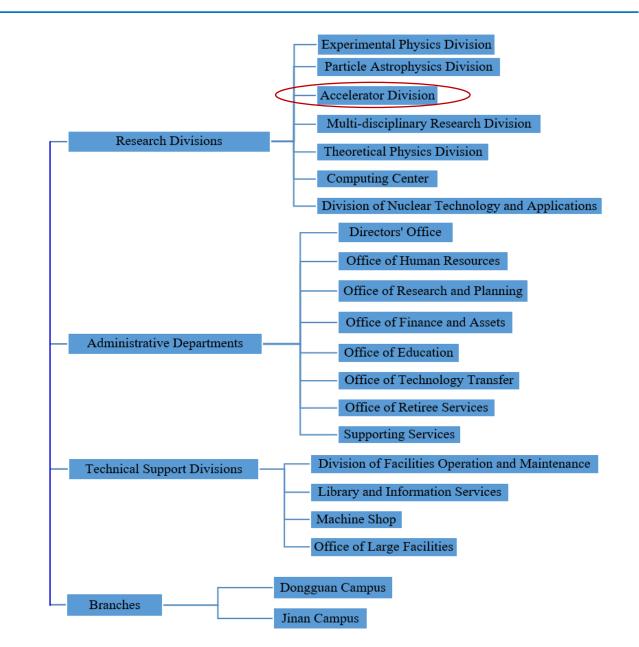


Accelerator Division

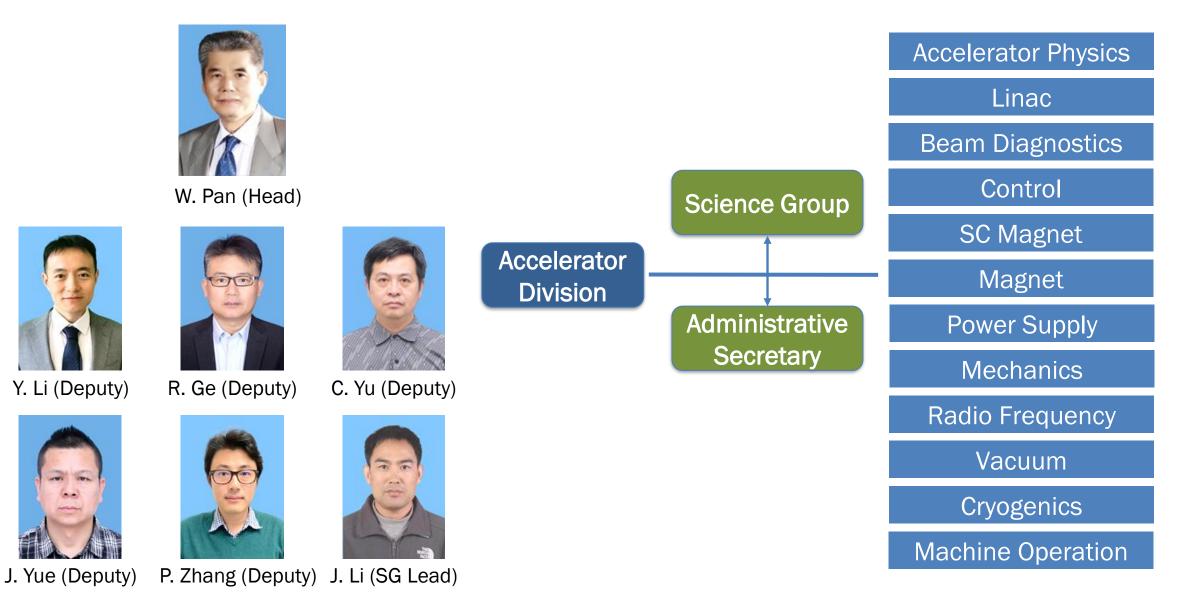
Yuhui Li Institute of High Energy Physics Sep. 20, 2023

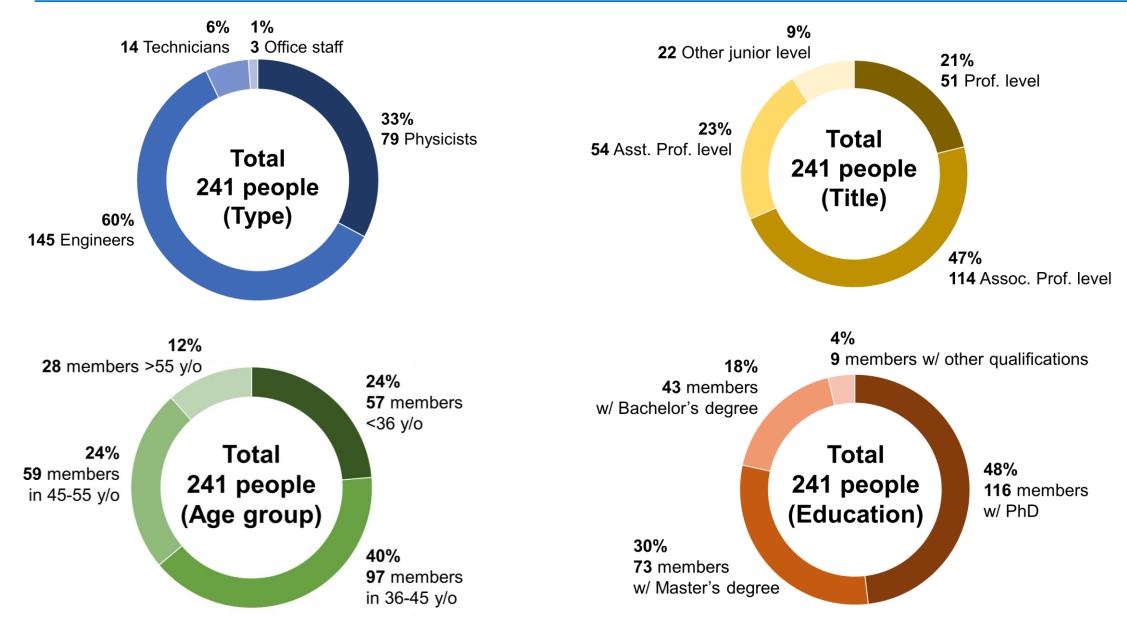
INTERNATIONAL ASSESSMENT 2023

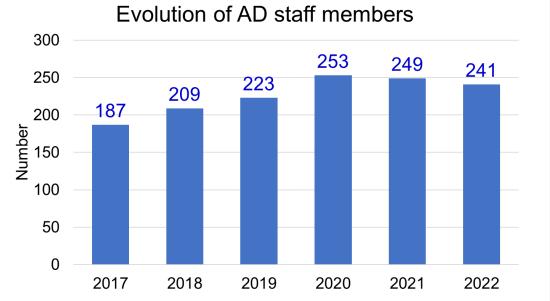
• Mission & Organization


- Mission of accelerator division
- Research groups at Accelerator division

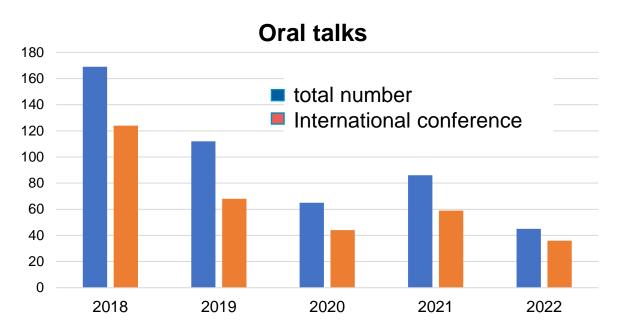
• Improvements since 2018


- Manpower and human resources
- International involvement, publications, patterns, recruitment, group optimization, ...
- Main activities & Achievements
 - BEPCII HEPS CEPC Cutting-edge technology R&D
- Personnel & Budget
- Vision & Future plans

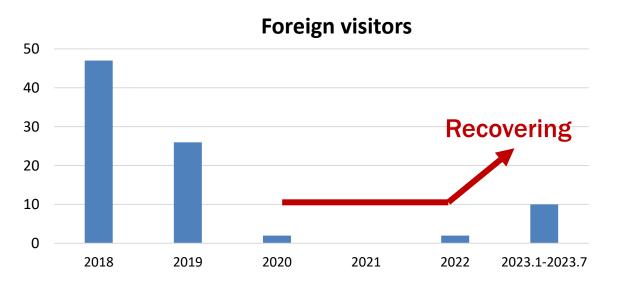

- Accelerator physics research and technology R&D, inventing powerful tools to support scientific exploration
- Design, construction, and operation of accelerator based large science facilities
- Support the transfer of accelerator technologies for civilian use
- Train students, young scientists/engineers for future projects



Major concerns during assessment 2018


- "A problem, however, is that the human resources may not be adequate to support such an ambitious program as is envisioned for the future (next 5 years or beyond), especially in areas relying on expertise in accelerator physics. The CEPC is a very ambitious project that will require more manpower, R&D and engineering resources, and international participation. It is important to take steps now to lay the groundwork and to position IHEP to take on such an ambitious future project."
- "The CEPC accelerator was ranked A, ...While highly recognizing the progress, the judging panel also expressed concerns about research resources. The committee said that their B ranking for "research resources" was a direct reflection of our concern that the manpower must be increased significantly for the planned next steps, beyond the Conceptual Design report and did not reflect negatively on the progress to date."

- Staff member significantly increased from 187 to 241 in the past 5 years, by 29%
- □ The staff is more senior and experienced, based on their age
- Optimize the matrix management, which involves assigning each person to different projects: BEPCII-HEPS-CEPC
- Overall, the construction of HEPS has proceeded according to schedule despite the impact of the pandemic; BEPCII keeps smooth operation with improved luminosity
- **CEPC** completed its TDR international review in 2023


International communication

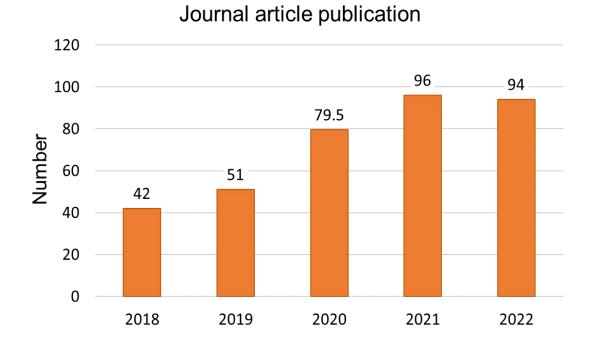
Invited + Contributed oral talks at IPACs

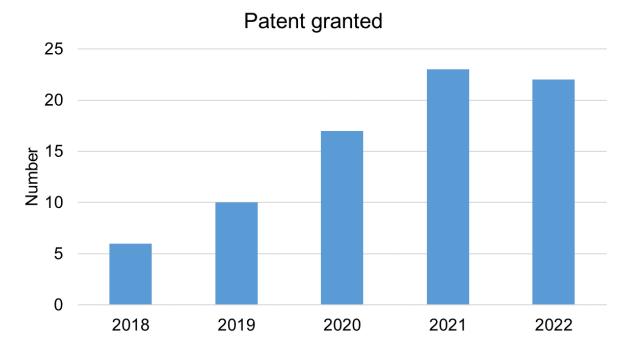
	Invited	Contributed	Total
2018	1	2	3
2019	2	2	4
2020	2	1	3
2021	1	1	2
2022	1	2	3
2023	1	0	1

International seminars held by AD (IHEP)

Conferences and Workshops	Conference chair	Date	Number of participants
The 8th International Workshop on Cryogenics Operations (Cryo-Ops 2018)	GE Rui	2018.6.4-6.7	105
Review of Conceptual Design Report of the Circular Electron and Positron Colliders	QIN Qing	2018.6.28-6.30	41
29th International Linear Accelerator Conference (LINAC18)	CHI Yunlong	2018.9.16-9.21	391
Third Asian School on Superconductivity and Cryogenics for Accelerators (ASSCA2018)	GAO Jie	2018.12.10-12.16	85
7th IHEP-KEK SCRF Collaboration Meeting	GAO Jie	2018.9.22-23	30
The Micro Telecommunications Computing Architecture and Advanced Telecommunications Computing Architecture Workshop for Research and Industry (MTCA/ATCA Workshop 2019)	LI Jingyi	2019.6.23-25	99
9th IHEP-KEK SCRF Collaboration Meeting (online)	GAO Jie	2020.12.9	28
The 2nd Micro Telecommunications Computing Architecture and Advanced Telecommunications Computing Architecture Workshop for Research and Industry (MTCA/ATCA Workshop 2021)(online)	LI Jingyi	2021.8.24-25	114
10th IHEP-KEK SCRF Collaboration Meeting (online)	GAO Jie	2022.2.16	30
Review of Technical Design Report of the Circular Electron and Positron Colliders	GAO Jie	2023.6.12-16	53

Accelerator strategical development discussion 9


- Focus on accelerator-based large science facilities
- Currently in operation of BEPC-II and aiming at better performance
- In construction of the 4th-generation light source, HEPS
- Continue the pre-study for CEPC
- State-of-the-art design and technology
 - Develop comprehensive accelerator physics and technologies for BEPC-II, HEPS and CEPC prestudy
 - Accumulate cutting-edge technologies in plasma acceleration, SRF, SC Magnet, miscellaneous technologies for green accelerator ...



Publication

- Journal article publication and granted patent increased dramatically in the past five years
 - Summarize experience in an systematic way
 - Inspire innovation
 - Protect knowledge

Recruitment and re-organization

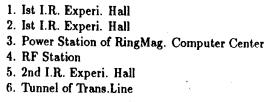
Recruitment

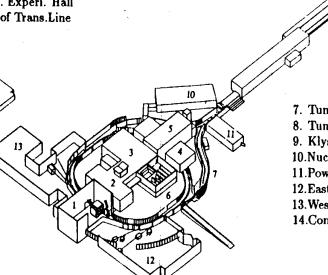
Since last assessment in 2018, we successfully recruited 5 oversea researchers with national and CAS funding supports

- Lu Wei, Plasma acceleration, from USA & Tsinghua University
- Li Yuhui, Free electron laser and undulator, from Germany
- Zeng Ming, Plasma acceleration, from Germany
- Xin Tianmu, Photon injector, from USA

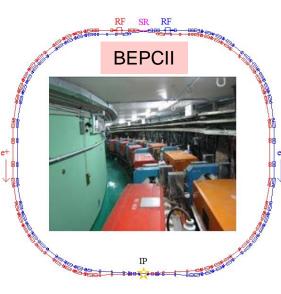
Re-organization

- A new group set up for HTS high-field magnet, consisting of members from the magnet group and staffs from EPD

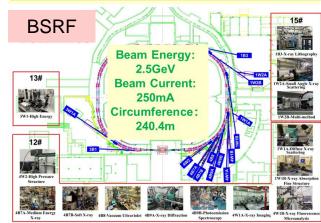

Activities and achievements in the past five years 12


- **BEPCII** operation and update
- See details in Yu Chenghui's talk
- HEPS construction progress
- See details in He Ping's talk
- CEPC/SppC pre-study status
- See details in Gao Jie's talk
- Key technology R&D platform and cutting-edge technology study
- Plasma acceleration
- SRF cavity & Module
- HTS high-field magnet

Operation of BEPCII and performance enhancement 13


• BEPCII

- Upgrade project of BEPC, operated since 2009
- A double-ring factory-like collider
- Collider & SR operation modes


Tunnel of Trans. Line
 Tunnel of Linac
 Klystron Gallery
 Nuclear Phy. Experi. Hall
 Power Sta. of trans. Line
 East Hall for S.R. Experi.
 West Hall for S.R. Experi.
 Computer Center

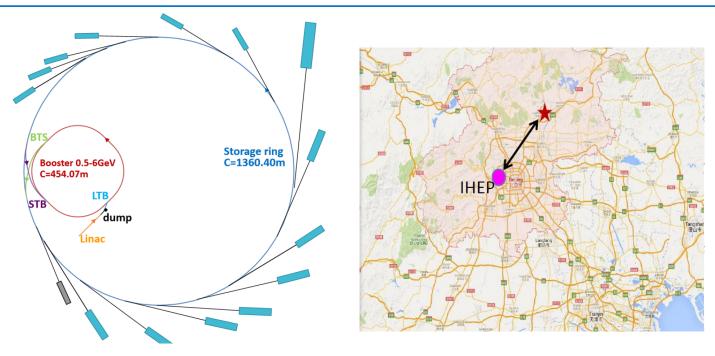
More details in Yu Chenghui's talk

Main Parameters	Design
Energy (GeV)	1.89
Beam current (mA)	910
Bunch current (mA)	9.8
Bunch number	93
RF voltage	1.5
Beam-beam parameter	0.04
β_x^*/β_y^* (m)	1.0/0.015
Inj. Rate (mA/min)	200 e ⁻ / 50 e ⁺
Lum. (× 10^{33} cm ⁻² s ⁻¹)	1.0

BEPCII major achievements and significance 14

• Major achievements in the past five years

- Energy upgrade completed: Full energy injection and storage up to 2.472 GeV
- Top-up operation
- Stable high-luminosity operation: beam current exceeds 900mA with the instantaneous luminosity of 1.1×10³³cm⁻²s⁻¹; In the last operation year, the accumulated luminosity reached as high as 8.1 fb⁻¹

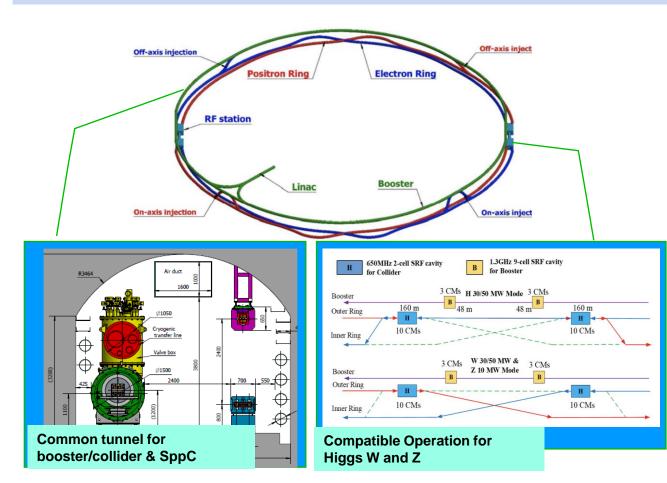

• Significance

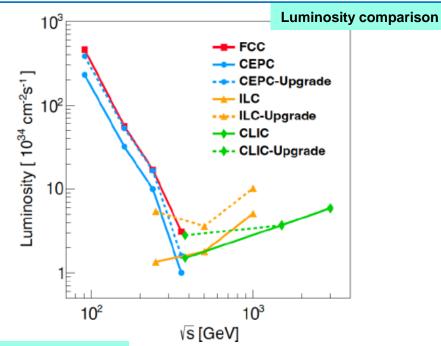
- Better knowledge on operating a high-current machine for high luminosity
- Better control over collective instabilities through feedback
- Invaluable experience for CEPC design and construction

HEPS construction

More details in	
He Ping's talk	15

Main parameters	Unit	Value
Beam energy	GeV	6
Circumference	m	1360.4
Emittance	pm∙rad	< 60
Brightness	phs/s/mm ² /mrad ² /0.1%BW	>1x10 ²²
Beam current	mA	200
Injection		Тор-ир


- Advanced 4th generation light source, promoting multidisciplinary researches
- Accumulate conventional key technologies for CEPC
- Magnet Vacuum Power supply Beam instrumentation
- Alignment Control Mechanical system Linac complex
- RF Cryogenics Utilities



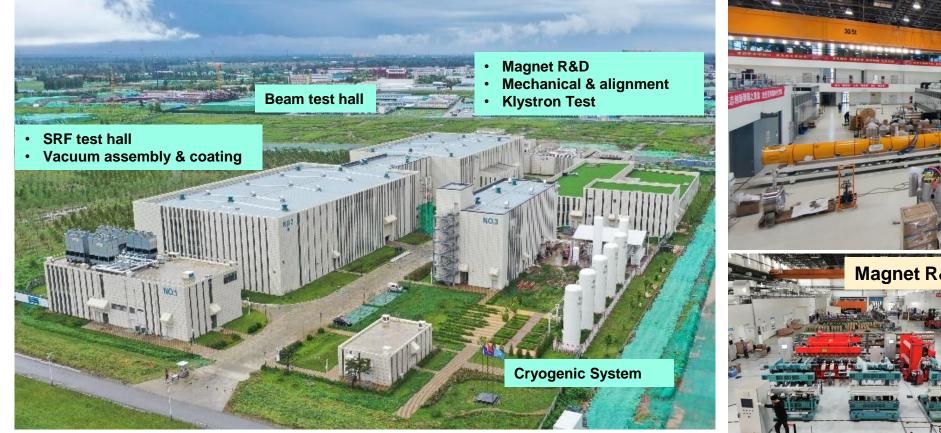
CEPC TDR design

More details in Gao Jie's talk 16

- Circular collider: Higher luminosity than a linear collider
- 100km circumference: Optimum total cost, good also for SppC
- Shared tunnel: Accommodate CEPC booster & collider and SppC
- Switchable operation: Higgs, W/Z, top

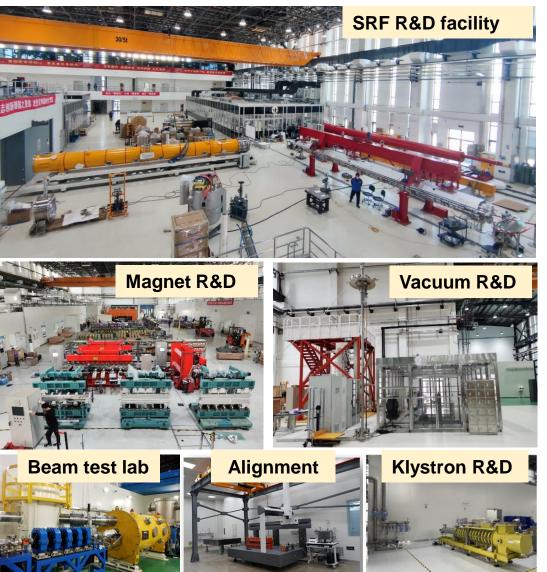
ain Parameters: High		-			
iminosity as a Higgs Factory	Higgs	W	Z	ttbar	
Number of IPs			2		
Circumference [km]		10	0.00		
SR power per beam [MW]			50		
Energy [GeV]	120	80	45.5	180	
Bunch number	415	2161	19918	59	
Emittance (εx/εy) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7	
Beam size at IP ($\sigma x/\sigma y$) [um/nm]	15/36	13/42	6/35	39/113	
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9	
Beam-beam parameters (ξx/ξy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1	
RF frequency [MHz]	650				
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	27	192	0.83	

CEPC TDR international review


• An international review meeting was hosted at Hongkong University of Science and Technology during 12-16 Jun 2023; The physics design and key technology R&D status were reviewed

17

• The CEPC cost evaluation also passed the international review recently


Accelerator key technology R&D platform

Mechanics & alignment

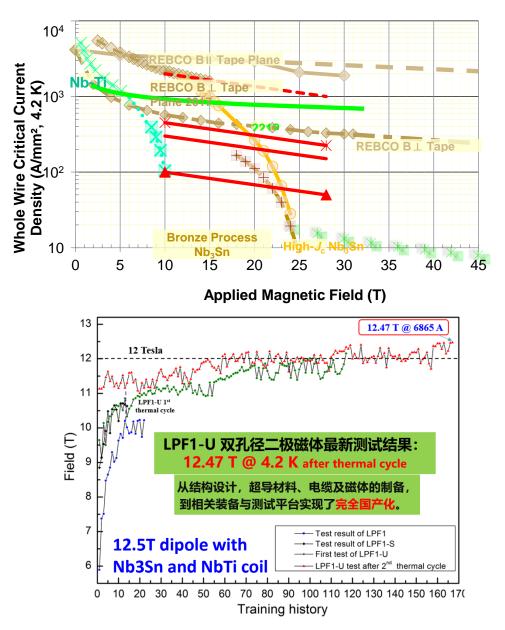
Accelerator key technology R&D platform was established:

- SRF cavity and module
 High efficiency Klystron
- High-precision magnet
- Vacuum assembly & coating > Beam test facility

PAPS research high-light: SRF cryomodule

- 650 MHz test cryomodules including cavities, couplers, HOM absorbers, tuners..., was built and tested OK
- A full eight 1.3 GHz 9-cell cavities with input couplers, tuners, SC magnet, BPM, cryostat, module cart, feed/end-cap, volve-box ... was built and tested OK

Parameters	Horizontal test results	CEPC Booster Higgs	LCLS-II, SHINE	LCLS-II-HE
Average $Q_0 @$ 21.8 MV/m	3.4×10 ¹⁰	3.0×10 ¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average CW <i>E</i> _{acc} (MV/m)	23.1	21.8 MV/m	16 MV/m	20.8 MV/m



166MHz QW

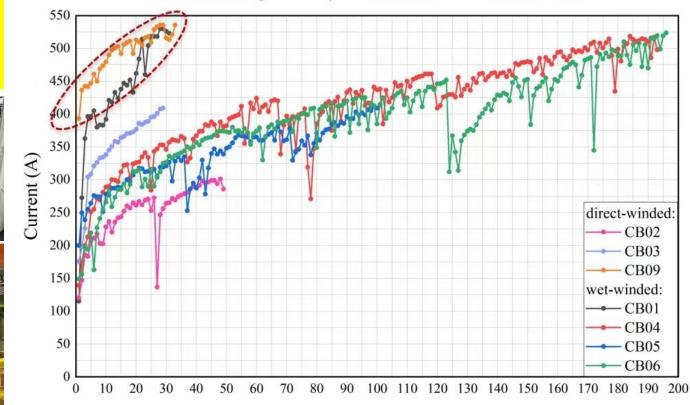
R&D for Iron-based HTS magnets

- Iron-based superconducting materials are very promising for high-field magnets
 - Isotropic
 - May go to very high field
 - Raw materials are cheap
 - Metal, easy for production
- Technology spin-off can be enormous
- Major R&D goals
 - High Jc: > 1000A/mm²@4.2K
 - Long cable: > 1000 m
 - Low cost: < 5\$/kA·m
- A collaboration formed in 2016 by IHEP, IOP, IOEE, SJTU, etc., and supported by CAS

World first: 1000m IBS cable, IBS coil, \rightarrow magnet **1st Iron-based Superconducting** solenoid Coil at 24T 4.2 K Critical Current (A) - Ba122 short tape Ba122 single pancake coil 5 10 15 20 25 Background Field (T)

Collaboration with CERN for SC CCT magnet (HL-LHC) 21

Find a design deficiency, and reduce the quench number greatly in the training process: 200→30



Successful design upgrade to solve the "long training problem", significantly reduced the times of quench during training, ensured the project progress "on track".

project progress "on track".

Quench Number

Training History of the HL-LHC CCT Coils

Significance of Plasma wake field acceleration 22

- **High gradient:** ~10-100GV/m, ~**1000times higher than conventional Acc.**
- High energy conversion rate
- High repetition rate possibility
- Focus on PWFA acceleration

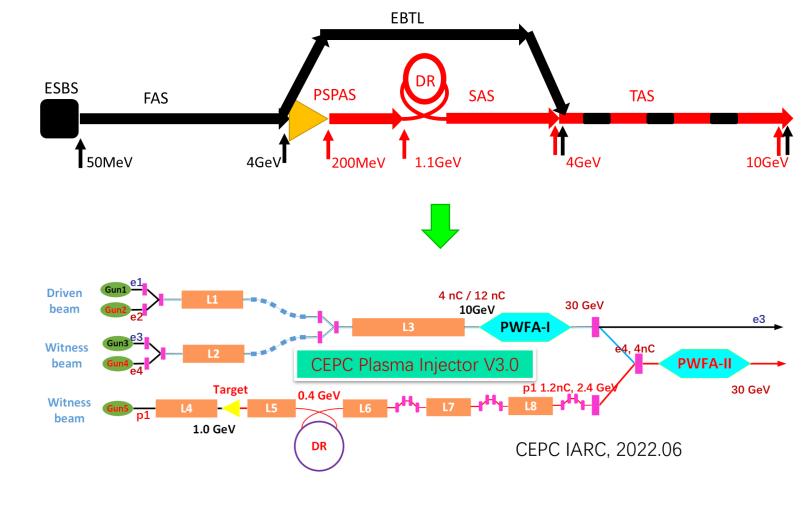
Plasma wake field

1GeV accelerator in hand

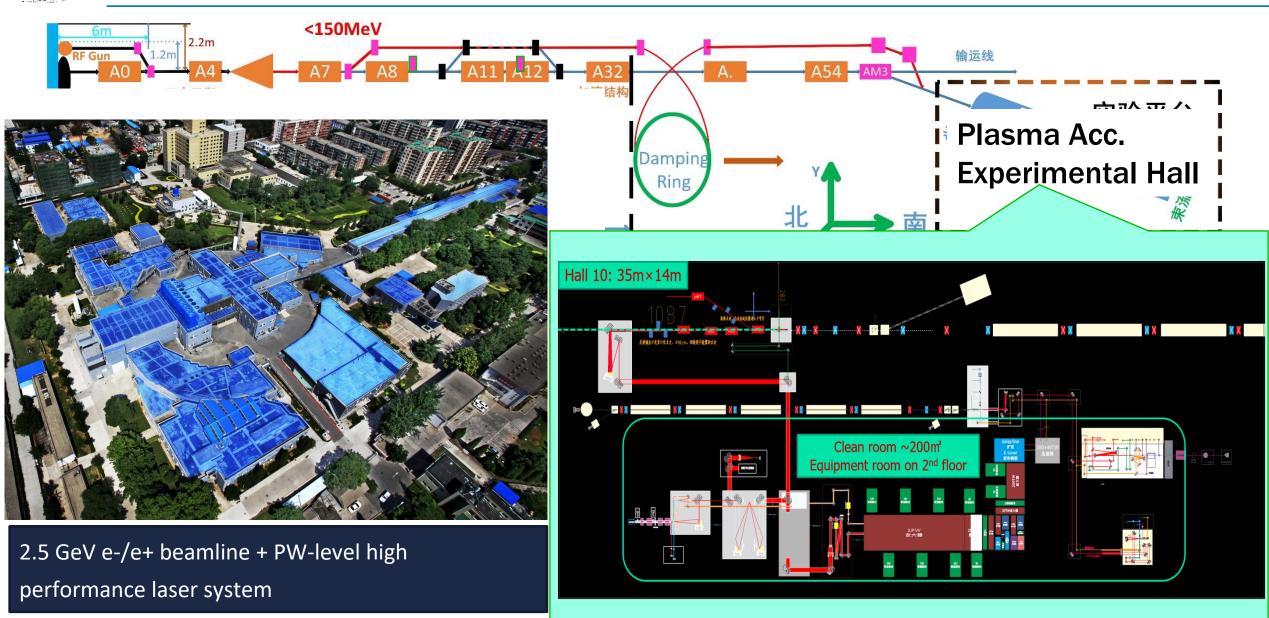
Driver beam

Trailer beam

Conventional linac


CEPC drives PWFA study @ IHEP

Backup solution for CEPC linac, conceptual design based on simulation shows that the scheme is feasible

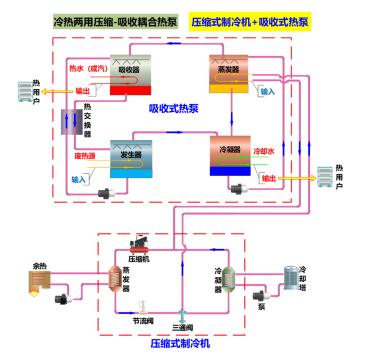

as the baseline design:

Conventional technology

- Main linac: 10GeV S-band
- L-band (10+ nC) and S-band (≤5nC) RF guns
- Compression and combination
- Different e+ acc. scheme
- e+ PWFA need to be cascaded
- e- PWFA with TR ~ 3.5

Test facility to be built at BEPCII

Efforts on green accelerator


• Measures at HEPS

- Solar panel on roof: 10 MW → 10% saving
- Permanent-magnet dipole @ storage ring: **5.6M kWh** saving/yr
- Energy recovery from cooling water (13 MW@42°C) : Exceeds HEPS heating requirement

• R&D for CEPC

- High Q SRF cavity: reduce 10MW operation power in a comprehensive evaluation, saving electricity consumption ~60M kWh per-year
- R&D effort for High efficiency & Energy recovery klystron: improve the efficiency from the conventional value (55%) the high efficiency of 80%, CEPC will save 160M kWh electricity per-year
- Proposal and R&D for "heating-cooling" switchable waste energy recovery system, and increasing the re-use of energy in the cooling water
- R&D and prototypes for dual-aperture magnets with a common coil

Leading scientists

BEPCII & BEPC-U

Chenghui Yu **Jiuqing Wang** Yuan Zhang Pei Zhang Fusan Chen Rui Ge

HEPS

Weimin Pan Huamin Qu Jingyi Li Ping He Yi Jiao Junhui Yue Fusan Chen Rui Ge Fengli Long Pei Zhang

(Project leader) (Acc. Physics) (Acc. Physics) (RF)(Magnet) (Cryogenics)

(Project Manager)

(Chief Engineer)

(Storage Ring)

(Acc. Physics)

(Beam Diagnostics)

(Injector)

(Magnet)

(RF)

(Cryogenics)

(Power supply)

F. Chen

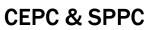
J. Gao

Y. Li

J. Wang

C. Yu

R. Ge


F. Long

P. Zhang

W. Pan

Y. Zhang

(Convener) (Convener) (Convener) (Plasma Acc.) (SC Magnet)

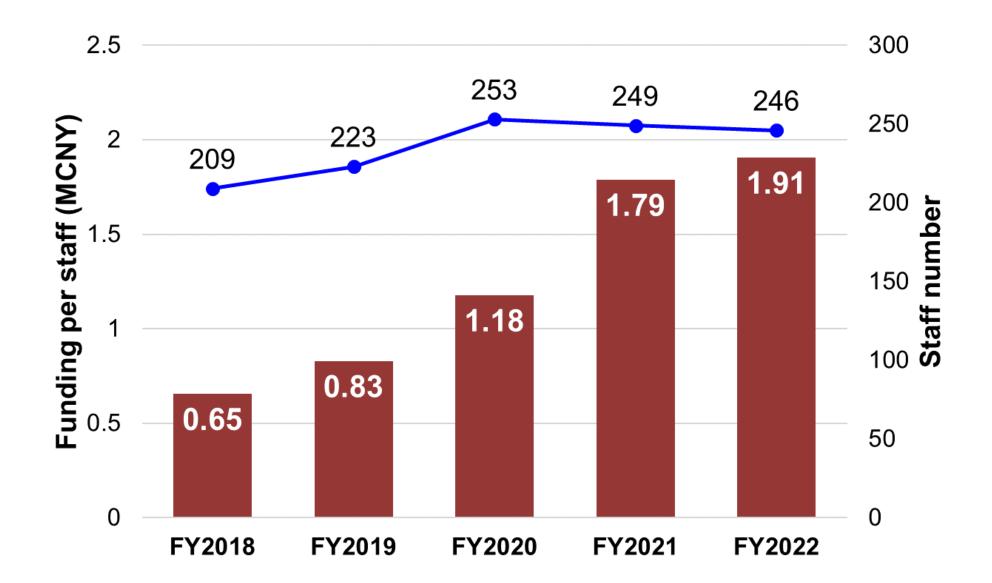
D. Li

Y. Jiao

Q. Xu

Personnel (FTE by projects)

Curre	ent sta	ff mer	nbers							
2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 onward
HEPS	-TF (~60	0 FTE)								
PAPS constr. (~20 FTE)						PAPS Op. (~			Op. (~1	IO FTE)
	HE					nstr. (~	120 F	ГЕ)	HEPS Op. (~100 FTE)	
E	BEPCII	Op. (~	50 FTE	.)	BEPCII Op. (~30 FTE)			30 FTE		
					BEF	PCII-U	constr.	. (~30 F	TE)	BEPCII-U Op. (~30 FTE)
Miscellaneous R&D (~30 FTE)										
			CEP	C R&D) (~20 I	-TE)				CEPC constr. (>200 FTE)
~160	~180	~180	~240	~240	~240	~240	~240	~240	~240	>240



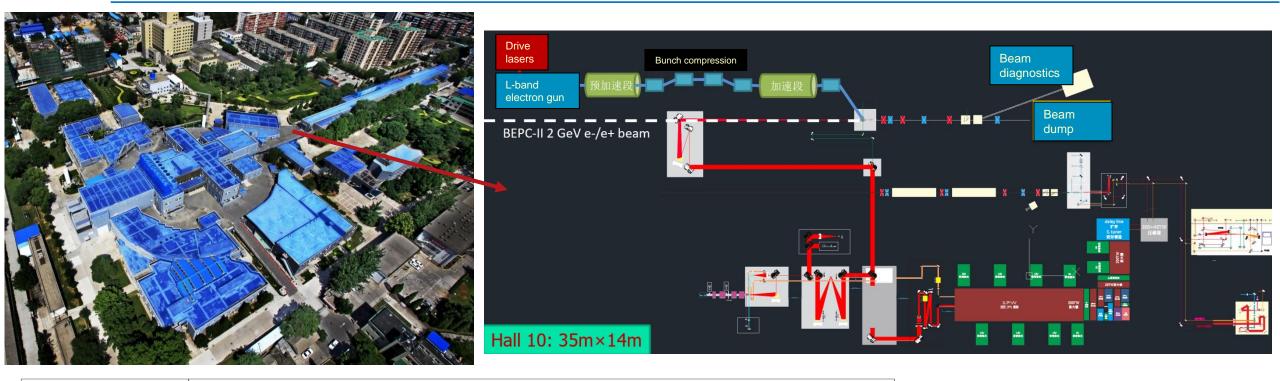
Funding in 2018-2023

Unit: Million CNY

Funding Source	FY2018	FY2019	FY2020	FY2021	FY2022
HEPS Project	2.0	64.9	217.5	384.9	391.8
PAPS Project	80.2	57.9	0	2.0	0
BEPCII Operation	22.2	22.2	22.2	22.2	22.2
MOST Grants	10.7	2.6	4.0	0	4.8
NSFC Grants	2.8	4.7	3.6	2.4	6.9
CAS Grants	17.7	27.0	41.8	29.3	35.0
Miscellaneous	1.2	5.3	8.6	4.2	8.0
Total	136.7	184.6	297.5	445.0	468.7

Personnel budget in the past five years

- By taking advantage of the accelerator-based projects currently under construction and planned by IHEP, we aim to become one of the leading accelerator research centers worldwide.
- With the continuous development of Accelerator Physics and Key Technology, we are confident to complete the HEPS project in the near future, and able to commence the CEPC once it is approved
- Develop cutting-edge accelerator technologies, including the plasma accelerator technology, HTS high-field magnet, miscellaneous technologies for a green accelerator, etc.
- Try to attract more excellent researchers from around the world to join the Accelerator Division, and educate more young scientists and engineers
- Contribute to the well-being of the society through knowledge transfer of the accelerator technologies developed


- In the past 5 years, the Accelerator Division has made significant progress, including the progress in BEPCII operation, the construction of HEPS and CEPC TDR researches
- Research funding has increased annually, and the manpower has increased by 29% over the last 5 years
- AD will try to complete the HEPS accelerator construction according to the schedule, and begin the Engineering Design Report studies for the CEPC
- More projects, such as the PWFA plasma test facility already planned and will be started soon

Thank you for your attention

Backup slides

PWFA plasma acceleration TF @ BEPC-II 33

		Beam quality parameters									
	bunch	bunch	normalized	obargo	oporov	energy	Peak	longitudinal	transverse	longitudinal	tilt
	size	length	emittance	charge energy	spread	Current	beam profile	jitter	jitter	un	
Current beam e0 / p0	1	10ps	400μm 1600μm	2nC 50pC	2GeV	0.50%	0.2kA 5A	Gaussian	?	?	?
eL 200TW Laser produced	10µm	10µm 3fs	1µm	100pC	0.5GeV	< 5%	≥5kA	to be measured	1µm	0.1ps	1mrad
e1_H After optimization	100µm	300µm 1ps	400µm	2nC	2GeV	< 0.5%	≥2kA	Gaussian	100µm	1ps	1mrad
p1 After optimization	100µm	300µm 1ps	1600µm	50pC	2GeV	< 0.5%	≥0.05kA	Gaussian	300µm	5ps	1mrad
e2 After change the e- gun	50µm	600µm 2ps	100µm	≥5nC	2GeV	< 0.5%	≥5A	Gaussian Triangle	100µm	1ps	1mrad
p2 After install DR	50µm	100µm 0.3ps	40µm	1nC	2GeV	< 0.5%	~3kA	Gaussian	100µm	1ps	1mrad

Key PWFA experiments:

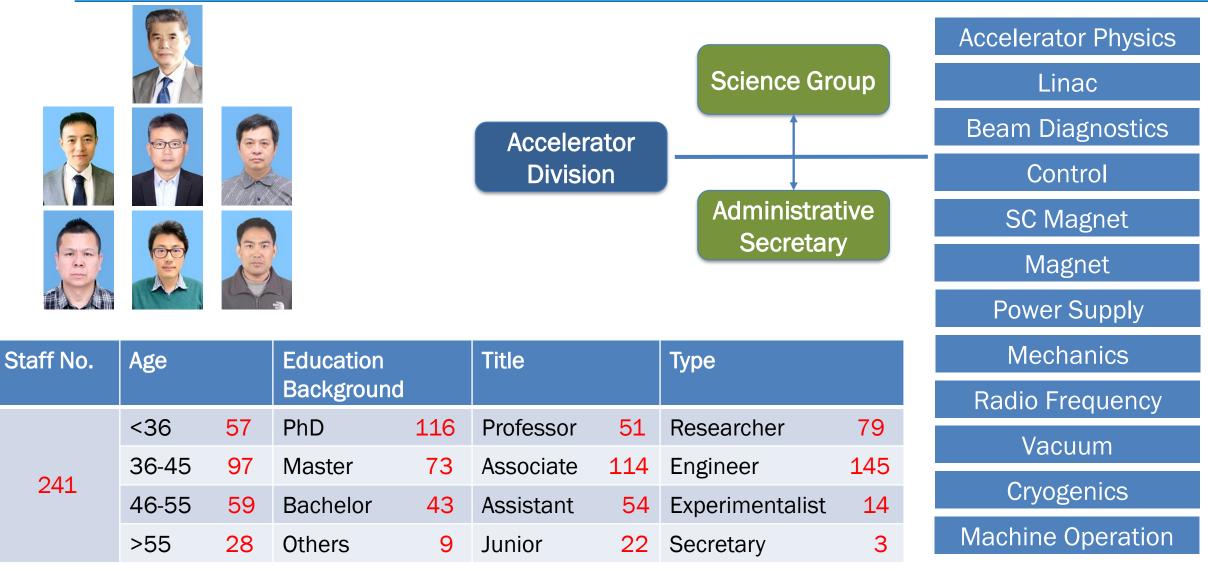
- 1. HTR e- PWFA
- 2. High quality e+ PWFA
- 3. High efficiency staging
- 4. PWFA-based FEL
- 5. Beam and wakefield diagnostic

CEPC TDR R&D maturity

- CEPC received ~ 260 Million CNY from MOST, CAS, NSFC, etc for the key technology R&D
- Large amount of key technology validated in other project by IHEP: BEPCII, HEPS, ...

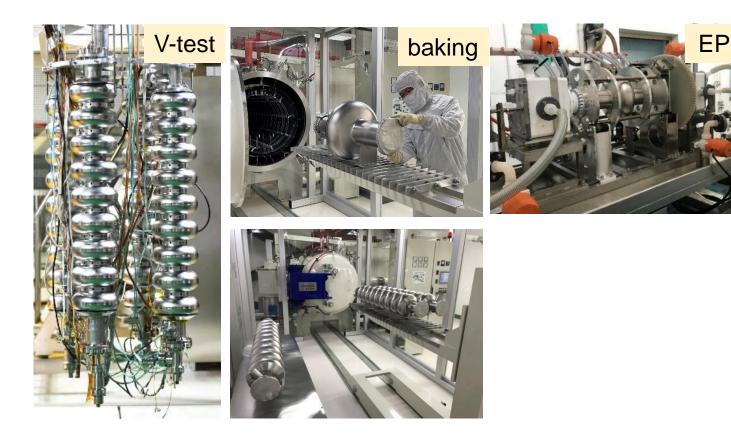
CEPC R&D ~ 40% cost of acc. components	 High efficiency klystron SRF cavities Positron source High performance accelerator 	 Novel magnets: Weak field dipole, dual aperture magnets Extremely fast injection/extraction Electrostatic deflector MDI
BEPCII / HEPS ~ 50% cost of acc. components	 > High precision magnet > Stable magnet power source > Vacuum chamber with NEG coating > Instrumentation, Feedback system 	 Survey & Alignment Ultra stable mechanics Radiation protection Cryogenic system MDI

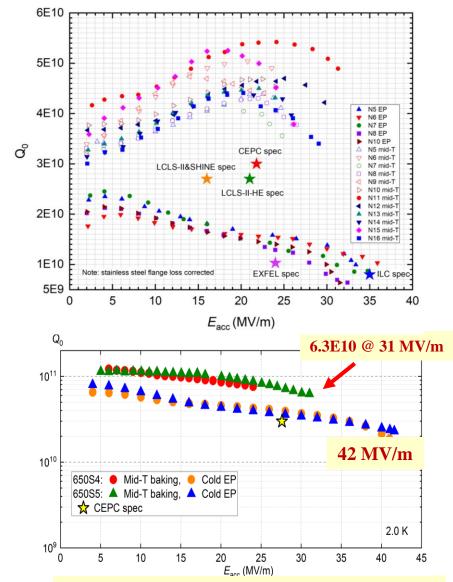
 $\sim 10\%$ remaining (the machine integration, commissioning etc.) and is anticipated to be completed by 2026, and the international contribution/collaboration may be needed.


• Human resources

- Staff: 241 (including 4 secretaries)
- Graduate students: 84
- Temporary staff: 21

	2018-23		
	new staff	BEPCII:	63
Researcher: 79	↑ 35 %	HEPS:	120
Engineer: 145		CEPC:	18
Experimentalist: 14	Will keep stable in	PAPS:	8
Admin. & Secretary 4	the near future	Tech. R&D:	28
		Secretariat:	4


Organization & Staffing


Graduate students: 84 Temporary staff: 21

SRF cavity achievement

- Mid-T baking (O-doping) vs. N-doping: higher E_{acc} & Q, simple process, less EP
- Excellent results obtained, exceeding requirements of CEPC, SHINE, LCLS-II, etc.
- ILC-type cavities with higher E_{acc} is also under development

Vertical test of 1.3GHz 9-cell cavity

Vertical test of 650 MHz 1-cell cavity