Investigating the BNV dinucleon to dilepton decays in the EFT

Xiao-Dong Ma

South China Normal University

Workshop on Grand Unified Theories: Phenomenology and Cosmology (GUTPC) Hangzhou, 2024. 4. 9

X. G.He and **XDMA**: *JHEP* 06 (2021) 047 X. G.He and **XDMA**: *Phys.Lett.B* 817 (2021) 136298

- **Motivation for BNV/LNV interactions** \bullet
- EFT for the $\Delta B = \Delta L = -2$: $pp \to \ell^+ \ell'^+$, $pn \to \ell^+ \bar{\nu}'$, $nn \to \bar{\nu}\bar{\nu}'$
- Estimation of decay rate
- **Summary** lacksquare

BNV is a key ingredient for the baryon asymmetry of the universe

Sakharov's conditions for baryogenesis: BNV

- 2. C, CP violation
- 3. Interactions out of thermal equilibrium

$$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \sim 6 \times 10^{-10}$$

LNV and the Majorana nature of neutrinos

Sakharov, 1967dj

https://en.wikipedia.org/wiki/Baryogenes

\sim SM: B/L is violated via anomaly but B - L is conserved

$\odot B \& L$ violation is a clear signature for new physics (NP)

$^{\circ}$ Theoretically: GUTs, SUSY, Extra-dim, etc \Rightarrow BNV & LNV

't Hooft, 1976

4

Low energy probes of BNV signals

$\Delta B = 1$: nucleon decay like $p \rightarrow e^+ \pi^0, \pi^+ \nu, \cdots$

More on $\Delta B = 1$ process, see, Heeck, Takhistov, 1910.07647

Low energy probes of BNV signals

D.G. Phillips II et al. / Physics Reports 612 (2016) 1–45 $|\Delta B| = 2$: A State of the Field, and Looking Forward, 2010.02299

Feinberg, Goldhaber and Steigman, 1978;

Arnellos and W. J. Marciano, 1982; Grossman and Ng, 2018

 $pp \to \ell_{\alpha}^{+} \ell_{\beta}^{+}, pn \to \ell_{\alpha}^{+} \bar{\nu}_{\beta}, nn \to \bar{\nu}_{\alpha} \bar{\nu}_{\beta}$

Our goal: a systematic EFT analysis

Arnold, Fornal, and Wise, 2012; Gardner and Yan, 2019

Helset, Murgui and Wise, 2021; Girmohanta, Shrock 2019, 2020, etc

Decay mode	Lifetime limit	Decay mode	Lifetime limit	Decay mode	Lifetime limit
$pp \rightarrow e^+e^+$	$4.2 \times 10^{33} \mathrm{yr}$	$pn \to e^+ \bar{\nu}'$	$2.6 \times 10^{32} \mathrm{yr}$	$nn \to \bar{\nu}\bar{\nu}'$	$1.4 \times 10^{30} \mathrm{yr}$
$pp \rightarrow e^+ \mu^+$	$4.4 \times 10^{33} \text{yr}$	$pn \to \mu^+ \bar{\nu}'$	$2.2 \times 10^{32} \mathrm{yr}$		
$pp \rightarrow \mu^+ \mu^+$	$4.4 \times 10^{33} \text{yr}$	$pn \to \tau^+ \bar{\nu}'$	$2.9 imes 10^{31} \mathrm{yr}$		
$pp \rightarrow e^+ \tau^+$	—				
Super-Kamiokande, 2018, arXiv:1811.12430 16 O Super-Kamiokande, 2015 KamLAND, 2006 12 C					

- * The anti-neutrinos can be other invisible particles like neutrinos
- * The limits on the partial lifetime are extremely large \Rightarrow sensitive to NP

7

EFT for $\Delta B = \Delta L = -2$ interactions

- * LEFT is a more general framework since $\Lambda_{\rm NP}$ can be as low as a few GeV, but with more parameters
- SMEFT is a strong constraint for the LEFT interactions, fewer parameters, but * with the assumption: $\Lambda_{\rm NP} \gg \Lambda_{\rm EW}$
- * (B) χ PT is a systematic way to determine the non-perturbative QCD effect

- Fields: $u, d, s, c, b; e, \mu, \tau; \nu_e, \nu_\mu, \nu_\tau$
- Symmetry: $SU(3)_{\rm C} \times U(1)_{\rm EM}$
- Power counting: canonical dimension d

The effective operators for $\Delta B = \Delta L = -2$ interactions 6 quarks + 2 leptons

Dim-12 operators (qqqqqqll) with $q = u, d \& l = \ell, \nu$

9

Dim-12 operators (qqqqqqll) with $q = u, d \& l = \ell, \nu$

Fierz identities • Operator structure: $(qqqqqqqll) \xrightarrow{l \ loc} (qqqqqqq)(ll)$

• $U(1)_{\text{EM}}$: $(uuudd)(\ell\ell')$, $(uuuddd)(\ell\nu')$, $(uudddd)(\nu\nu')$

• $SU(3)_{C}$: $\mathcal{O} \sim T_{ijklmn}(q^{i}q^{j})(q^{k}q^{l})(q^{m}q^{n})j_{lep.}$

color tensor

 $T_{\{ij\}\{kl\}\{mn\}}^{SSS} = \epsilon_{ikm}\epsilon_{jln} + \epsilon_{ikn}\epsilon_{jlm} + \epsilon_{ilm}\epsilon_{jkn} + \epsilon_{iln}\epsilon_{jkm}$ $T_{\{ij\}[kl][mn]}^{SAA} = \epsilon_{imn}\epsilon_{jkl} + \epsilon_{ikl}\epsilon_{jmn}$ $T^{SAA}_{\{kl\}[mn][ij]} = \epsilon_{ijk}\epsilon_{mnl} + \epsilon_{ijl}\epsilon_{mnk}$ $T^{SAA}_{\{mn\}[ij][kl]} = \epsilon_{ijm}\epsilon_{kln} + \epsilon_{ijn}\epsilon_{klm}$ $T^{AAA}_{[ij][kl][mn]} = \epsilon_{ijm}\epsilon_{kln} - \epsilon_{ijn}\epsilon_{klm}$

Final operator's Lorentz structure:

Scalar lepton current: (qq)(qq)(qq)(ll)

Vector lepton current: $(qq)(qq)(q\gamma_{\mu}q)(l\gamma^{\mu}l)$

Tensor lepton current: $(qq)(qq)(q\sigma_{\mu\nu}q)(l\sigma^{\mu\nu}l)$ **S-S-T-T**

quark and lepton sectors are factorized out

S-S-S-S

S-S-V-V

Total counting

• $pp \rightarrow \ell_{\alpha}^{+} \ell_{\beta}^{+}$: 28 (S-S-S-S)+19 (S-S-V-V)+16 (S-S-T-T) = 63 operators $\alpha = \beta = e \Rightarrow H - H$ oscillation: 47 vs 60 by Caswell, Milutinovic, and Senjanovic, 1983 • $pn \rightarrow \ell_{\alpha}^{+} \bar{\nu}_{\beta}$: 14 (S-S-S-S)+24 (S-S-V-V)+13 (S-S-T-T) = 51 operators

• $nn \rightarrow \bar{\nu}_{\alpha} \bar{\nu}_{\beta}$: 14 (S-S-S-S)+8 (S-S-T-T) = 22 operators

14 $n - \bar{n}$ oscillation operators after dropping the scalar lepton current.

A glimpse of the operators for $pp \to \ell_{\alpha}^+ \ell_{\beta}^+$ dim-12 operators with a scalar lepton current

 $\mathcal{Q}_{1LLLL,c}^{(pp)S,\pm} = (u_L^{iT} C u_L^j) (u_L^{kT} C d_L^l) (u_L^{mT} C d_L^n) j_{S,\pm}^{\ell\ell'} T_{\{ij\}\{kl\}\{mn\}}^{SSS}$ $\mathcal{Q}_{1LLL,b}^{(pp)S,\pm} = (u_L^{i\mathrm{T}} C u_L^j) (u_L^{k\mathrm{T}} C d_L^l) (u_L^{m\mathrm{T}} C d_L^n) j_{S,\pm}^{\ell\ell'} T_{\{ij\}[kl][mn]}^{SAA}$ $\mathcal{Q}_{2LLR,a}^{(pp)S,\pm} = (u_L^{iT} C u_L^j) (u_L^{kT} C d_L^l) (u_R^{mT} C d_R^n) j_{S,\pm}^{\ell\ell'} T_{\{ij\}\{kl\}\{mn\}}^{SSS}$ $\mathcal{Q}_{2LLR,b}^{(pp)S,\pm} = (u_L^{i\mathrm{T}} C u_L^j) (u_L^{k\mathrm{T}} C d_L^l) (u_R^{m\mathrm{T}} C d_R^n) j_{S,\pm}^{\ell\ell'} T_{\{ij\}[kl][mn]}^{SAA}$ $\mathcal{Q}_{3LLR,a}^{(pp)S,\pm} = (u_L^{i\mathrm{T}} C d_L^j) (u_L^{k\mathrm{T}} C d_L^l) (u_R^{m\mathrm{T}} C u_R^n) j_{S,\pm}^{\ell\ell'} T_{\{ij\}\{kl\}\{mn\}}^{SSS}$ $\mathcal{Q}_{3LLR,b}^{(pp)S,\pm} = (u_L^{iT} C d_L^j) (u_L^{kT} C d_L^l) (u_R^{mT} C u_R^n) j_{S,\pm}^{\ell\ell'} T_{\{mn\}[ij][kl]}^{SAA}$ $\mathcal{Q}_{4LLR}^{(pp)S,\pm} = (u_L^{iT} C u_L^j) (u_L^{kT} C u_L^l) (d_R^{mT} C d_R^n) j_{S,\pm}^{\ell\ell'} T_{\{ij\}\{kl\}\{mn\}}^{SSS}$

11

B & L quantum numbers in the SMEFT

Heeck, Takhistov,

The operator's dimension is even (odd) if its (B-L)/2is even (odd) Kobach , 2016

The LO operators also first appear at **dim 12**

Focusing on the LO dim-12 operators

• $U(1)_{Y}$:

 $u^{3}d^{3}L^{2}, u^{2}d^{2}Q^{2}L^{2}, udQ^{4}L^{2}, Q^{6}L^{2}, u^{4}d^{2}e^{2}, u^{3}dQ^{2}e^{2}, u^{2}Q^{4}e^{2}, u^{3}d^{2}QeL, u^{2}dQ^{3}eL, uQ^{5}eL$

- Fierz identities $\Rightarrow \mathcal{O}_q \times j_{lep}$: S-S-S-S, S-S-V-V, S-S-T-T
- $SU(2)_I$: Levi-Civita tensor ϵ_{ab}

 $\mathcal{O} \sim T_{ijklmn}(q^i q^j)(q^k q^l)(q^m q^n)j_{\text{lep.}}$

• $SU(3)_C$: color tensor T_{ijklmn}

dim-12 operators with a scalar lepton current

 $\mathcal{O}_{a3d3L^{2}1}^{S,(A)} = (u_{R}^{iT}Cd_{R}^{j})(u_{R}^{kT}Cd_{R}^{l})(u_{R}^{mT}Cd_{R}^{n})(L_{a}^{T}CL_{b}^{\prime})\epsilon_{ab}T_{\{ij\}\{kl\}\{mn\}}^{SSS},$ $\mathcal{O}_{u^2d^2O^2L^21}^{S,(S)} = (u_R^{i\mathrm{T}}Cd_R^j)(u_R^{k\mathrm{T}}Cd_R^l)(Q_a^{m\mathrm{T}}CQ_b^n)(L_c^{\mathrm{T}}CL_d^\prime)\epsilon_{ac}\epsilon_{bd}T_{\{ij\}\{kl\}\{mn\}}^{SSS}, u_R^{\mathrm{T}}Cd_R^\prime)$ $\mathcal{O}_{u^2 d^2 O^2 L^2 2}^{S,(A)} = (u_R^{i\mathrm{T}} C d_R^j) (u_R^{k\mathrm{T}} C d_R^l) (Q_a^{m\mathrm{T}} C Q_b^n) (L_c^{\mathrm{T}} C L_d^\prime) \epsilon_{ab} \epsilon_{cd} T_{\{ij\}[kl][mn]}^{SAA},$ $\mathcal{O}_{u^2d^2Q^2L^23}^{S,(S)} = (u_R^{i\mathrm{T}}Cd_R^j)(u_R^{k\mathrm{T}}Cd_R^l)(Q_a^{m\mathrm{T}}CQ_b^n)(L_c^{\mathrm{T}}CL_d^\prime)\epsilon_{ac}\epsilon_{bd}T_{\{mn\}[kl][ij]}^{SAA},$ $\mathcal{O}_{udO^4L^{2}1}^{S,(A)} = (u_R^{iT}Cd_R^j)(Q_a^{kT}CQ_b^l)(Q_c^{mT}CQ_d^n)(L_e^TCL_f')\epsilon_{ab}\epsilon_{cd}\epsilon_{ef}T_{\{ij\}[kl][mn]}^{SAA},$ $\mathcal{O}_{udO^4L^22}^{S,(S)} = (u_R^{iT}Cd_R^j)(Q_a^{kT}CQ_b^l)(Q_c^{mT}CQ_d^n)(L_e^TCL_f')\epsilon_{ab}\epsilon_{ce}\epsilon_{df}T_{\{mn\}[kl][ij]}^{SAA},$ $\mathcal{O}_{O^{6}L^{2}}^{S,(S)} = (Q_{a}^{i\mathrm{T}}CQ_{b}^{j})(Q_{c}^{k\mathrm{T}}CQ_{d}^{l})(Q_{e}^{m\mathrm{T}}CQ_{f}^{n})(L_{a}^{\mathrm{T}}CL_{b}^{\prime})\epsilon_{ab}\epsilon_{cd}\epsilon_{eg}\epsilon_{fh}T_{\{mn\}[kl][ij]}^{SAA},$ $\mathcal{O}_{u^{4}d^{2}e^{2}1}^{S,(S)} = (u_{R}^{iT}Cu_{R}^{j})(u_{R}^{kT}Cd_{R}^{l})(u_{R}^{mT}Cd_{R}^{n})(e_{R}^{T}Ce_{R}^{\prime})T_{\{ij\}\{kl\}\{mn\}}^{SSS},$ $\mathcal{O}_{u^4 d^2 e^{22}}^{S,(S)} = (u_R^{iT} C u_R^j) (u_R^{kT} C d_R^l) (u_R^{mT} C d_R^n) (e_R^T C e_R^\prime) T_{\{ij\}[kl][mn]}^{SAA},$ $\mathcal{O}_{u^{3}dO^{2}e^{2}}^{S,(S)} = (u_{R}^{iT}Cu_{R}^{j})(u_{R}^{kT}Cd_{R}^{l})(Q_{a}^{mT}CQ_{b}^{n})(e_{R}^{T}Ce_{R}^{\prime})\epsilon_{ab}T_{\{ij\}[kl][mn]}^{SAA},$ $\mathcal{O}_{u^2 O^4 e^2}^{S,(S)} = (u_R^{i\mathrm{T}} C u_R^j) (Q_a^{k\mathrm{T}} C Q_b^l) (Q_c^{m\mathrm{T}} C Q_d^n) (e_R^{\mathrm{T}} C e_R') \epsilon_{ab} \epsilon_{cd} T_{\{ij\}[kl][mn]}^{SAA},$

12(S-S-S-S)+7(S-S-V-V)+10(S-S-T-T)=29

relevant signals at colliders:

LHC: $pp \rightarrow \ell^+ \ell^+ + 4jets$ **LHeC:** $e^-p \rightarrow \ell^+ + 5$ jets

- Girmohanta and Shrock, 2020: 28
- 8 redundant ones
- 9 missed ones

They are the starting point for the study of

Tree-level matching between dim-12 SMEFT and LEFT operators

SMEFT operators	$pp ightarrow \ell\ell'$	$pn \rightarrow \ell \bar{\nu}'$	$nn ightarrow ar{ u} ar{ u}'$	
$\mathcal{O}^{S,(A)}_{u^3d^3L^21}$	-	$C_{1RRR,a}^{(pn)S} = -2C_{u^3d^3L^21}^{S,(A)}$	-	
$\mathcal{O}^{S,(A)}_{u^3d^3L^22}$	-	$\label{eq:constraint} \left C_{1RRR,b}^{(pn),} = -2 C_{u^3 d^3 L^2 2}^{S,(A)} \right $	-	
$\mathcal{O}^{S,(S)}_{u^2d^2Q^2L^21}$	$C_{3RRL,a}^{(pp)S,-} = C_{u^2d^2Q^2L^21}^{S,(S)}$	$\label{eq:constraint} \left C^{(pn)S}_{3RRL,a} = -2 C^{S,(S)}_{u^2 d^2 Q^2 L^2 1} \right $	$C^{(nn)S}_{3RRL,a} = C^{S,(S)}_{u^2d^2Q^2L^21}$	
$\mathcal{O}^{S,(A)}_{u^2d^2Q^2L^22}$	-	$C^{(pn)S}_{3RRL,b} = -4C^{S,(A)}_{u^2d^2Q^2L^22}$	-	S
$\mathcal{O}^{S,(S)}_{u^2d^2Q^2L^23}$	$C_{3RRL,b}^{(pp)S,-} = C_{u^2d^2Q^2L^23}^{S,(S)}$	$C^{(pn)S}_{3RRL,c} = -2C^{S,(S)}_{u^2d^2Q^2L^23}$	$C_{3RRL,b}^{(nn)S} = C_{u^2d^2Q^2L^23}^{S,(S)}$	
${\cal O}^{S,(A)}_{udQ^4L^21}$	-	$C^{(pn)S}_{3LLR,c} = -8C^{S,(A)}_{udQ^4L^21}$	-	* *
${\cal O}^{S,(S)}_{udQ^4L^22}$	$C_{2LLR,b}^{(pp)S,-} = 2C_{udQ^4L^22}^{S,(S)}$	$C^{(pn)S}_{3LLR,b} = -4C^{S,(S)}_{udQ^4L^22}$	$C_{2LLR,b}^{(nn)S} = 2C_{udQ^4L^22}^{S,(S)}$	U
$\mathcal{O}^{S,(S)}_{Q^6L^2}$	$C_{1LLL,b}^{(pp)S,-} = 4C_{Q^6L^2}^{S,(S)}$	$C^{(pn)S}_{1LLL,b} = -8C^{S,(S)}_{Q^6L^2}$	$C_{1LLL,b}^{(nn)S} = 4C_{Q^6L^2}^{S,(S)}$	Ca
$\mathcal{O}^{S,(S)}_{u^4d^2e^21}$	$C_{1RRR,a}^{(pp)S,+} = C_{u^4d^2e^21}^{S,(S)}$	-	-	d
$\mathcal{O}^{S,(S)}_{u^4d^2e^22}$	$C_{1RRR,b}^{(pp)S,+} = C_{u^4d^2e^22}^{S,(S)}$	-	-	
$\mathcal{O}^{S,(S)}_{u^3 dQ^2 e^2}$	$C_{2RRL,b}^{(pp)S,+} = 2C_{u^3dQ^2e^2}^{S,(S)}$	-	_	
$\mathcal{O}^{S,(S)}_{u^2Q^4e^2}$	$C^{(pp)S,+}_{3LLR,b} = 4C^{S,(S)}_{u^2Q^4e^2}$	-	-	

Only a few can yield both three channels: $\mathcal{O}_{Q^6L^2}^{S,(S)}$, $\mathcal{O}_{u^2d^2Q^2L^21,3}^{S,(S)}$,

MEFT simplifies life hugely.

nmatched LEFT operators n be generated by dim-14, m-16 SMEFT ones.

$$\mathcal{O}^{S,(S)}_{udQ^4L^22}$$

A specific model to realize one operator: \mathcal{O}

More models can be found:

Arnellos, Marciano 1982 Arnold, Fornal, and Wise, 2012; Bramante, Kumar, Learned, 2014 Gardner and Yan , 2019 Helset, Murgui and Wise, 2021 Girmohanta, Shrock 2019, 2020

Chiral symmetry: BChPT

Nucleon level operators

• Chiral symmetry $SU(3)_L \otimes SU(3)_R$ of three-flavor $q = (u, d, s)^T$ QCD Lagrangian:

$$\mathscr{L} = \mathscr{L}_{\text{QCD}}^{m=0} + \overline{q_L} l_\mu \gamma^\mu q_L + \overline{q_R} r_\mu \gamma^\mu q_R - \left[\overline{q_R}(s - ip)q_L - \overline{q_R}\right] \left(\frac{1}{2} - \frac{1}{2} -$$

Building blocks: Nucleons, pions, external sources

$$u = \exp\left(\frac{i\Pi}{2F_0}\right), \quad \Pi = \pi^a \tau^a = \begin{pmatrix} \pi^0 & \sqrt{2}\pi^+ \\ \sqrt{2}\pi^- & -\pi^0 \end{pmatrix} \quad \Psi =$$
$$u_\mu = i(u^\dagger(\partial_\mu - ir_\mu)u - u(\partial_\mu - il_\mu)u^\dagger), \quad u_\mu^\dagger = u_\mu$$

• Power counting: soft momentum: $u = \mathcal{O}(p^0), \quad u_{\mu} = \mathcal{O}(p^1), \quad \Psi = \mathcal{O}(p^0)$

LO Lagrangian:
$$\mathscr{L}_{\pi N}^{(1)} = \bar{\Psi} \left(i \gamma_{\mu} D^{\mu} - m_N + \frac{g_A}{2} \gamma^{\mu} \gamma_5 u_{\mu} \right) \Psi$$

 $\left(t_l^{\mu\nu}\sigma_{\mu\nu}\right)q_L + \mathrm{h.c.}$

 $(p,n)^{\mathrm{T}}$

 $D_{\mu}\Psi = (\partial_{\mu} + \Gamma_{\mu})\Psi, \quad \Gamma_{\mu} = \frac{1}{2}(u^{\dagger}(\partial_{\mu} - ir_{\mu})u + u(\partial_{\mu} - il_{\mu})u^{\dagger})$

$B_{\chi}PT$ realization of dim-12 LEFT operators

Chiral matching procedures

• Chiral $SU(2)_L \otimes SU(2)_R$ irrep decomposition:

$$P = \theta^{uvwxyz} \left(q_{\chi_1,u}^{i \mathrm{T}} C \Gamma_1 q_{\chi_2,v}^{j} \right) \left(q_{\chi_3,w}^{k \mathrm{T}} C \Gamma_2 q_{\chi_4,x}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_3 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \left(q_{\chi_5,y}^{m \mathrm{T}} C \Gamma_5 q_{\chi_5,y}^{l} \right) \right)$$

- Spurion fields technique: treat θ as a field transforming under $SU(2)_L \otimes SU(2)_R$ \Rightarrow P is chiral invariant
- Chiral counterparts of P: construct chiral invariant operators out of θ , Ψ , u, ...
- Low energy constant (LEC): associate an unknown LEC for each indep. operator
- Determination of LEC: fit to data, LQCD, chiral symmetry, NDA

TCOLO $_{3}q^{n}_{\chi_{6},z}$

Chiral basis	LEFT basis	Chiral irrep.	Chiral spurion
$P_{1,a}^{(pp)S,\pm}$	$rac{1}{5}\left(5\mathcal{Q}_{1LLL,a}^{(pp)S,\pm}-3\mathcal{Q}_{1LLL,b}^{(pp)S,\pm} ight)$	$(oldsymbol{7}_L,oldsymbol{1}_R)$	$ heta_{(111122)}^{u_Lv_Lw_Lx_Ly_Lz_L}$
$P_{1,b}^{(pp)S,\pm}$	$\mathcal{Q}_{1LLL,b}^{(pp)S,\pm}$	$({f 3}_L,{f 1}_R) _a$	$ heta_{(11)}^{u_L v_L}$
$P_{2,a}^{(pp)S,\pm}$	$\mathcal{Q}_{2LLR,a}^{(pp)S,\pm}$	$(5_L,3_R)$	$ heta_{(1112)(12)}^{u_L v_L w_L x_L y_R z_R}$
$P_{2,b}^{(pp)S,\pm}$	$\mathcal{Q}^{(pp)S,\pm}_{2LLR,b}$	$(3_L,1_R) _b$	$ heta_{(11)}^{u_L v_L}$
$P_{3,a}^{(pp)S,\pm}$	$\mathcal{Q}_{3LLR,a}^{(pp)S,\pm} - \mathcal{Q}_{3LLR,b}^{(pp)S,\pm}$	$(5_L,3_R)$	$ heta_{(1122)(11)}^{u_L v_L w_L x_L y_R z_R}$
$P_{3,b}^{(pp)S,\pm}$	$\mathcal{Q}^{(pp)S,\pm}_{3LLR,b}$	$(1_L,3_R) _c$	$ heta_{(11)}^{u_R v_R}$
$P_4^{(pp)S,\pm}$	$\mathcal{Q}_{4LLR}^{(pp)S,\pm}$	$(5_L,3_R)$	$ heta_{(1111)(22)}^{u_L v_L w_L x_L y_R z_R}$
$P_{1,a}^{(pp)V}$	$rac{1}{5}\left(5\mathcal{Q}_{1LL,a}^{(pp)V}-6\mathcal{Q}_{1LL,b}^{(pp)V}-3\mathcal{Q}_{1LL,c}^{(pp)V} ight)$	$(6_L, 2_R)$	$ heta_{(11122)1}^{u_Lv_Lw_Lx_Ly_Lz_R}$
$P_{1,b}^{(pp)V}$	$rac{1}{3}\left(3\mathcal{Q}_{1LL,b}^{(pp)V}-\mathcal{Q}_{1LL,c}^{(pp)V} ight)$	$(oldsymbol{4}_L,oldsymbol{2}_R) _a$	$ heta_{(112)1}^{u_Lv_Lw_Lx_R}$
$P_{1,c}^{(pp)V}$	$\mathcal{Q}_{1LL,c}^{(pp)V}$	$(oldsymbol{2}_L,oldsymbol{2}_R) _a$	$ heta_{11}^{u_L v_R}$
$P_{2,a}^{(pp)V}$	$rac{1}{5}\left(5\mathcal{Q}_{2LL,a}^{(pp)V}-3\mathcal{Q}_{2LL,b}^{(pp)V} ight)$	$(6_L,2_R)$	$ heta_{(11112)2}^{u_Lv_Lw_Lx_Ly_Lz_R}$
$P_{2,b}^{(pp)V}$	$\mathcal{Q}_{2LL,b}^{(pp)V}$	$(oldsymbol{4}_L,oldsymbol{2}_R) _a$	$ heta_{(111)2}^{u_Lv_Lw_Lx_R}$

1. Many different chiral irreps. 2. Different irreps have different LECs 3. They do not mix under QCD renormalization.

Final matching result

Ope. type	Chi. irrep	Chi. order	Matching operator	
Scalar current: $\mathcal{O}^{S}_{ ext{quark}} imes j_{S}$	$(3_L,1_R) _i$	p^0	$O_{3\times 1,i}^S = \theta_{(\alpha\beta)}^{u_L v_L} (u^{\dagger})_{u_L a} (u^{\dagger})_{v_L b} [\Psi_a^{\mathrm{T}} C(g_{3\times 1,i} + \hat{g}_{3\times 1,i}\gamma_5) \Psi_b]$	Expanding to t
	$(5_L,3_R)$	p^0	$O_{5\times3}^S = \theta^{u_L v_L w_L x_L y_R z_R}_{(\alpha\beta\gamma\rho)(\sigma\tau)} (Ui\tau^2)_{y_R w_L} (Ui\tau^2)_{z_R x_L} (u^{\dagger})_{u_L a} (u^{\dagger})_{v_L b} [\Psi_a^{\mathrm{T}} C(g_{5\times3} + \hat{g}_{5\times3}\gamma_5) \Psi_b]$	nucleon -lepto
	$(7_L,1_R)$	$p^2(imes)$	$O_{7\times1}^{S} = \theta_{(\alpha\beta\gamma\rho\sigma\tau)}^{u_{L}v_{L}w_{L}x_{L}y_{L}z_{L}}(u^{\dagger}u_{\mu}ui\tau^{2})_{w_{L}x_{L}}(u^{\dagger}u^{\mu}ui\tau^{2})_{y_{L}z_{L}}(u^{\dagger})_{u_{L}a}(u^{\dagger})_{v_{L}b}[\Psi_{a}^{\mathrm{T}}C(g_{7\times1}+\hat{g}_{7\times1}\gamma_{5})\Psi_{b}]$	•
	$(1_L,3_R) _i$	p^0	$\tilde{O}_{1\times3,i}^{S} = \theta_{(\alpha\beta)}^{u_Rv_R} u_{u_Ra} u_{v_Rb} [\Psi_a^{\mathrm{T}} C(g_{1\times3,i} + \hat{g}_{1\times3,i}\gamma_5) \Psi_b]$	$m \rightarrow \ell^+ \ell'^+ \cdot \mathcal{O}^{(pp)S} = (m^T)$
	$(3_L,5_R)$	p^0	$\tilde{O}_{3\times 5}^{S} = \theta^{u_R v_R w_R x_R y_L z_L}_{(\alpha\beta\gamma\rho)(\sigma\tau)} (Ui\tau^2)_{w_R y_L} (Ui\tau^2)_{x_R z_L} u_{u_R a} u_{v_R b} [\Psi_a^{\mathrm{T}} C(g_{3\times 5} + \hat{g}_{3\times 5}\gamma_5) \Psi_b]$	$pp \rightarrow \ell \ \ell \ . \ \mathcal{O}_L = (p \ \ell \ \mathcal{O}_L)$
	$(1_L, 7_R)$	$p^2(imes)$	$\tilde{O}_{1\times7}^{S} = \theta^{u_R v_R w_R x_R y_R z_R}_{(\alpha\beta\gamma\rho\sigma\tau)} (u u_\mu u^\dagger i\tau^2)_{w_R x_R} (u u^\mu u^\dagger i\tau^2)_{y_R z_R} u_{u_R a} u_{v_R b} [\Psi_a^{\mathrm{T}} C(g_{1\times7} + \hat{g}_{1\times7}\gamma_5)\Psi_b]$	${\cal O}_R^{(pp)V} = (p^{\rm T})^{-1}$
Vector current: $\mathcal{O}_{ ext{quark}}^{V,\mu} imes j_{V,\mu}$	$(oldsymbol{2}_L,oldsymbol{2}_R)ert_i$	p^0	$O^{V,\mu}_{2 imes 2,i} = heta^{u_L v_R}_{lphaeta}(u^\dagger)_{u_L a} u_{v_R b} [\Psi^{ ext{T}}_a C \gamma^\mu (g_{2 imes 2,i} + \hat{g}_{2 imes 2,i} \gamma_5) \Psi_b]$	$pn \to \ell^+ \bar{\nu}' : \mathcal{O}_L^{(pn)S} = (p^{\mathrm{T}})^{\ell}$
	$(oldsymbol{4}_L,oldsymbol{2}_R)ert_i$	p^0	$O^{V,\mu}_{4\times 2,i} = g_{4\times 2,i} \theta^{u_L v_L w_L x_R}_{(\alpha\beta\gamma)\rho} (Ui\tau^2)_{x_R w_L} (u^{\dagger})_{u_L a} (u^{\dagger})_{v_L b} [\Psi^{\mathrm{T}}_a C \gamma^{\mu} \gamma_5 \Psi_b]$	$\mathcal{O}_L^{(pn)V} = (p^{\mathrm{T}}$
	$(4_L,4_R)$	p^0	$O_{4\times4}^{V,\mu} = \theta^{u_L v_L w_L x_R y_R z_R}_{(\alpha\beta\gamma)(\rho\sigma\tau)} (Ui\tau^2)_{y_R v_L} (Ui\tau^2)_{z_R w_L} (u^{\dagger})_{u_L a} u_{x_R b} [\Psi_a^{\mathrm{T}} C \gamma^{\mu} (g_{4\times4} + \hat{g}_{4\times4} \gamma_5) \Psi_b]$	$\mathcal{O}^{(pn)T} = (p^{\mathrm{T}}$
	$({f 6}_L,{f 2}_R)$	$p^1(imes)$	$O_{6\times 2}^{V,\mu} = \theta_{(\alpha\beta\gamma\rho\sigma)\tau}^{u_L v_L w_L x_L y_L z_R} (Ui\tau^2)_{z_R w_L} (u^{\dagger} u^{\mu} u i \tau^2)_{x_L y_L} (u^{\dagger})_{u_L a} (u^{\dagger})_{v_L b} [\Psi_a^{\mathrm{T}} C(g_{6\times 2} + \hat{g}_{6\times 2}\gamma_5) \Psi_b]$	$nn \to \bar{\nu}\bar{\nu}': \ \mathcal{O}_L^{(nn)S} = (n^{\mathrm{T}})^{\mathrm{T}}$
	$(oldsymbol{2}_L,oldsymbol{4}_R)ert_i$	p^0	$\tilde{O}^{V,\mu}_{2\times4,i} = -g_{2\times4,i}\theta^{u_Rv_Rw_Rx_L}_{(\alpha\beta\gamma)\rho}(Ui\tau^2)_{w_Rx_L}u_{u_Ra}u_{v_Rb}(\Psi^{\mathrm{T}}_aC\gamma^{\mu}\gamma_5\Psi_b)$	
	$(2_L, 6_R)$	$p^1(imes)$	$\tilde{O}^{V,\mu}_{2\times 6} = -\theta^{u_R v_R w_R x_R y_R z_L}_{(\alpha\beta\gamma\rho\sigma)\tau} (Ui\tau^2)_{w_R z_L} (uu^{\mu}u^{\dagger}i\tau^2)_{x_R y_R} u_{u_R a} u_{v_R b} [\Psi^{\mathrm{T}}_a C(g_{2\times 6} + \hat{g}_{2\times 6}\gamma_5)\Psi_b]$	 Function of I
Tensor current: $\mathcal{O}_{ ext{quark}}^{T,\mu u} imes j_T^{\mu u}$	$(1_L,1_R) _i$	p^0	$O_{1 imes 1,i}^{T,\mu u} = rac{1}{2} \epsilon^{ab} [\Psi_a^{\mathrm{T}} C \sigma^{\mu u} (g_{1 imes 1,i} + \hat{g}_{1 imes 1,i} \gamma_5) \Psi_b]$	• FCs: $\sigma_{\rm e} \sim 1$
	$(3_L,1_R)$	$p^1(imes)$	$O^{T,\mu u}_{3 imes 1} = heta^{u_L v_L}_{(lphaeta)}(u^\dagger u^\mu)_{u_L a}(u^\dagger)_{v_L b}[\Psi^{ ext{T}}_a C \gamma^ u(g_{3 imes 1,T} + \hat{g}_{3 imes 1,T} \gamma_5)\Psi_b] - \mu \leftrightarrow u$	• LLOS: $s_i = 1$
	$(3_L,3_R) _i$	p^0	$O^{T,\mu u}_{3 imes 3,i}= heta^{u_Lv_Lw_Rx_R}_{(lphaeta)(\gamma ho)}(Ui au^2)_{x_Rv_L}(u^\dagger)_{u_La}u_{w_Rb}[\Psi^{ ext{T}}_aC\sigma^{\mu u}(g_{3 imes 3,i}+\hat{g}_{3 imes 3,i}\gamma_5))\Psi_b]$	• $\hat{g}_{2\times 1} \sim 4 \times$
	$(5_L,1_R) _i$	$p^1(imes)$	$O_{5\times 1,i}^{T,\mu\nu} = g_{5\times 1,i}\theta^{u_Lv_Lw_Lx_L}_{(\alpha\beta\gamma\rho)}(u^{\dagger}u^{\mu}ui\tau^2)_{w_Lx_L}(u^{\dagger})_{u_La}(u^{\dagger})_{v_Lb}(\Psi_a^{\mathrm{T}}C\gamma^{\nu}\gamma_5\Psi_b) - \mu \leftrightarrow \nu$	03X1, <i>a</i>
	$(1_L,3_R)$	$p^1(imes)$	$\tilde{O}_{1\times 3}^{T,\mu\nu} = \theta_{(\alpha\beta)}^{u_R v_R} (uu^{\mu})_{u_R a} u_{v_R b} [\Psi_a^{\mathrm{T}} C \gamma^{\nu} (g_{1\times 3,T} + \hat{g}_{1\times 3,T} \gamma_5) \Psi_b] - \mu \leftrightarrow \nu$	the matrix ele
	$(1_L, 5_R) _i$	$p^1(imes)$	$ ilde{O}_{1 imes 5,i}^{T,\mu u} = g_{1 imes 5,i} heta_{(lphaeta\gamma ho)}^{u_Rv_Rw_Rx_R}(uu^\mu u^\dagger i au^2)_{w_Rx_R}u_{u_Ra}u_{v_Rb}(\Psi_a^{ m T}C\gamma^ u\gamma_5\Psi_b) - \mu \leftrightarrow u$	Rinaldi, Syritsyn, Wag

the LO can lead to the on interactions

$$\begin{split} & \overset{\Gamma}{}Cp)(\ell_{L}^{\mathrm{T}}C\ell_{L}'), & \mathcal{O} \\ & \overset{\Gamma}{}Cp)(\ell_{R}^{\mathrm{T}}C\ell_{R}'), & \mathcal{O} \\ & \overset{\Gamma}{}C\gamma_{\mu}\gamma_{5}p)(\ell_{R}^{\mathrm{T}}C\gamma^{\mu}\ell_{L}'), & \mathcal{O} \\ & \overset{\Gamma}{}Cn)(\ell_{L}^{\mathrm{T}}C\nu_{L}'), & \mathcal{O} \\ & \overset{\Gamma}{}C\gamma_{\mu}n)(\ell_{R}^{\mathrm{T}}C\gamma^{\mu}\nu_{L}'), & \mathcal{O} \\ & \overset{\Gamma}{}C\sigma_{\mu\nu}n)(\ell_{L}^{\mathrm{T}}C\sigma_{\mu\nu}\nu_{L}'), & \mathcal{O} \\ & \overset{\Gamma}{}Cn)(\nu_{L}^{\mathrm{T}}C\nu_{L}'), & \mathcal{O} \end{split}$$

$$\mathcal{D}_{5L}^{(pp)S} = (p^{\mathrm{T}}C\gamma_5 p)(\ell_L^{\mathrm{T}}C\ell_L') ,$$

$$\mathcal{D}_{5R}^{(pp)S} = (p^{\mathrm{T}}C\gamma_5 p)(\ell_R^{\mathrm{T}}C\ell_R') ,$$

$$\mathcal{O}_{5L}^{(pn)S} = (p^{\mathrm{T}}C\gamma_5 n)(\ell_L^{\mathrm{T}}C\nu_L') ,$$

$$\mathcal{O}_{5L}^{(pn)V} = (p^{\mathrm{T}}C\gamma_\mu\gamma_5 n)(\ell_R^{\mathrm{T}}C\gamma^\mu\nu_L') ,$$

$$\mathcal{O}_{5L}^{(nn)S} = (n^{\mathrm{T}} C \gamma_5 n) (\nu_L^{\mathrm{T}} C \nu_L') ,$$

LECs and SMEFT WCs

 $\Lambda_{\rm QCD}^6$

$10^{-4} {\rm GeV^6}$

ment for $n - \bar{n}$ oscillation

man, Buchoff, Schroeder, Wasem, 2018 21

Estimation of decay rate

Neglect the nucleon Fermi motion and other nuclear effects

$$\Gamma_{NN' \to l_{\alpha} l_{\beta}} = \frac{1}{S} \frac{\rho_N}{4m_N^2} \overline{\left| \mathcal{M}_{NN' \to l_{\alpha} l_{\beta}} \right|^2} \Pi_2$$

Implication for the NP scale

Rinaldi, Syritsyn, Wagman, Buchoff, Schroeder, Wasem, 2018

• LECs: $g_i \sim \Lambda_{\text{OCD}}^6$

•
$$\hat{g}_{3\times 1,a} \sim 4 \times 10^{-4} \text{ GeV}^6$$

up the possibility to search for the signals at high energy colliders.

- The $|\Delta B = \Delta L| = 2$ dinucleon to dilepton decays have been studied in the EFT framework;
- An operator basis in the LEFT is constructed;
- An operator basis in the SMEFT is constructed.

Thanks for your attention!

