

第三届全国辐射探测微电子学术交流会

时间投影室读出芯片及应用

邓智

2023年10月 广西•南宁

目录 CONTENTS

01 | 时间投影室及读出电子学

03 | WASA芯片进展

02 | TPC读出芯片的研制@清华

04 | 小结与展望

01 Time Projection Chamber and Readout Electronics 时间投影室及读出电子学

时间投影室 (TPC: Time Projection Chamber)

- 1970年代最早由LBL的David Nygren提出并建造,探测器灵敏体积由气体组成,中心为 阴极平面,两端为阳极,高能粒子产生的初级电子从中心匀速漂移到两端
 可以实现三维粒子径迹探测:xy-二维端面;z-漂移时间;同时还可以通过测量dE/dx实
- TPC灵敏体积可以较大,覆盖4π立体角,工作介质可以是气体或惰性液体
 在高能粒子与核物理实验、低本底稀有事例探测和天文观测等领域中有广泛应用

Bubble Chamber

Time Projection Chamber

▶ 基于加速器的粒子与核物理实验

ALICE-TPC

STAR-TPC

▶ 低本底物理实验

PandaX-TPC

T2K-TPC

➤ 天文探测:X射线偏振探测

▶ 低能核物理实验:核裂变截面精确测量

时间投影室的读出电子学

- > 探测器电流的持续时间和初级电子径迹与收集平面的角度有关:
 - > 径迹平行于收集平面时, 持续时间短
 - > 径迹垂直于收集平面时, 持续时间长
- ≻ 弹道亏损 vs. 信号堆积
- > 同时获取幅度和时间(重心)信息

波形采样

时间投影室的读出芯片

02 | Development of Readout ASIC for TPC @ Tsinghua's Group TPC读出芯片的研制@清华

▶ 从2006年开始,主要针对TPC探测器读出 ▶ 分为前端模拟 (CASA) 、SCA和ADC波形采样三类

建設 推 推 動
線線線線

CASA: 4ch CSA+Shaper

CASAGEM: 16ch CSA+Shaper

CASA32: 32ch CSA+Shaper

CASCA: 32ch CSA+Shaper+SCA

WASA: 16ch AFE+ADC+DSP

➤ CASA系列

	الا	and	
	THE REPORT		
1 1811 - T-F			
U 1910 - 1910			
	and a state of the second s		
	김 유민이 위		
	and a start of the		
ii mii -		1 10	
RI INC -		2 2 4	
			and the second second
BUILT INC			

参数	指标
增益	2-40mV/fC
成形电路	CR-(RC)⁵
达峰时间	100-400ns
噪声	<2000e @ 10pF
积分非线性	<1%
串扰	<1%
通道数	16+1

➤ SCA系列: CASCA

参数	指标
通道数	32
输入电荷范围	0-40fC
增益	25mV/fC
成形电路	CR-RC
达峰时间	50ns
ENC	68.3e/pF+7.2e
采样率	50MSPS
采样有效分辨率	~9bit
采样深度	64 points
读出时钟频率	16MHz
功耗	2.8 mW/ch
工艺	0.18µm

➤ SCA系列: GERO

参数	指标
工作电压	1.8 V, 2.5 V
输入动态范围	0.3V - 1.3 V
采样频率	100 MS/s
采样精度	> 10 bits
采样深度	256
ADC时钟频率	100 MHz
ADC计数器	12 bits
ADC转换时间	42 μs
最大死时间	336 µs
核心功耗	2.3 mW/ch
工艺	0.18 μm

03 | Progress on WASA chip WASA芯片进展

WASA芯片设计

WASA芯片设计

- ➢ Pipeline ADC vs. SAR ADC
- ▶ 模拟滤波 vs. 数字滤波

Energy by Architecture

▶ 主要性能指标

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA
ТРС	ALICE	ILC	ALICE upgrade	CEPC
Pad尺寸	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²	1x6 mm ²
通道数	5.7× 10 ⁵	$1-2 imes 10^6$	$5.7 imes 10^{5}$	2 x × 10 ⁶
读出结构	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
增益	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
成形方式	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
达峰时间	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
波形采样方式	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
采样率	10 MHz	40 MHz	10 MHz	10-100 MHz
精度	10 bit	10 bit	10 bit	10 bit
模拟前端功耗	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
ADC功耗	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
数字部分功耗	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
总功耗	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS工艺	250 nm	130 nm	130 nm	65 nm

▶ 测试系统

▶ 瞬态响应: 模拟部分

模拟前端瞬态输出随成形时间的变化

模拟前端的瞬态输出随增益的变化

> 数字滤波器响应:

- ▶ 模拟前端: 增益10 mV/fC, 成形时间 160 ns, Qin=120 fC
- ➤ ADC采样率: 40 MHz
- ▶ 梯形:上升时间 600 ns, 平顶时间 200 ns

> 数字滤波器响应: 弹道亏损

▶ 线性

- ▶ 模拟前端: 增益10 mV/fC, 成形时间 160 ns
- ➢ ADC采样率: 40 MHz
- ▶ 梯形:上升时间 600 ns, 平顶时间 200 ns

- ▶ 模拟前端: 增益10 mV/fC, 成形时间 160 ns
- ➢ ADC采样率: 40 MHz
- ▶ 梯形平顶时间: 200 ns

- ▶ 模拟前端: 增益10 mV/fC, 成形时间 160 ns
- ➤ ADC采样率: 40 MHz
- ▶ 梯形:上升时间 600 ns, 平顶时间 200 ns
- > 定时算法:时间重心

≻ 探测器测试: Fe-55

TPC的工作条件:

- GEM电压: 310 V
- 漂移电场: 3.23×10⁴ V/m
- 气体: T2K (Ar/CF₄/iC₄H₁₀ 95/3/2)
 电子学工作条件:
- 增益: 20 mV/fC
- 采样率: 30 MHz
- 自触发模式

▶ 探测器信号的瞬态波形和能谱

▶ 探测器测试:激光径迹

TPC的工作条件:

- GEM: 280 V
- 漂移电场: 9000 V/50 cm = 180 V/cm
- 气体: T2K (Ar/CF₄/iC₄H₁₀ 95/3/2)
- 激光器: 7.2 mJ @20 Hz 电子学工作条件:
- 增益: 20 mV/fC
- 采样率: 30 MHz
- 外触发模式
- 触发延时: 2500*8 ns=20 µs

 $\begin{array}{c}
-150 \\
-100 \\
-50 \\
0 \\
100 \\
\end{array}$

WASA芯片

1.8

1.6 Laser energy[µJ/mm²]

1.4

位置分辨随激光能量的变化

.....

000000

000000

.........

.......

8 8 8 8 8 8 8 8

00000000

BBBBBBBBB

000000000

00000000

6966666

..........

100000

≻ 小结

- TPC可以实现大体积、 4π立体角覆盖的三维粒子径迹探测, 在基础物理实验、天文 观测和核能开发等领域中有广泛的应用前景
- ▶ 在过去的十多年中,我们针对TPC读出开展了多款波形采样前端芯片的研制,朝着更数字化、更集成化和更智能化的方向发展
- ▶ 相关的技术也可以应用在半导体探测器的读出中

≻ 展望

- > 进一步提高模拟前端的动态范围, 涵盖重核粒子的探测
- ▶ 开展低温工作的可行性研究,用于惰性液体TPC探测器的读出

- ➢ 感谢清华大学李玉兰、冯骅课题组、高能所李金、祁辉荣和山东大学祝成光在TPC探测器方面的技术交流和支持
- > 感谢清华大学肖志刚课题组、近代物理所干奕、孔洁、科大赵雷、曹喆推动和帮助SCA (GERO) 芯片用于CEE-MWDC探测器的读出
- > 感谢清华大学李福乐课题组完成ADC的设计
- > 特别感谢参与芯片研制的研究生: 何力、章红燕、赵馨远、刘丰、刘伟、刘灿文 (在读)

谢谢聆听

00000

........

000000

999996666

........

..........

................

00000000

.........

0000000000

...................

88666666

0000000

0000000

9.000

00000000