Research Highlights — The BESIII Experiment —

Hai-Bo Li EPD, Institute of High Energy Physics Sep. 20, 2023

BESIII detector at BEPCII

The detector is designed for neutral and charged particle with excellent resolution, PID, and large coverage.

Has been in full operation since 2008, all subdetectors are in very good status!

Cylindrical Gas Electron Multiplier Inner Tracker (CGEM-IT) ₃

Status and timeline

- System commissioning with cosmics
- Software review \rightarrow December 2023
- Performance review \rightarrow March 2024
- Installation during the 2024 shutdown

- Three layers of cylindrical triple GEM to replace the inner MDC
- Charge and time readout for excellent tracking performance
 - Improvement in the secondary vertex reconstruction

Great efforts from Italian colleagues and supports from INFN

BESIII Collaboration

Europe (17/115) Asia (6/10) Political Map of the World, November 2011 Germany (6): Bochum University, AUSTRALIA Pakistan (2): COMSATS Institute Independent state Bermuda Dependency or area of special sovereight Sicily / AZORES Island / island group GSI Darmstadt, Helmholtz Institute Mainz, Johannes Gutenberg University of Mainz, Universitaet of Information Technology Giessen, University of Münster University of the Punjab, Italy (3): Ferrara University, INFN, University of Torino **University of Lahore** Netherlands (1):KVI/University of Groningen Mongolia (1): Institute of Physics Russia (2): Budker Institute of Nuclear Physics, Dubna JINR and Technology CANADA USA(4/8)Korea (1): Chung-Ang University Sweden (1): Uppsala University **Carpegie Mellon University** Turkey (1): Turkish Accelerator Center Particle Factory Group India (1): Indian Institute of **Technology** madras Indiana University UK (2): University of Manchester, University of Oxford University of Hawaii Thailand (1): Suranaree University **Poland (1)**National Centre for Nuclear Research CHINA of Technology **University of Minnesota China** (58/367) us 🍾 South America (1/1) Institute of High Energy Physics (146), other units(221): Beijing Institute of Petro-chemical -Technology, Beinang University, HOLANDE GARCINES Chile: University of Tarapaca China Center of Advanced Science and Technology, Fudan University, Guangxi Normal University, Guangxi University, Jambi Bandi Hangzhou Normal University, Henan Normal-University, KIRIBAT Henan University of Science and Fechnology, BRAZIL Huazhong Normal University, Huangshan College, Hunan University, ATLANTI Hunan Normal University, Henan University of Technology OCEAN Institute of modern physics, Jilin University, Lanzhou University, Liaoning Normal University, Liaoning University, Nanjing Normal University, Nanjing University, Nankai University, North China **Electric Power University**, Peking University, Oufu normal university, Shanxi University, Shanxi Normal University, Sichuan University, Shandong Normal University Shandong University, Shanghai Jiaotong University, Soochow University, ~600 members South China Normal University, Southeast University, Sun Yat-sen University, Tsinghua University, University of Chinese Academy of Sciences, University of Jinan, University of (more than 130 from outside of China) Science and Technology of China, From 84 institutions in 17 countries University of Science and Technology Liaoning, Antarctica University of South China, Wuhan University, Xinyang Normal University,

Zhejiang University, Zhengzhou University, YunNan University, China University of Geosciences

Hadron structure & dynamics in the non-perturbative QCD regime

- Hadron form factors
- R values and QCD
- Light hadron spectroscopy
- Gluonic and exotic states
- Physics with t lepton

- XYZ particles
- Charm mesons
- Charm baryons

BESIII Data Samples: rich Physics

Data sets collected so far include

scan with >500 pb-1 per energy point R space 10 – 20 MeV apart

Entangled hadron pair-productions near thresholds: form-factors, relative phase, polarization and CP violation.

About 20 fb⁻¹ on the $\psi(3770)$ will be collected by year 2024

S COVID-19: difficulties, but successful data-taking

BESIII kept data-taking

- Control room shifts
 - Chief shift on site: members from Beijing + other region in China
 - Remote shifters: members outside of China
- Virtual meetings were working well, but we need face to face meeting!

Chief shift on site + a remote shifters

10 9 8.2 Lum. in each year 8 Integrated lum. (fb⁻¹) 5.83 5.2 6 5.0 5 4.2 4 2.3 2.2 3 2 0.9 0.6 1 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

BESIII integrated luminosity

- > In Jan. 2023, BEPCII luminosity reached: $1.1 \times 10^{33} \ cm^{-2} \ s^{-1}$, 10% above the designed luminosity
- ➢ 8.2 fb⁻¹ integrated luminosity collected in 2023, 40% more than that in 2022.

BESIII achievements

BESIII publications (May 9, 2023)

Until Sep. 11th, 536 papers submitted

328 (including 58 PRL) publications since 2018!

BESIII is playing a leading role on charmed flavor and hadron physics!

26 New Hadrons Discovered 11 new hadrons have been discovered since 2018.

Observation of An Exotic 1^{-+} Isoscalar State $\eta_1(1855)$

Three 1^{-+} candidates were discovered so far: all are iso-vector states. the $\pi_1(1400)$, $\pi_1(1600)$, and $\pi_1(2015)$

PWA of $J/\psi \rightarrow \gamma \eta \eta$ ' using 10 Billion of J/ψ data:

 $\mathcal{B}(J/\psi \to \gamma \eta_1(1855) \to \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$

Weight sum/(10 MeV/c²)

40

20

1.5

2

Mass consistent with hybrid on LQCD. Inspired many interpretations: Hybrid/Molecule/Tetraquark?

Opens a new window to completing the picture of spin-exotics

Observation of the $Z_{cs}(3985)^{\pm}$ and Evidence for the neutral $Z_{cs}(3985)^{0}$

Highlighted in Summary talk @ICHEP2022 by Roberto Tenchini

SU(3) cou Zcs state PRL129(2	inter-part of th with strangene 2022)112003	ne <mark>Zc(3900</mark>): ess	: d→ s?
$Z_{cs}(3$	985) [±]	$Z_{cs}(39)$	985) ⁰
	C S CS	ā C Zc	s
State	Mass $(M_{0})/(c^{2})$	M/idth (Mo)/)	Significance

State	Mass (MeV/ c^2)	Width (MeV)	Significance
$Z_{cs}(3985)^+$	$3985.2^{+2.1}_{-2.0}\pm1.7$	$13.8^{+8.1}_{-5.2}\pm4.9$	5.3σ
$Z_{cs}(3985)^0$	$3992.2 \pm 1.7 \pm 1.6$	$7.7^{+4.1}_{-3.8}\pm4.3$	4.6 σ

- Minimal quark content $\bar{c}cs\bar{u}/\bar{d}$
- Mass and width consistent with the charged Zcs: m(Zcs⁺)<m(Zcs⁰)
- Cross sections are consistent under isospin symmetry
- \rightarrow they are isospin partners

Precision charm: (Semi)-leptonic decays of charmed mesons

Bridge between quarks and leptons, probe Standard model:

✓ |V_{cs(d)}| @ 1% level : test on CKM matrix unitarity
 ✓ f_{D(s)+}, f₊^{K(p)} (0) @ 1% level : test LQCD calculations

✓ One of the most powerful data to validate LQCD calculations!

					Т
	ЕТМ	PRD96,054514	0.765±0.031		-
	HPQCD	PRD104,034505	0.7380±0.0044	-	- 0.6%
2	Belle	PRL97,061804, D ⁰ →K ⁻ l ⁺ ∨	0.695±0.007±0.022		
	BaBar	PRD76,052005, D ⁰ →K [•] e ⁺ ∨	0.727±0.007±0.009	-	
	CLEO	PRD80,032005, D → Ke *∨	0.739±0.007±0.005	÷.	
	BESIII	PRD92,112008, D ⁺ →K ⁰ _L e ⁺ ∨	0.748±0.007±0.012	-	
	BESIII	PRD96,012002, $D^+ \rightarrow K^0_S e^+ v$	0.7246±0.0041±0.0115	-	
	BESIII	PRL122,011804, D ⁰ →K ⁻ µ⁺v	0.7327±0.0039±0.0030	4	
	BESIII	PRD92,072012, D ⁰ →K ⁻ e*v	0.7368±0.0026±0.0036	-	0.7%
	BESIII	Expected (20fb ⁻¹), $D^0 \rightarrow K^e^+ v$	0.7368±0.0009±0.0036	÷	
C).2	0.3 0.4 0. f ^{D→P}	5 0.6 0.7 (0)	, I , , , , , , , , , , , , , , , , , , ,	_∐).8

Precision decay constants: f_{D^+} and $f_{D^+_{s}}$

Clean data sample for hadronic charm decays

It is good place to study the light nonet $[a_0(980), K^{*0}(700), f0(500), f0(980)]$ and the heavy nonet $[a_{0(}1450), K^{*0}(1430), f_0(1370), f_0(1500)]$.

		$D^+ > \pi^+ \pi^0 n'$	ILED 04 059 (2022)
$D^+ \rightarrow K^0 \pi^+ n$	arXiv:2309.05760	$D_s \rightarrow \pi \pi \eta$	<u>JHEP 04, 038 (2022)</u>
$D^0 = V^0 +$		$D_s^{\tau} \rightarrow \pi^{\tau} \pi^{\circ} \pi^{\circ}$	JHEP 01, 052 (2022)
$D^{\circ} \to K_{L}^{\circ}\pi^{\circ}\pi$	arXiv:2212.09048	$D_{\epsilon}^{+} \rightarrow K_{s}^{0}\pi^{+}\pi^{0}$	JHEP 06, 181 (2021)
$D^+ \rightarrow K_s^0 \pi^+ \pi^0 \pi^0$	arXiv:2305.15879 accepted by JHEP	$D^+ > V^+ V^- \pi^+ \pi^0$	
$D^+ \rightarrow K^0 K^+ \pi^0$	Phys. Rev. Lett 129, 182001 (2022)	$D_s \to K K n n$	1 11y3. 11cv. D 104, 032011 (2021)
$D_s \to R_S R n$		$D^+_{s} \rightarrow \pi^+ \pi^- \pi^+ \eta$	Phys. Rev. D 104, L071101 (2021)
$D_s^+ \rightarrow \pi^+ \pi^- \pi^+$	Phys. Rev. D 106, 112006 (2022)	$D^+ > V^0 V^+ \pi^0$	Phys. Rev. D 104, 012006 (2021)
$D^+ = V^0 V^0 - +$	Bhue Bau B 405 1 054402 (2022)	$D \rightarrow K_S K \pi$	<u></u>
$D_s \to \mathbf{K}_S \mathbf{K}_S \pi$	Phys. Rev. D 105, L051103 (2022)	$D_s^+ \rightarrow K_s^0 K^- \pi^+ \pi^+$	Phys. Rev. D 103 , 092006 (2021)
$D_s^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$	JHEP 09, 242(2022)	$D_{c}^{+} \rightarrow K^{+}K^{-}\pi^{+}$	Phys. Rev. D 104, 112016 (2019)
$D_s^{*} \to K^{*}\pi^{*}\pi$	<u>JHEP 08, 196 (2022)</u>	$D_s^+ \rightarrow \pi^+ \pi^0 \eta$	<u>Phys. Rev. Lett. 123, 112001 (2019)</u>
D^+ , $V^+ \pi^+ \pi^-$		$D^+ \rightarrow K^0 \pi^+ \pi^+ \pi^-$	Phys. Rev. D 100, 072008 (2019)
$D_s \rightarrow K \ \pi \ \pi$	JHEP 08, 196(2022)	$D \rightarrow K_{S}^{n} n n$	1 11/3.1101.0100,072000 (2013)
$D_s^+ \rightarrow K^+ K^- \pi^+ \pi^+ \pi^-$	JHEP 07, 051 (2022)	$D^0 \rightarrow K^- \pi^+ \pi^- \pi^0$	Phys.Rev. D 99, 092008(2019)

Branching fraction or observation

Cabi	bbo favored	Doubly Cabibbo Suppressed		
$D_s^+ \rightarrow \omega \pi^+ \eta$	Phys. Rev. D 107, 052010 (2023)	$D^+ \rightarrow K^+ \pi^0 \pi^0, K^+ \pi^0 \eta$	JHEP 09, 107(2022)	
$D^0 \rightarrow K_L^0 \phi / \eta / \omega / \eta'$	Phys. Rev. D 105, 092010 (2022)	$D^0 \to K^+ \pi^- \pi^0 (\pi^0)$	Phys. Rev. D 105, 112001 (2022)	
$D^{(0)+} \rightarrow K^0_{s} \pi^{0(+)} \omega$	Dhua Day D 405 (222000 (2022)	$D^+ \to K^+ \pi^+ \pi^- \pi^0$	Phys. Rev. Lett. 125, 141802 (2020); Phys. Rev. D 104, 072005 (2021)	
$D^{(0)+} \rightarrow K^- \pi^+ \omega$	Phys. Rev. D 105, 032009 (2022)	Singly Cabibb	oo Suppressed	
Inclu	isive decay	$D^+ \to nn\pi^+$ $D^{0(+)} \to n\pi^+\pi^{-(0)}$	Phys. Rev. D 101, 052009(2020)	
$D^{(0)+} \to \pi^+ \pi^+ \pi^- X$	Phys. Rev. D 107, 032002 (2023)	$D \rightarrow \omega \pi \pi$	Phy. Rev. D 102 052003 (2020)	
$D_s^+ \rightarrow \pi^+ \pi^+ \pi^- X$	Phys. Rev. D 108, 032001 (2023)	$D^+ \rightarrow K \overline{K} \pi \pi$	Phys. Rev. D 102, 052006 (2020)	
$D \rightarrow \eta X$	Phys. Rev. Lett. 124, 241803(2020)	$D^+ \rightarrow K^0_{S,L} K^+(\pi^0)$	Phys.Rev. D 99, 032002(2019)	

Doubly Cabibbo Suppressed

A list of publications in last 5 years with 2.9 fb⁻¹

First direct comparisons on form factors with LQCD calculations

Semi-leptonic decay ✓ Form factors of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ PRL129, 231803 (2022) ✓ Observation of $\Lambda_c^+ \to p K^- e^+ \nu_e$ PRD106, 112010 (2022) ✓ LFU test of $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$, arXiv:2306.02624 ✓ Search for $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e$ and $p K_s \pi^- e^+ \nu_e$ arXiv:2302.07529 Neutron-involved decay Observation of $\Lambda_c^+ \rightarrow n\pi^+$ PRL 128, 142001 (2022) Hadronic CS decays $\checkmark \Lambda_c^+ \to \Sigma^+ K_s, \Sigma^0 K^+$ PRD 106, 052003 (2022) ✓ $\Lambda_c^+ \to p\eta'$ PRD 106, 072002 (2022) $\checkmark \Lambda_c^+ \to \Lambda K^+$ PRD 106, L111101 (2022) $\checkmark \quad \Lambda_c^+ \to \Sigma^+ K^+ \pi^$ arXiv:2304.09405 Hadronic CF decays ✓ PWA of Λ_c^+ → $\Lambda \pi^+ \pi^0$ JHEP12, 033(2022) ✓ W-exchange-only process $\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{+} K^{-}$, $\Sigma^{+} \phi$ Inclusive decay ✓ Improved BF of $\Lambda_c^+ \rightarrow e^+ X$ PRD107, 052005 (2023) ✓ First BF of $\Lambda_c^- \rightarrow \bar{n}X$ arXiv:2210.09561 Rare decay $\checkmark \quad \Lambda_c^+ \to \gamma \Sigma^+$ PRD107, 052002 (2023)

Strong-phase: determination of the CKM angle γ

BESIII contributions to hadron vacuum polarization

Baryon Electromagnetic form factors (EMFF)

Inclusive π^0 and K_S productions in e^+e^- annihilations

- Broad relative hadron energy range z_h from 0.1 to 0.9 with precision of around 3% at $z_h \sim 0.4$.
- Results significantly deviate from several theoretical calculations based on the existing FFs
- Provide brand new inputs in low-energy region to global fits of fragmentation function

BESIII white paper: <u>Future Physics Programme</u>

<u>arXiv:1912.05983 : Chin.Phys. C44 (2020) no.4, 040001</u>

Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The rightmost column shows the number of required data taking days with the current (*T*_C) and upgraded (*T*_U) machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\rm C}/T_{\rm U}$
1.8 - 2.0 GeV	R values Nucleon cross-sections	N/A	0.1 fb ⁻¹ (fine scan)	60/50 days
2.0 - 3.1 GeV	R values Cross-sections	Fine scan (20 energy points)	Complete scan (additional points)	250/180 days
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb ⁻¹ (10 billion)	3.2 fb ⁻¹ (10 billion)	N/A
$\psi(3686)$ peak	Light hadron & Glueball Charmonium decays	0.67 fb ⁻¹ (0.45 billion)	4.5 fb ⁻¹ (3.0 billion)	150/90 days
ψ(3770) peak	D^0/D^{\pm} decays	2.9 fb ⁻¹	20.0 fb ⁻¹	610/360 days
3.8 - 4.6 GeV	R values XYZ/Open charm	Fine scan (105 energy points)	No requirement	N/A
4.180 GeV	D_s decay $\chi \gamma Z$ /Open charm	3.2 fb ⁻¹	6 fb ⁻¹	140/50 days
4.0 - 4.6 GeV	$\chi \gamma Z$ /Open charm Higher charmonia cross-sections	16.0 fb ⁻¹ at different \sqrt{s}	30 fb ⁻¹ at different \sqrt{s}	770/310 days
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	0.56 fb ⁻¹ at 4.6 GeV	15 fb ⁻¹ at different \sqrt{s}	1490/600 days
4.74 GeV	$\Sigma_c^+ \Lambda_c^-$ cross-section	N/A	1.0 fb ⁻¹	100/40 days
4.91 GeV	$\Sigma_c \Sigma_c$ cross-section	N/A	1.0 fb ⁻¹	120/50 days
4.95 GeV	Ξ_c decays	N/A	1.0 fb ⁻¹	130/50 days

Another 6 years running to collect >60 fb⁻¹ data at different energies .

BEPCII upgrades in 2024

- BEPCII upgrade (installation: 2024. 6- 2024. 12)
- Highest beam energy: : 2.8 GeV
- Luminosity: $4.0 \sim 5.0 \text{ GeV}$: $1.2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

5.0 ~ 5.6 GeV: (0.5-0.7)×10³³ cm⁻²s⁻¹

Potential physics:

- ✓ Cover energy up to 5.6 GeV
- \checkmark Deeper studies of the XYZ states
- \checkmark Study the ground-state charmed baryons
- \checkmark Provide information on charm-quark fragmentation function

	Students &			
Professors	Assoc. Professors & Senior Engineers	Assist. Researchers & Engineers	Total	Postdocs
19	23	3	45	60

Leading scientists

- SHEN Xiaoyan (former Spokesperson from Dec. 2011-Mar. 2018, Deputy IB Chair)
- YUAN Changzheng (former Spokesperson from Mar. 2018-Dec. 2020)
- LI Hai-Bo (Spokesperson, from Dec. 2020-Now)
- LIU Beijiang (Chair of Speaker's committee, former Physics Coordinator)
- FANG Shuangshi (Light hadron convener, former Physics Coordinator)
- HUANG Yanping (Light hadron)

MA Hailong (Physics Coordinator), DONG Liaoyuan (Charm physics convener), SUN Shengsen(Software coordinator)

- > Invited plenary talk @ ICHEP2020 : Xiaoyan Shen
- Invited talk @LP2023: Changzheng Yuan
- Invited plenary talk @ LP2021: Xiaoyan Shen
- > More than 100 talks invited talks by international conferences

Publications

Oneration	MDC & electronics	EMC & electronics	BTOF+F electr	CTOF & onics	MUC	MUC electronics	Trigger & DAQ
• p• · · · · · · ·	IHEP	IHEP	IHEP		IHEP	IHEP+UST C	IHEP
Ungrade		CGEM & electronic	& cs	Inner N electr	ADC & onics		
opgrade		INFN+IHEP		IHEP			

Software,	CGEM	MDC	EMC	TOF	MUC	Computing
Data processing	INFN+IHEP	IHEP	IHEP	IHEP	IHEP	IHEP+

Total	IHEP	IHEP + University	Non-IHEP
536	138	189	209

Funding support (million CNY)

	2018	2019	2020	2021	2022
Detector operation	8.58	8.58	8.58	8.58	8.12
Detector upgrade	7.70	5.30	3.87	3.11	0.00
Research	11.92	19.75	21.38	37.11	40.78
Total	28.20	33.63	33.83	58.80	48.90

We have enough resources to continue running the experiment for another 6 years!

- > BESIII is running smoothly, and very productive now;
- > Cylindrical Gas Electron Multiplier Inner Tracker (CGEM-IT) ready for installation in 2014.
- BEPCII upgrades will be finished by the end of 2024, more data taking above 4.0 GeV, up to 5.6 GeV to study: charmonium-like states (XYZ particles), charmed baryon, charm-quark fragmentation function ...
- > Advantages at BECPII/BESIII: scan data near thresholds, and quantum-entangled meson and baryon pairs
- > BESIII plays leading role in hadron physics, flavor physics(charmed hadron and strange hadron).

Thank you for your attentions!

S Charm productions at different facilities

Particle	BESIII	Belle II (50 ab^{-1} on $\Upsilon(4S)$)	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
$B^0,ar{B}^0$	-	$5.4 imes10^{10}$	$3 imes 10^{13}$	$4.8 imes 10^{11}$
B^{\pm}	-	$5.7 imes10^{10}$	$3 imes 10^{13}$	$4.8 imes 10^{11}$
$B^0_s,ar{B}^0_s$	-	$6.0 imes 10^8~(5~{ m ab}^{-1}~{ m on}~\Upsilon(5S))$	$1 imes 10^{13}$	$1.2 imes 10^{11}$
B_c^{\pm}	-	-	$1 imes 10^{11}$	$7.2 imes 10^8$
$\Lambda_b^0,ar{\Lambda}_b^0$	-	-	$2 imes 10^{13}$	1×10^{11}
$D^0,ar{D}^0$	1.2×10^8	$4.8 imes10^{10}$	$1.4 imes 10^{15}$	$5.2 imes 10^{11}$
D^{\pm}	$1.2 imes 10^8$	$4.8 imes10^{10}$	$6 imes 10^{14}$	$2.2 imes 10^{11}$
D_s^{\pm}	1×10^7	$1.6 imes10^{10}$	$2 imes 10^{14}$	$8.8 imes10^{10}$
Λ_c^\pm	$0.3 imes 10^7$	$1.6 imes10^{10}$	$2 imes 10^{14}$	$5.5 imes10^{10}$
$ au^{\pm}$	$3.6 imes 10^8$	$4.5 imes 10^{10}$		$1.2 imes 10^{11}$

Advantage @BESIII: quantum entangled threshold data sample, and double tag technique.

X(1835), pp threshold-enhancement

Fine structures were found with more data and better resolution

Scan data at open-charm thresholds: fine structures 28

The vector Y states from scan data near open-charm thresholds

Connection between Y & X: $Y(4260) \rightarrow \gamma X(3872)$

30

 $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$ and $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma D^0 D^{*0}$

Waiting for BESIII result on $e^+e^- \rightarrow K^+K^-J/\psi$ from the same data sample!

Updated *R* values at BESII

- 14 fine-scan data points from 2.23-3.67 GeV
- Important inputs for SM-prediction of g-2

Comparing BESIII *R* values with previously published results:

- ► The accuracy is better than 2.6% below 3.1 GeV and 3.0% above.
- **Larger than the pQCD prediction by 2.7** σ between 3.4 ~ 3.6 GeV.

The *R* program at BESIII

- First bunch of *R*-scan data was collected in 2012:
 - ► 4 energy points from 2.2324 to 3.4 GeV for the pilot run.
 - ▶ luminosity of $1.7 \sim 3.7 \text{ pb}^{-1}$ corresponds to $30k \sim 100k$ produced hadronic events.
 - ▶ 10 data points collected in 2011 ~ 2013 are added to the program
- Second group of *R*-scan data was collected in 2013~2014.
 - ▶ 104 energy points from 3.85 to 4.60 GeV with covering the open-charm region.
 - ▶ luminosity of 8 pb⁻¹ corresponds to 150k produced hadronic events.
- Third group of *R*-scan data was collected in 2015.
 - ▶ 21 energy points from 2.00 to 3.08 GeV.
 - luminosity of $1 \sim 100 \text{ pb}^{-1}$ corresponds to $20k \sim 2000k$ produced hadronic events.
 - shared by many exclusive studies and fruitful results are produced.

Done

The *R* program at BESIII

Muon Anomalous magnetic moment

Nat.Sci.Rev. 8 (2021) 11, nwab187

- > Abnormal threshold effects observed in various baryon pair production: $p\bar{p}$, $\Lambda\bar{\Lambda}$, $\Lambda_c^+\bar{\Lambda}_c^-$...
- > Oscillation structures observed in $p\bar{p}$, $n\bar{n}$
- \succ |G_E/G_M| ratio significantly larger than 1 at low beta for *p*, Λ⁺_c, Σ⁺, indicating large D-wave near threshold
- > Relative phase angle of form factor $\Delta \phi(\sin \Delta \phi)$ measured for Λ , Λ_c^+

Most precise direct measurement of |Vcs| and |Vcd|

 $|V_{cd}|^{D \to \pi \ell^+ \nu} = 0.2238(11)^{\text{Expt}}(15)^{\text{QCD}}(04)^{\text{EW}}(02)^{\text{SIB}}[22]^{\text{QED}},$ $|V_{cd}|^{D_s \to Ke^+\nu} = 0.258(15)^{\text{Expt}}(01)^{\text{QCD}}[03]^{\text{QED}},$ $|V_{cs}|^{D \to K\ell^+\nu} = 0.9589(23)^{\text{Expt}}(40)^{\text{QCD}}(15)^{\text{EW}}(05)^{\text{SIB}}[95]^{\text{QED}},$ SM fit PDG2020 0.22529±0.00041 **PDG2020**, $D^{0(+)} \rightarrow \pi^{-(0)} I^{+} v$ PDG 0.214±0.003±0.009 PRD78,052003, D⁺→µv+τv 0.218±0.009±0.003 CLEO **PRD89,051104. D**⁺→uv 2.6% 2.9 fb⁻¹ BESIII 0.2150±0.0055±0.0020 1.0% 20fb⁻¹ Expected (20fb⁻¹), $D^+ \rightarrow \mu \nu$ 0.2150±0.0021±0.0017 BESIII 0.05 0.1 0.15 0.2 ۱۸^{сq,}

Fermilab Lattice and MILC, arXiv:2212.12648

SObservation of hyperon polarization in $e^+e^- o J/\psi o \Lambda \bar{\Lambda}$ 39

$$e^+e^- \to J/\psi \to \Lambda \bar{\Lambda}$$

Spin directions of both hyperons are perpendicular to the production plane : both of them are up or down.

Transverse polarization was observed in the entangled hyperon-anti-hyperon production.

Polarization of hyperon versus the production angle

The most precise CP test in hyperon decays

10 billion J/ψ (PRL129, 131801 (2022)		Nat. Phys. 15, 631 (2019)	PDG2018
Paras.	BESIII in 2022 (10 billion J/ψ)	BESIII in 2019 (1.3 billion J/ψ)	Previous Results (fix targets)
$lpha_{J/\psi}$	$0.4748\pm 0.0022\pm 0.0024$	$0.461\pm 0.006\pm 0.007$	0.469 ± 0.027
$\Delta \Phi(rad.)$	$0.7521 \pm 0.0042 \pm 0.0080$	$0.740 \pm 0.010 \pm 0.009$	
α_{-}	$0.7519 \pm 0.0036 \pm 0.0019$	$0.750 \pm 0.009 \pm 0.004$	$\bigcirc 0.642 \pm 0.013 \bigcirc$
$lpha_+$	$-0.7559 \pm 0.0036 \pm 0.0029$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08
A _{CP}	$-0.0025 \pm 0.0046 \pm 0.0011$	$-0.006 \pm 0.012 \pm 0.007$	0.06 ± 0.021
α_{avg}	$0.7542\pm 0.0010\pm 0.0020$		

More than 10 standard deviation from all previous measurements before 2018

CPV: $e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$

Nature 606 (2022) 64-69

13% OT TOTAL J/ψ decays ~73200 signal events	Parameter	This work	Previous result	
Negligible background	$\overline{a_{\psi}}$	0.586±0.012±0.010	0.58±0.04±0.08	
	ΔΦ	1.213±0.046±0.016 rad	-	First measurement of the Ξ^-
Eirst direct and	a <u>₌</u>	-0.376±0.007±0.003	-0.401±0.010	$\int \psi$
simultaneously	ϕ_{Ξ}	0.011±0.019±0.009rad	-0.037±0.014 rad	HyperCP: $\phi_{7,47,,69} = -0.042 \pm 0.011 \pm 0.011$
measurement of the	ā _Ξ	0.371±0.007±0.002	-	BESIII: $\langle \phi_{\Xi} \rangle = 0.016 \pm 0.014 \pm 0.007$
charged E decay	$ar{\phi}_{_{\Xi}}$	-0.021±0.019±0.007rad	-	We obtain the same precision for
parameters	a _A	0.757±0.011±0.008	0.750±0.009±0.004	ϕ as HyperCP with <i>three orders</i>
	\overline{a}_{Λ}	-0.763±0.011±0.007	-0.758±0.010±0.007	of magnitude smaller data sample!
First measurement of weak	$\xi_{P} - \xi_{S}$	(1.2±3.4±0.8)×10 ⁻² rad	-	HyperCP: PRL 93(2004) 011802
phase difference in E decay	$\delta_P - \delta_S$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10 ⁻² rad	First massurement of weak phase
	A E _{CP}	(6±13±6)×10 ⁻³	-	difference :
Three independent CP tests	$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	-	weak phase < 3.6 degree
	A^{Λ}_{CP}	(-4±12±9)×10 ⁻³	(−6±12±7)×10 ⁻³	strong phase <6.0 degree
	$\overline{\langle \phi_{\Xi} \rangle}$	0.016±0.014±0.007rad		

Based on 10 B J/ ψ events 9-dimensional fit: ~320,000 signal events	arXiv:2305.0921 Accepted by PRD(L) as an Editor's Suggestion			$e^{+} \overline{p} \qquad \pi^{0} (\rightarrow \gamma \gamma)' \qquad p' \qquad \pi^{-} \qquad \pi$
Purity: > 98%	Parameter	This work	Previous result	$(n (\rightarrow \gamma \gamma))$
	$lpha_{J/\psi}$	$0.514 \pm 0.006 \pm 0.015$	0.66 ± 0.06	
	$\Delta \Phi(\mathrm{rad})$	$1.168 \pm 0.019 \pm 0.018$	-	First measurement of the Ξ°
Most precise measurements	α_{Ξ}	$-0.3750 \pm 0.0034 \pm 0.0016$	-0.358 ± 0.044	polarization in J/ψ decay
of the neutral E decay	\bar{lpha}_{Ξ}	$0.3790 \pm 0.0034 \pm 0.0021$	0.363 ± 0.043	
narameters	$\phi_{\Xi}(\mathrm{rad})$	$0.0051 \pm 0.0096 \pm 0.0018$	0.03 ± 0.12	
parameters	$\bar{\phi}_{\Xi}(\mathrm{rad})$	$-0.0053 \pm 0.0097 \pm 0.0019$	-0.19 ± 0.13	
	α_{Λ}	$0.7551 \pm 0.0052 \pm 0.0023$	0.7519 ± 0.0043	First measurement of weak
	$ar{lpha}_{\Lambda}$	$-0.7448 \pm 0.0052 \pm 0.0017$	-0.7559 ± 0.0047	phase difference in neutral E
	$\xi_P - \xi_S(\mathrm{rad})$	$(0.0 \pm 1.7 \pm 0.2) \times 10^{-2}$	-	decay, most precise result for
	$\delta_P - \delta_S(\mathrm{rad})$	$(-1.3 \pm 1.7 \pm 0.4) \times 10^{-2}$	-	any weakly-decaying baryon
Three CD tests	A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$	$(-0.7\pm8.5)\times10^{-2}$	
Three CP tests	$\Delta \phi_{CP}^{\Xi}(\mathrm{rad})$	$(-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$	$(-7.9\pm8.3)\times10^{-2}$	
	A^{Λ}_{CP}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$	$(-2.5 \pm 4.8) \times 10^{-3}$	Phys. Rev. Lett. 129 (2022) 13, 131801
	$\langle \alpha_{\Xi} \rangle$	$-0.3770 \pm 0.0024 \pm 0.0014$	-	Comparable with the result
	$\langle \phi_{\Xi} \rangle$ (rad)	$0.0052 \pm 0.0069 \pm 0.0016$	-	obtained from $\sim 3.2 \text{ M} \Lambda \overline{\Lambda}$
	$\langle \alpha_{\Lambda} \rangle$	$0.7499 \pm 0.0029 \pm 0.0013$	0.7542 ± 0.0026	events

BESIII achievements on hyperon physics 43

	PRL 129, 131801(2022)	PRL 125,052004(2020)	Nature 606,64(2022)	PRD108,L031106(2023
Parameters	$J/\psi \to \Lambda \overline{\Lambda}$	$J/\psi \to \Sigma^+ \overline{\Sigma}^-$	$J/\psi ightarrow \Xi^+$	$J/\psi ightarrow \Xi^0 \overline{\Xi}{}^0$
$lpha_{\Xi^-/\Xi^0}$	-	-	$-0.376 \pm 0.007 \pm 0.003$	$-0.3750 \pm 0.0034 \pm 0.0016$
$lpha_{\overline{\Xi}^+/\overline{\Xi}^0}$	-	-	$0.371 \pm 0.007 \pm 0.002$	$0.3790 \pm 0.0034 \pm 0.0021$
ϕ_{Ξ^-/Ξ^0}	-	-	$0.011 \pm 0.019 \pm 0.009$	$0.0051 \pm 0.0096 \pm 0.0018$
$\phi_{\overline{\Xi}^+/\overline{\Xi}^0}$	-	-	$-0.021 \pm 0.019 \pm 0.007$	$-0.0053 \pm 0.0097 \pm 0.0019$
$A_{CP}(\Xi^-/\Xi^0)$	-	-	$0.006 \pm 0.013 \pm 0.006$	$-0.0054 \pm 0.0065 \pm 0.0031$
$\Delta\phi_{CP}(\Xi^-/\Xi^0)$	-	-	$-0.005 \pm 0.014 \pm 0.003$	$-0.0001 \pm 0.0069 \pm 0.0009$
$\alpha_{\Lambda/\Sigma^+}$	$0.7519 \pm 0.0036 \pm 0.0024$	$-0.998 \pm 0.037 \pm 0.009$	$0.757 \pm 0.011 \pm 0.008$	$0.7551 \pm 0.0052 \pm 0.0023$
$\alpha_{\overline{\Lambda}/\overline{\Sigma}}$ -	$-0.7559 \pm 0.0036 \pm 0.0030$	$0.990 \pm 0.037 \pm 0.011$	$-0.763 \pm 0.011 \pm 0.007$	$-0.7448 \pm 0.0052 \pm 0.0023$
$A_{CP}(\Lambda/\Sigma^+)$	$-0.0025 \pm 0.0046 \pm 0.0012$	$-0.004 \pm 0.037 \pm 0.010$	$-0.004 \pm 0.012 \pm 0.009$	$0.0069 \pm 0.0058 \pm 0.0018$

BESIII best measurements: $A_{CP}^{\Lambda} = -0.0025 \pm 0.0046 \pm 0.0012$

Systematic uncertainties are well controlled!

- Excellent performance of BESIII detectors.
- Data-driven method to study data-MC inconsistency.

BESIII management

