

中國科學院為能物記》所 Institute of High Energy Physics Chinese Academy of Sciences

CEPC Accelerator Jie GAO IHEP International Assessment Sept. 21, 2023

• Introduction

- CEPC Accelerator System Design and Optimizations in TDR
- CEPC Accelerator Key Hardware R&D Progresses in TDR
- SppC compatibility with CEPC
- CEPC civil engineering and industrial preparations
- Summary

CEPC Optimization Design Philosophy

CEPC Higgs Factory and SppC in TDR

CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradale to 50MW)

CEPC TDR Parameters

	Higgs	Z	W	tīt					
Number of IPs		2							
Circumference (km)		100.0							
SR power per beam (MW)	50								
Half crossing angle at IP (mrad)	16.5								
Bending radius (km)		10.7							
Energy (GeV)	120	45.5	80	180					
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1					
Damping time $\tau_x / \tau_y / \tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6					
Piwinski angle	4.88	29.52	5.98	1.23					
Bunch number	446	13104	2162	58					
Bunch spacing (ns)	355 (53% gap)	23 (10% gap)	154	2714 (53% gap)					
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0					
Beam current (mA)	27.8	1340.9	140.2	5.5					
Momentum compaction (10-5)	0.71	1.43	1.43	0.71					
Beta functions at IP β_x^* / β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7					
Emittance $\varepsilon_x / \varepsilon_v$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7					
Betatron tune v_x/v_y	445/445	266/267	266/266	445/445					
Beam size at IP σ_x/σ_v (um/nm)	14/36	6/35	13/42	39/113					
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9					
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20					
Energy acceptance (DA/RF) (%)	1.6/2.2	1.3/1.5	1.2/2.5	2.0/2.6					
Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1					
RF voltage (GV)	2.2	0.1	0.7	10					
RF frequency (MHz)		650							
Longitudinal tune v_s	0.049	0.032	0.062	0.078					
Beam lifetime (Bhabha/beamstrahlung) (min)	39/40	86/400	60/700	81/23					
Beam lifetime (min)	20	71	55	18					
Hourglass Factor	0.9	0.97	0.9	0.89					
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8					

CEPC Accelerator, J. Gao

IHEP International Assessment, Sept-21, 2023

Advanced CEPC Collider Ring Lattice Design

Advanced collider design: 1) Crabwaist collision, 2) small β_y=1mm, 3) Fully partial double ring scheme with reduced rf stations, 4) Four energy free switching, 5) High energy gamma ray

UEPU Accelerator, J. Gao

CEPC Collider Ring Daynamic Apertures

IHEP International Assessment, Sept-21, 2023

Studies of Beam-Beam Effects in CEPC

Beam-beam simulation results are consistent with the TDR parameter tables.

- Luminosity & Lifetime is evaluated by strong-strong simulation
- X-Z instability is well suppressed even considering Potential Well Distortion
- Lifetime optimization with both beam-beam/lattice nonlinearity is done

Parameters of CEPC Booster

Injection		tt	Н	W		Z
Beam energy	GeV		•	30		
Bunch number		35	268	1297	3978	5967
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9
Single bunch current	μΑ	3.4	2.3	2.4	2.65	2.69
Beam current	mA	0.12	0.62	3.1	10.5	16.0
Energy spread	%	0.025				
Synchrotron radiation loss/turn	MeV			6.5		
Momentum compaction factor	10-5	1.12				
Emittance	nm			0.076		
Natural chromaticity	H/V			372/-269		
RF voltage	MV	761.0	346.0		300.0	
Betatron tune v_x/v_y			321	.23/117.1	8	
Longitudinal tune		0.14	0.0943	().0879	
RF energy acceptance	%	5.7	3.8		3.6	
Damping time	S	3.1				
Bunch length of linac beam	mm	0.4				
Energy spread of linac beam	%	0.15				
Emittance of linac beam	nm			6.5		

		tt	Н		W	Ζ	
Extraction		Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis	injection
Beam energy	GeV	180	12	20	80	45	.5
Bunch number		35	268	261+7	1297	3978	5967
Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81
Maximum single bunch current	μA	3.0	2.1	61.2	2.2	2.4	2.42
Beam current	mA	0.11	0.56	0.98	2.85	9.5	14.4
Bunches per pulse of Linac		1	-	1	1	2	2
Time for ramping up	S	7.1	4.3		2.4	1.	0
Injection duration for top-up (Both beams)	s	29.2	23.1	31.8	38.1	132.4	
Current decay in Collider				3%			
Energy spread	%	0.15	0.0)99	0.066	0.0	37
Synchrotron radiation loss/turn	GeV	8.45	1.	69	0.33	0.0	34
Emittance	nm	2.83	1.	26	0.56	0.	19
Betatron tune v_x / v_y				321.27/1	17.19		
RF voltage	GV	9.7	2.	17	0.87	0.4	46
Longitudinal tune		0.14	0.0943 0.08		0.0879		
RF energy acceptance	%	1.78	1.	59	2.6	3.	4
Damping time	ms	14.2	47.6 160.8		87	19	
Natural bunch length	mm	1.8	1.	85	1.3	0.′	75
Full injection from empty ring	h	0.1	0.14	0.16	0.27	1.8	0.8

CEPC Booster Design

CEPC MDI Design

CEPC SRF System Design and Upgrade Plan

Collider 650MHz Parameters

30/50 MW SR power per beam for	ttbar 30/50 MW		Higgs	w	7	
for the two rings. W/Z separate cavities. HL-Z cavities bypass.	New cavities	Higgs cavities	30/50 MW	30/50 MW	30/50 MW	
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0.5	/ 0.8	5 / 8.3	16 / 26.7	115 / 192	
RF voltage [GV]	10 (6.1	+ 3.9)	2.2	0.7	0.12 / 0.1	
Beam current / beam [mA]	3.4	/ 5.6	16.7 / 27.8	84 / 140	801 / 1345	
Bunch charge [nC]	3	2	21	21.6	22.4 / 34.2	
Bunch length [mm]	2	.9	4.1	4.9	8.7 / 10.6	
650 MHz cavity number	192	336	192/336	96 / 168 / ring	30 / 50 / ring	
Cell number / cavity	5	2	2	2	1	
Gradient [MV/m]	27.6	25.2	24.9 / 14.2	15.9 / 9.1	17.4 / 8.7	
Q0 @ 2 K at operating gradient	3E10	3E10	3E10	3E10	2E10	
HOM power / cavity [kW]	0.4 / 0.66	0.16 / 0.26	0.4 / 0.67	0.93 / 1.54	2.9 / 6.2	
Input power / cavity [kW]	188 / 315	71 / 118	313 / 298	313 / 298	1000	
Optimal Q∟	1E7 / 6E6	9E6 / 5.4E6	1.6E6 / 9.5E5	8E5 / 2.7E5	1.5E5 / 3.8E4	
Optimal detuning [kHz]	0.01 / 0.02	0.02 / 0.03	0.1 / 0.2	0.7 / 2	6.7 / 21.7	
Cavity number / klystron	4 / 2	2	2	2	1	
Klystron power [kW]	800	800	800	800	1200	
Klystron number	48 / 96	168	96 / 168	96 / 168	60 / 100	
Cavity number / cryomodule	4	6	6	6	1	
Cryomodule number	48	56	32 / 56	32 / 56	60 / 100	
Total cavity wall loss @ 2 K [kW]	12.1	7.1	3.9 / 2.3	1.6 / 0.9	0.45 / 0.2	

Booster 1.3GHz Parameters

30/50 MW Collider SR power per beam. 30 GeV injection. Higgs & ttbar half filled.	ttbar 30/50 MW		Higgs	w	z			
Higgs on-axis injection with bunch swapping. Z injection from empty ring.	New cavities	Higgs cavities	30/50 MW	30/50 MW	30/50 MW			
Extraction beam energy [GeV]	18	30	120	80	45.5			
Extraction average SR power [MW]	0.	05	0.5 / 0.67	0.02 / 0.04	0.05 / 0.1			
Bunch charge [nC]	1	.1	0.78 (20.3)	0.73	0.81			
Beam current [mA]	0.12	/ 0.19	0.63 (1) / 1 (1.4)	3.1 / 5.3	16 / 30			
Injection RF voltage [GV]	0.7	761	0.346	0.3	0.3			
Extraction RF voltage [GV]	9.7 (7.53 + 2.17)		2.17	0.87	0.46			
Extraction bunch length [mm]	1.8		1.86	1.3	0.75			
Cavity number (1.3 GHz 9-cell)	256	96	96	96	32			
Module number (8 cavities / module)	32	12	12	12	4			
Extraction gradient [MV/m]	28.3	21.8	21.8	8.7	13.8			
Q ₀ @ 2 K at operating gradient	2E10	3E10	3E10	3E10	3E10			
QL	4E7	4E7	1.2E7	7.3E6 / 4.4E6	1.2E7 / 6.3E6			
Cavity bandwidth [Hz]	33	33	110	178 / 296	111 / 208			
Peak HOM power per cavity [W]	0.5	/ 0.8	~ 75 / ~ 100	11.8 / 19.6	146 / 272			
Average HOM power per cavity [W]	0.2 /	0.32	~ 10 / ~ 15	3.8 / 6.3	80 / 150			
Input peak power per cavity [kW]	8.3 / 9.2	5.1 / 5.9	22 / 32	10.9 / 18.1	17 / 32			
Input average power per cavity [kW]	0.3	0.2	6.5 / 9.2	0.3 / 0.5	2.5 / 4.5			
SSA power [kW] (1 cavity / SSA) A	celterato	pr. 1º Ga	0 25 / 30	25 / 30	25 / 40			
Total cavity wall loss @ 2 K [kW]	0.36	0.05	0.5	0.02	0.08			

٠

٠

- CEPC TDR SRF layout and parameters are designed to meet physics requirements;
- RF system design optimized for Higgs 30/50 MW. Power and energy upgrade by adding cavities, RF power sources and cryogenic plants and other systems are compatible;
- Use dedicated high current 1-cell cavity for 10-50 MW Z. Solve the FM & HOM CBI problemstional Assessment, Sept-21, 2023

CEPC Electron and Positron Injection Linac Designs

Parameter	Symbol	Unit	Design value
Energy	E	GeV	30
Repetition rate	f_{rep}	Hz	100
Number of bunches per pulse			1 or 2
Bunch charge		nC	1.5
Energy spread	$\sigma_{\!E}$		1.5×10-3
Emittance	\mathcal{E}_r	nm	6.5
Electron energy at target		GeV	4
Electron bunch charge at target		nC	10
Tunnel length	L	m	1800

Phase space @ SAS exit

Y (mm)

- Linac energy increases to 30 GeV, with S+C band Accelerator;
- Start-to-end simulations were conducted for both electron/positron beams, with quality satisfying requirements.

CEPC Polarized Beam Studies(alternative option)

Key issues of study:

- Energy calibration in collider ring with transverse polarization (self polarization & inj. polarization)
- Longitudinal polarization for collision
- Polarization beam injection, positron polarization and ramping in booster CEPC Accelerator, J. Gao IHEP International Assessment, Sept-21, 2023

CEPC Plasma Injector (alternative option) and TF Plan

Parameters	Driver	Trailer	Parameters	Trailer	
plasma density $n_p(\times 10^{16} cm^{-3})$	0.50334		Accelerating distance (m)	7.3 (97300 w_n^{-1})	
Driver energy $E(GeV)$	12	12	Trailer energy <i>E</i> (<i>GeV</i>)	30	5
Normalized emittance $\epsilon_N ~(\mu m ~ rad)$	20	10	Normalized emittance $\epsilon_n(mm mrad)$	10	n _e cw _p /€
Length $L(\mu m)$	350	90	Charge(nC)	1.2	E _z [n
(matched) Spot size $\sigma_r (\mu m)$	3.72	2.63	Energy spread $\delta_E(\%)$	0.58	-
Charge Q (nC)	4.0	1.2	R	1.8	-
Beam distance $d(\mu m)$	1:	55	Efficiency(%) (driver -> trailer)	55	1

CEPC TDR R&D Maturity

- CEPC received ~ 260 Million CNY from MOST, CAS, NSFC, etc for the key technology R&D
- Large amount of key technology validated in other project by IHEP: BEPCII, HEPS, ...

CEPC R&D ~ 40% cost of acc. components	 High efficiency klystron SRF cavities Positron source High performance accelerator 	 Novel magnets: Weak field dipole, dual aperture magnets Extremely fast injection/extraction Electrostatic deflector MDI
BEPCII / HEPS ~ 50% cost of acc. components	 > High precision magnet > Stable magnet power source > Vacuum chamber with NEG coating > Instrumentation, Feedback system 	 Survey & Alignment Ultra stable mechanics Radiation protection Cryogenic system MDI

 $\sim 10\%$ remaining (the machine integration, commissioning etc.) and is anticipated to be completed by 2026, and the international contribution/collaboration may be needed.

CEPC Key Technology R&D

Key technology R&D spans all component lists in CEPC TDR

CEPC SRF Facilities and Components

Mid-T (medium temperature furnace baked) cavities have higher gradient and **Q** than Nitrogen doped cavities with less EP process (1 vs 3)

IHEP PAPS is in full operation since 2021 CEPC 650 MHz 1-cell Cavity CEPC 650 MHz 2-cell Cavity

3E10@20MV/m.

1.3 GHz High Q Mid-T Cavity Horizontal Test

Mid-T 1.3 GHz 9-cell vertical test avg.4.3E10@ 31 MV/m

Mid-T 1.3 GHz 9-cell horizontal test (SEL) 3.1E10@21 MV/m, avg. 24.6 MV/m 18

IHEP International Assessment, Sept-21, 2023

CEPC Collider 650 MHz 2 x 2-cell Test Cryomodule

- DC photo-cathode gun voltage conditioned up to 400 kV
- Cavity frequency, HOM coupler double notch filter, tuner, vacuum, cryogenics perform well
- Cavity magnetic field at 2 K < 2 mG (large beam pipe North to South)
- LLRF system commissioning and high power test ongoing
 - Optimizing the outer conductor helium gas cooling of the input coupler. Cavity early quench if with poor coupler cooling.

Module automatic cool-down experiment

- 1. 300 to 150 K: < 10 K/hr. Cavity top and bottom ΔT < 20 K
- 2. 150 to 4.5 K: Cavity surface > 1 K/min
- 3. 4.5 to 2 K

9

CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.

Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spec	LCLS-II-HE Spec
Average usable CW E _{acc} (MV/m)	23.1	3.0×10 ¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m

CEPC Accelerator, J. Gao

CEPC High Efficiency High Power Klystron Development and RF Power Distribution

[®] CEPC Collider Ring Full-scale Dual-aperture Magnets

Full-length 5.67m Dual aperture dipole

Two apertures differ <0.1%, transfer function in two apertures are consistent.

High harmonics are nearly the same at four energies and all less than 5 units, which can meet the requirements. High harmonics @120GeV (units:1e-4)

n	bn_A	bn_B
2	0	0
3	3.92	3.88
4	1.03	-1.22
5	0.47	0.54
6	0.08	-0.46

E(GeV)	GL(T)-A	GL(T)-B	difference
45	-3.36	3.35	0.40%
80	-5.91	5.88	0.59%
120	-8.89	8.85	0.49%
148	-10.93	10.89	0.40%
175	-12.77	12.73	0.30%
182.5	-13.27	13.21	0.40%

- Large quantities of dual-aperture dipoles (69km) and quad. (10km) are required;
- Full length dual-aperture dipole and dual aperture QUAD (short length) have been fabricated, under test;
- **Dipole/QUAD prototypes meet the requirements.**

CEPC Full-scale Weak Field Dipole for Booster

Magnet name	BST-63B-	BST-63B-	BST-63B-	BST-63B-IR	
	Arc	Arc-SF	Arc-SD		-
Quantity	10192	2017	2017	640	
Aperture [mm]	63	63	63	63	
Dipole Field [Gs] @180 GeV	564	564	564	549	
Dipole Field [Gs] @120 GeV	376	376	376	366	
Dipole Field [Gs] @30 GeV	95	95	95	93	BY/
Sextupole Field [T/m ²] @180 GeV	0	16.0388	19.1423	0	ВУ
Sextupole Field [T/m ²] @120 GeV	0	10.6925	12.7615	0	
Sextupole Field [T/m ²] @30 GeV	0	2.67315	3.19035	0	
Magnetic length [mm]	4700	4700	4700	2350	
GFR [mm]	± 22.5	±22.5	± 22.5	± 22.5	
Field errors	$\pm 1 \times 10^{-3}$	$\pm 1 \times 10^{-3}$	$\pm 1 \times 10^{-3}$	\pm 1×10 ⁻³	

- Booster requires ~19k pieces of magnets (68km);
- Booster dipoles are required to work at the low field of 95 Gs (30GeV) with an error smaller than 1×10⁻³;
- Full length (4.7m) dipole was developed, and it meets the field specification;

CEPC Full-scale Booster Magnets (quadrupole, sextupole, corrector in synergy with HEPS)

Booster dipole

Sextupole

Quadrupole

The integral field uniformity at all field levels of full size booster dipole is better than $\pm 1 \times 10^{-3}$, and meet the specification

The field reproducibility of four excited cycles is better than $\pm 2.5 \times 10^{-4}$

Corrector

CEPC Final Focus Superconducting Quadrupoles

	SCQ Specifications		01a	O1h	02		
Field gradient			142.3	85.4	96.7	T/m	Q1a
Magnetic length			1210	1210	1500	mm	
]	Reference radius		7.46	9.085	12.24	mm	
]	Mini. distance betwo aperture center	62.71	105.28	155.11	mm	20	
]	High order fie harmonics	l d	$\leq 5 \times 10^{-4}$	$\leq 5 \times 10^{-4}$	$\leq 5 \times 10^{-4}$		
]	Dipole field		≤3	≤3	≤3	mT	

- CCT and Cos2θ type SCQs were modeled, and their fields were calculated; the CEPC specifications have been met;
- A 0.5-m single aperture SCQ using Cos2θ technology has been developed. The electro-magnet excitation test showed the highest current reached 2500A (176 T/m), which exceeds the CEPC requirement (142T/m)

CEPC Vacuum System

New round pipe of Copper (3mm) with NEG coating (200nm) for collider ring in TDR SEY<1.2

✓ 180°C/24h activation 4.5×10^{-10} Torr ✓ 200°C/24h activation 2.5×10^{-10} Torr

Vacuum pipes and RF shielding bellows

Facility of pumping speed test have been finished in Dongguan

Vacuum chamber prototypes, copper & aluminum, with different shape/length were fabricated;

- NEG coating technology were developed;
- RF shielding bellow manufactured
- Vacuum technology applied and was tested at HEPS

CEPC Linac Injector Key Technology R&D

Power consumption of CEPC - Higgs

-	System	Higgs 30MW						Higgs 50MW							
SN		Collider	Booster	Linac	BTL	IR	Surface building	Total	Collider	Booster	Linac	BTL	IR	Surface building	Total
1	RF Power Source	96.90	1.40	11.10				109.40	161.60	1.73	14.10				177.40
2	Crygenic system	9.72	1.71			0.14		11.57	9.17	1.77			0.14		11.08
3	Vacuum System	5.40	4.20	0.60				10.20	5.40	4.20	0.60				10.20
4	Magnet Power Supplies	44.50	9.80	2.50	1.10	0.30		58.20	44.50	9.80	2.50	1.10	0.30		58.20
5	Instrumentation	1.30	0.70	0.20				2.20	1.30	0.70	0.20				2.20
6	Radiation Protection	0.30		0.10				0.40	0.30		0.10				0.40
7	Control System	1.00	0.60	0.20				1.80	1.00	0.60	0.20				1.00
8	Experimental devices					4.00		4.00					4.00		4.00
9	Utilities	37.80	3.20	1.80	0.60	1.20		44.60	46.40	3.80	2.50	0.60	1.20		54.50
10	General services	7.20		0.30	0.20	0.20	12.00	19.90	7.20		0.30	0.20	0.20	12.00	19.90
	Total	204.12	21.61	16.80	1.90	5.8 <mark>4</mark>	12.00	262.27	276.87	22.60	20.50	1.90	5.84	12.00	339.71

SppC Collider Parameters in TDR

-Parameter list (updated Feb. 2022)

Main parameters

Circumference	100						
Beam energy	62.5						
Lorentz gamma	66631						
Dipole field	20.00						
Dipole curvature radius	10415.4						
Arc filling factor	0.780						
Total dipole magnet length	65442.0						
Arc length	83900						
Total straight section length	16100						
Energy gain factor in collider rings	19.53						
Injection energy	3.20						
Number of IPs	2						
Revolution frequency	3.00						
Revolution period	333.3						
Physics performance and beam parameters							
Initial luminosity per IP	4.3E+34						
Beta function at initial collision	0.5						
Circulating beam current	0.19						
Nominal beam-beam tune shift limit per	0.015						
Bunch separation	25						
Bunch filling factor	0.756						
Number of bunches	10080						
Bunch population	4.0E+10						
Accumulated particles per beam	4.0E+14						

Dynamic Aperture

0

sigma x

200

400

600

-200

-400

-600

Ecm=125TeV with dipole field of 20T

CEPC Accelerator, J. Gao

Latest Performance of LPF1-U (SppC)

Picture of LPF1-U

Dual aperture superconducting dipole achieves 12.47 T at 4.2 K Entirely fabricated in China. The next step is reaching 16-20T

CEPC Conventional Facility and Civil Engineering

Electrical Equipment General Layout in Auxiliary

Participating and Potential Collaborating Companies in China (CIPC) and Worldwide

CEPC Accelerator IARC Meeting 2019-2022

International Accelerator Review Committee (IARC) under IAC

The 2019 CEPC International Accelerator Review Committee

Review Report

December 6 2010

The 2021 CEPC International Accelerator Review Committee

Review Report

The review meet Circular Electron Committee (IARC (MDI) sessions of

May 19, 2021

The IARC was pli TDR. The quality even if not alread luminosity perforr improving the forr The CEPC Inter

The IARC is plea would like to that IARC meeting. help and hospitali IARC Committee October 20th, 2021

2021 Second CEPC IARC Meeting

2022 First CEPC IARC Meeting

The Circular | currently hosted Academy of St accelerator in 2 Committee (IAC currention an International to advise on all n the study of the the Study of the circular Electron Positron Cc Collider (SppC) Study Group, currer ergy Physics of the Chinese Academy design of the CEPC accelerator in 2(ternational Advisory Committee (IAC Report (TDR) phase for the CEPC ac get year of 2022. Meanwhile an Inter (IARC) has been established to advise erator design, the R&D program, the region, and the compatibility with an well as with a future SppC.

IARC Committee June 17th, 2022

The Circular Electron Positron Collider (CEPC) and Super Proton-Proton Collider (SppC) Study Group, currently hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences, completed the conceptual design of the CEPC accelerator in 2018. As recommended by the CEPC International Advisory Committee (IAC), the group began the Technical Design Report (TDR) phase for the CEPC accelerator in 2019, with a completion tar-

All IARC reports (2019-2022) on IAC2022 Meeting Indico: https://indico.ihep.ac.cn/event/17996/page/1415-materials

The Committee congratulates the CE last months and presented at this me R&D of the hardware components lool the table of parameters for the high-lu and components for all accelerator sy lider. A total of 24 talks were presented on a variety of topics The charges to CEPC IARC for this meeting are:

- 1. For the TDR, how are the accelerator design and the technology R&D progress towards the TDR completion at the end of 2022. Are there any important missing points in the accelerator design and optimization?
- 2. based on CEPC TDR design, the CEPC dedicated key technology R&D status and the technologies accumulated from the other IHEP responsible large-scale accelerator facilities, such as HEPS, could the CEPC accelerator group start the TDR editorial process and EDR preparation?
- 3. with the new progresses between CEPC and FCCee possible synergy and the continuing collaboration with SuperKEKB, are there more suggestions on the next steps of international collaborations?

Nov. 2019: <u>https://indico.ihep.ac.cn/event/9960/</u> May, 2021: <u>https://indico.ihep.ac.cn/event/14295</u> October, 2021: <u>https://indico.ihep.ac.cn/event/15177</u>].

June, 2022: https://indico.ihep.ac.cn/event/16801/

After the completeion of CEPC CDR in Nov. 2018, since the first CEPC IARC meeting in 2019, there has been toally 4 IARC meetings till 2022, with each meeting a carefully written IARC report, which are very helpful for CEPC accelerator in TDR phase and beyond.

Phase 1 CEPC TDR Review Report

CEPC TDR Technical Review Committee

15 July 2023

1 Executive Summary

Five years after the completion of the CDR, the draft TDR for the CEPC accelerator has been prepared. The TDR will be completed taking into account the feedback from this Committee. The key technologies for CEPC have been developed. Prototypes meeting or exceeding the specifications are available. The CEPC team is on track to launch an engineering-design effort. After a site has been selected, the construction of the CEPC could start in 2027 or 2028. The Committee endorses this plan.

The Committee wishes to congratulate the CEPC team on the excellent progress. The Committee is impressed by the amount and quality of the work performed and presented.

The next section provides answers to the different charge questions, the following sections contain comments and recommendations related to the individual presentations.

CEPC Accelerator International TDR Review and Cost Review were held June 12-16, and Sept. 11-15, 2023, repectively, in HKUST-IAS, Hong Kong, China

- The CEPC TDR parameter and design optimizations with high luminosity (30MW and 50MW) operations, for all four energies are studied. The results demonstrate that the physics design satisfies the scientific goals.
- A comprehensive key technology R&D program has been carried out in TDR with CEPC key technologies in hands ready for industrialization preparation.
- The TDR design of the CEPC is compatible with future SppC.
- CEPC accelerator TDR international review and cost review were held from June 12-16, 2023 and Sept. 11-15, 2023, repectively.
- Detailed preparation of CEPC accelerator EDR phase before construction working plan and beyond are underway, with the aim of starting the construction in "15th five-year-plan" (2026-2030).
- International collaboration and participation are warmly welcome.

Thanks

CEPC Accelerator Construction Timeline

2023: Accelerator TDR; 2026: EDR; Start construction upon approval

CEPC Installation Strategy

