

高能所专用集成电路研究进展

魏微

中国科学院高能物理研究所 核探测与核电子学国家重点实验室 2023-10-22

ASIC主要研究方向简介

主要内容

- ・ ASIC主要研究方向
- 工程应用情况(成熟芯片)
 - HEPS
 - JUNO & LHAASO
 - CSNS
- 工程预研情况(近成熟芯片)
- 发展规划和未来布局
- 主要问题

工程应用-高能光源硅像素探测器-HEPS-BPIX

像素读出芯片ASIC

前端模块: 传感器+ASIC+倒装焊

传感器Sensor

• 基于单光子计数模式和混合型像素探测器结构

• 主要关键技术均实现了国产化

Specs	Parameters
Sensor	320µm silicon PIN
Pixel size	150µmX150µm
Pixels	1248X1152 (1.44M) (Module: 208X288, with 4X6 modules)
Counting rate	>2Mcps/pixel
Frame rate	1.2kHz continuous
Energy range	8-20keV
Threshold	Single threshold
Dead pixels	<1‰
Gaps	1.6mmX2.5mm

工程应用-高能光源硅像素探测器

	一代样机 (2015-2016)	二代样机 (2017-2018)	三代样机 (2019-2021)	四代样机 (2022-)
像素尺寸	150 μ m $ imes$ 150 μ m	150 μ m $ imes$ 150 μ m	150 μ m $ imes$ 150 μ m	140 μ m $ imes$ 140 μ m
能量阈值	1	1	1	2
读出芯片	BPIX-20	BPIX-20	BPIX-20	BPIX-40
模块数/个	6	16	24	40
像素/个	360K	~1M	1.4M	6M
模块封装	Wire bonding Rigid-flex PCB	Wire bonding Rigid-flex PCB	Through Silicon Via (TSV) Rigid-flex PCB with low CTE (coefficient of thermal expansion)	Advanced wire bonding LTCC (Low Temperature Co-Fired Ceramic)
死区面积	26.3%	26.3%	11.8%	~9.3%
备注	原理样机	工程样机	工程样机	HEPS光源线站系统

魏微、张杰、李贞杰等, weiw@ihep.ac.cn

工程应用——散裂中子源通用粉末衍射仪

SAMGC: a 64(Sixty-four)-channel ASIC for low-noise and low-power readout of Multi-anode photomultiplier tubes for GPPD at CSNS

- ◆ 用于GPPD的MaPMT探测器
 - > 鉴别区分中子、γ光子
 - > 单芯片64通道,提高了系统集成度
 - ▶ 各项性能指标均满足CSNS项目的要求
- ◆ ASIC芯片工程批流片成功
 - ▶ 已用于CSNS工程项目(2018年通过国家验收)
 - > GPPD一期6912通道,全面积24960通道
- ➢ 2019 CSNS SiPM读出ASIC
 - CSNS_VASD: Voltage-Amplifier-Shaper-Discriminator asic for csns

性能参数	设计指标		
输入电荷量	2pC~20pC(离散,最可几2pC~5pC)		
单通道计数率	100K		
成形时间	80ns/160ns		
通道数	64		
输出信号特征	单稳态输出,宽度300ns~lus可调		
阈值	5bit-DAC,单通道可调		

封装的MaPMT芯片

♦ GPPD谱仪束流期间读出电 子学的运行工作

- ➢ 至今无电子学死道 和坏道情况出现
- ▶ 保持稳定运行,为 谱仪稳定工作、顺 利开展谱仪实验提 供了可靠保证

样机系统

标准Si粉末样品测试结果@GPPD, 2017.13 李怀申 lihs@ihep.ac.cn

工程应用——江门中微子实验水下电子学

- 针对江门中微子实验20寸PMT的 ASIC前放JUNOCC完成工程批量产
- ・ 成功用于LHAASO实验WCDA-PMT 读出电子学中,提供3000片芯片
- ・ 大动态范围: 1~4000pe及分量程设计、 低噪声
- 高可靠性:实验验证满足JUNO实验 水下电子学高可靠性要求
- · 已完成量产7万片芯片, 良率99.4%

	指标
动态范围(PMT增益10 ⁷)	1-4000pe
噪声	0.05pe
量程	3(实际应用2)
输入阻抗	1Ω @<10MHz
功耗	100mW

工程应用-ATLAS实验探测器升级光电读出芯片

0 16

0.14

0.1

0.06

0.04

0 02

专用于ATLAS像素探测器读出系统升级的光电接收器Rx - DRX II

	实测结果
动态范围	输入电流10 µA – 5 mA
通道数	12
误码率	低于 10 ⁻¹² (老化后)
数据格式 及速率	NRZ (Non Return to Zero) 信号@ 80 Mbps

- 完成了芯片设计、测试
- 芯片测试结果达到项目需求,性能 优于竞争方案,选为基准方案
- 为ATLAS像素探测器Layer1、 Layer2、B-layer、Disk的读出系 统升级提供约700芯片
- · 安装测试及Run-2运行表明芯片性 能稳定可靠

8

- ・ ASIC主要研究方向
- 工程应用情况(成熟芯片)
- 工程预研情况(近成熟芯片)
 - 未来光源
 - nEXO
 - LHAASO-TGC
 - TOFPET
- 发展规划和未来布局
- 主要问题

□ 研发动机: CEPC顶点探测器第一个原型样机的研制需要大面积、高位 置分辨、抗辐照的像素探测器芯片

> Efficiency [%] 96 96 98

96

94

92

90

4 GeV e

DUTB

88 175 197 218

□ 探测器结构: 基于高阻外延的单片集成式CMOS像素探测器 DESY 4GeV电子束流测试结果 □ 芯片主要性能指标

参数	设计指标	测试结果
芯片厚度	—	150 µm
像素尺寸	≤ 25 µm	25 µm $ imes$ 25 µm
空间分辨率	3-5 µm	4.78 µm (最小)
探测区面积	25.6 imes12.8 mm ²	25.6 imes12.8 mm ²
功耗密度	< 200 mW/cm ²	89-164 mW/cm ²
读出死时间	< 500 ns	< 500 ns
抗电离总剂量辐照		

全尺寸太初芯片 25.7×15.8 mm²

6层太初望远镜

3层双面筒状顶点探测器原型样机

探测效率与像素阈值的关系 Taichupix设计团队, weiw@ihep.ac.cn

260

Preliminary

295

 $\begin{array}{ccc} 342 & 367 \\ \textbf{Threshold} \ \boldsymbol{\xi}_{_{B}} \ \textbf{[e]} \end{array}$

工程预研-先进光源四维复合像素探测器

工程预研-BPSS小像素单元像素探测器研制

指标	参数
传感器	Si / CdTe / CZT / GaAs 正负极性兼容
像素尺寸	55 μm × 55 μm
像素阵列规模	88 × 88
能量范围	Si: 8 ~ 20 keV CZT: 8 ~ 100 keV
计数率	1 Mcps/像素
帧刷新率	1 kHz
探测器模块	2 × 2 芯片, 3万像素

- 通过全定制设计,在保持全部 主要性能的前提下,将像素尺 寸缩小至55µm×55µm,与 MEDIPIX芯片持平
- 国家重点研发计划(2016~2020)支持,通过专家 验收——BPSS像素芯片

像素单元尺寸

55µm×55µm

BPSS芯片框图

全功能验证

崔珊珊,魏微,weiw@ihep.ac.cn

bottom

线对卡X光成像结果

100

60

140 160

工程预研-自由电子激光像素探测器系统研制

13 李木槿,魏微,limujin@ihep.ac.cn

低温、极低噪声读出ASIC——nEXO实验

CALONE: a Cryogenic ASIC for LOw-noise charge measurement in the NEXO experiment

宇宙线标定仪多丝气体探测器读出芯片

- S haper-	芯片仿真	
HAASO	信号极性	-/+
则器标定系统	线性动态范围	-150fC~+150fC
GC: Thin Gap	ENC D	ENC=600e-@0pF ENC=0.9fC@200
!探测器的标 定		<u>pF</u> 噪声斜率25e-/pF
	大信号恢复时间	1.5us@500fC
SIC	单通道计数率	1M
	阈值	6bit DAC/1channel
丝/阳极条信号	成形时间	100ns
	通道数	32
pF电容	输出信号特征	300ns~1us

阴极条的读出信号: 前放(绿)及成形(红)

阳极丝的读出信号: 前放(绿)及成形(红)

探测器联调:阳极丝/阴极条均能正确的完成波形处理,采样取数以及数据传输探测 效率好于95% 李怀申, lihs@ihep.ac.cn 基于改进版ASIC芯片,48个板卡,1536个读出通道的系统正在进行研发、生产

CEPC SiPM探测器读出芯片预研

- ・ 针对CEPC SiPM探测器的ASIC前端读出读出
- PIST读出ASIC: PIco-Second Timing
 - 解决CEPC SiPM探测器的高时间分辨问题
 - 匹配国产SiPM,实现NINO芯片的国产化替代和升级
 - 精确测量T, 粗略测量Q
- 已交付探测器方面进行联调实验

16

FPMT读出芯片

- 整机研制进展
 - 单板内双通道符合结果:19.4ps(FWHM)
 - 板间双通道符合结果:24.2ps(FWHM)
- 目前已提供的器件:
 - 铅玻璃MCP-PMT*2
 - 基于饱和放大ASIC的32ch前端板*4
 - 基于FPGA的32chTDC*4

高速波形采样ASIC研究

魏微,任佳义, weiw@ihep.ac.cn

- 基于开关电容技术的高速波形采样芯片,实现低功耗的高速采样和片上数字化
- 采样率: 1Gsps / 5Gsps, 采样深度: 256点
 - 片上AD变换分辨率: 10bit
- · 通道数: 8chn, 功耗: <15mW/chn
- 芯片时间精度: 好于10ps(算法修正后)
- ・ 触发率: 50~100kHz
- 基于JUNO项目研发,目前针对LHAASO望远镜升级项目 LACT做多通道波形采样芯片研制
 - 已完成前期联调验证
 - 16通道版本正进行BGA封装

9

• 抗辐照的高速时钟模块

李筱婷, lixt@ihep.ac.cn

- 针对不同项目需求,研发了抗辐照的高速时钟产生电路,成功应用在各 像素读出芯片接口电路中

• 先进前端串行接口框架

で近前端市行接口性架 測量结果: Rj-4.53ps, Dj-15.5ps, Tj-80.1ps@4.096Gbps - 针对高密度探测器海量数据传输应用,研发了片上高速串行接口协议,

工程应用	工程预研	发展规划		
		应用驱动		关键技术
HEPS : BP I X	HEPS: TETPIX	先进光源	合	先进封装
CSNS : SAMGC	nEXO: CALONE	CEPC	作	先进散热
JUNO : JUNOCC	TOFPET : FARM	LACT	穷	先进传输
ATLAS:DRX-II	CEPC SiPM: PIST			高速通用芯片
	LACT: LACTWAVE		自	先进设计方法学
	LHAASO TGC:ASDATL		主	高速数据通讯
			が安	先进ASIC体系
				高速波形采样
			· · · ·	

- 瞄准未来5~10年工程项目的科学目标,以应用为驱动布局研究规划
- 在工程项目应用驱动下,兼顾性发展ASIC技术
- 将未来5~10年的共性瓶颈问题作为重点攻关的关键技术

辐射探测技术与方法

		• 《辐射探测技术与方法》由中国科学院高能物理研究所
		与核电子学与核探测技术分会联合主办, Springer-Nature出
		版社出版,发表辐射探测技术及相关领域的最新研究成果,
ISSN: c	0000.0000 / e1551:0000-0000 VOLUME CO NUM	一 反映该领域科研水平,促进学科发展,加强国内外学术
		<mark>交流</mark> 。文章形式为原创性和综述性论文,发表最新的重要科
		研成果。期刊主要内容涉及:粒子探测技术与方法,计算仿
	DETECTION	<mark>真,</mark> 粒子加速器技术,电子及系统设计,同步辐射技术应用,
	TECHNOLOGY	<mark>粒子</mark> 天体技术,成像及放射学等领域。自创刊以来,先后获
	AND METHODS	<mark>得中</mark> 国科学院院科学传播局新刊创办支持及中国科技期刊国
		<mark>际影</mark> 响力提升计划支持,办刊质量受到业内一致好评。目前,
		期刊 <mark>已被包括CSCD、ESCI等在内的十余种数据库收录。诚</mark>
Edit Edit Edit	tor-in-Chief: Weiguo Li	<mark>邀优</mark> 质稿件!
	Ę	>稿件提交到一轮审稿结果平均用时34天
		稿件接收后排版完成即优先出版,上线后即可查DOI号
)	> 封面文章、文章解读视频、邮件推送等文章宣传服务

期刊网址: <u>https://www.springer.com/journal/41605</u>, <u>http://rdtm.ihep.ac.cn/</u> 编辑部电话: 010-88235914 编辑部邮箱: <u>RDTM@ihep.ac.cn</u> Thank you !

工程应用-高能光源硅像素探测器

	一代样机 (2015-2016)	二代样机 (2017-2018)	三代样机 (2019-2021)	四代样机 (2022-)
像素尺寸	150 μ m $ imes$ 150 μ m	150 μ m $ imes$ 150 μ m	150 μ m $ imes$ 150 μ m	140 μ m $ imes$ 140 μ m
能量阈值	1	1	1	2
读出芯片	BPIX-20	BPIX-20	BPIX-20	BPIX-40
模块数/个	6	16	24	40
像素/个	360K	~1M	1.4M	6M
模块封装	Wire bonding Rigid-flex PCB	Wire bonding Rigid-flex PCB	Through Silicon Via (TSV) Rigid-flex PCB with low CTE (coefficient of thermal expansion)	Advanced wire bonding LTCC (Low Temperature Co-Fired Ceramic)
死区面积	26.3%	26.3%	11.8%	~9.3%
读出电路	Spartan6 + SFP	Kintex7 + DDR3 + Nano-Pitch I/O [™]	Kintex7 + DDR3 + Nano- Pitch I/O [™]	UltraScale Kintex Plus + DDR4 + FireFly MicroTCA.4
与DAQ接 口	1G Ethernet x12	1/10 G Ethernet x4	40G Ethernet	100G Ethernet
功耗 @1.2kHz	100W	370W	<500W	<2500W
备注	原理样机	工程样机	工程样机	HEPS光源线站系统