 基于国产ASIC的读出电子学 架构
 - ◇ 前端数据汇总与传输ASIC与 后端光纤数据传输以及光信号 驱动ASIC 一起构成完整的数 据传输链路
 - · NICA GBT系列芯片由华师研制
 - ◇ 降 低 系 统 复 杂 度 并 摆 脱 对 FPGA的依赖

数据汇总与传输ASIC

- ▶ NICA_ROC ASIC设计
 - ◇ 接收多片前端MAPS芯片的输出数据(串行400 Mbps)和状态信息
 - ◇ 预处理、汇总、打包后上行到后端
 - ◇ 接收控制、时钟和触发信号并转发给MAPS芯片

•

•

时钟/触发/控制模块

配置模块

- 数据收发模块
- 数据流切换模块
- 数据汇总组帧模块

数据汇总与读出控制原型ASIC

▶ V1 测试

- 动态功耗: 0.702 W
- 最小处理时长: 0.49 µs
- BER: <10⁻¹²
- NICA_ROC可以正确解码
 GBT格式数据,并为前端读
 出板上各模块芯片提供配置
 和全局命令,测试遍历探测
 器的所有指令;
- NICA_ROC能正确解码触发 信息,产生有效触发信号;
- NICA_ROC可以实现不同的 数据汇总模式

控制指令测试

数据汇总模式测试

数据汇总与读出控制原型ASIC

• 8路串行输入

✓ 400Mbps -1.2Gbps

• 4路串行输出(数据率可配置)

✓ 160Mbp-1.28Gbps

片内集成宽范围自适应数据时钟恢复(CDR)

原理样片_V1版图

- •片内集成锁相环(PLL)电路
 - ✓ 为探测器芯片提供稳定时钟
- •I²C、UART、SPI等多种控制接口
 - ✓ NICA_GBT和PU板的控制
 - 信息分发和监控信息上传

针对粒子物理实验读出电子学的需求,开展了系列ASIC研究 ◇高精度时间测量ASIC:放大甄别ASIC、TDCASIC ◇高精度电荷测量ASIC:不同量程,片内数字化 ◇波形采样SCAASIC:高精度时间测量 ◇MAPS像素探测器读出:面向STCFITK应用需求 ◇数据传输ASIC:ROCASIC

更高精度、更高集成度、更低功耗、更多功能集成…

谢 谢!