Modular Flavor Symmetry in Heterotic *E*₆ GUT

Hajime Otsuka (Kyushu University)

References :

- Modular flavor and CP symmetries in Calabi-Yau compactifications : 2010.10782, 2107.00487, 2402.13563
- Phenomenology : 2112.00493, 2204.12325, 2207.14014

with K. Ishiguro (KEK), T. Kai, T. Kobayashi (Hokkaido U.), H. Okada,

S. Nishimura, M. Tanimoto (Niigata U.), K. Yamamoto (Hiroshima Inst. Tech.)

2024/4/8 @ Workshop on Grand Unified Theories: Phenomenology and Cosmology, HIAS, UCAS

CP

Phenomenology

See Gui-Jun Ding and Arsenii Titov talk

Outline

- 1. Why modular symmetries ?
- 2. Modular flavor symmetry in Heterotic E_6 GUT
- 3. Hierarchical structure of physical Yukawa couplings
- 4. Conclusion

Flavor puzzle

Origin of flavor and CP : important issue in the SM

$$d - \frac{V_{ud}}{Z_{Z}} w u \qquad V_{CKM} = \begin{pmatrix} 0.97401 \pm 0.00011 & 0.22650 \pm 0.00048 & 0.00361 \pm 0.00011 \\ 0.22636 \pm 0.00048 & 0.97320 \pm 0.00011 \\ 0.00854 \pm 0.00023 & 0.03978 \pm 0.00082 \\ 0.00854 \pm 0.000024 & 0.03978 \pm 0.00082 \\ 0.03978 \pm 0.00060 & 0.999172 \pm 0.000024 \\ 0.999172 \pm 0.000035 \end{pmatrix}$$

$$e^{-} - \frac{V_{u}}{Z_{Z}} w v_{e}, v_{\mu}, v_{\tau} |U|_{3\sigma}^{w/o SK-atm} = \begin{pmatrix} 0.801 \rightarrow 0.845 & 0.513 \rightarrow 0.579 & 0.143 \rightarrow 0.156 \\ 0.233 \rightarrow 0.507 & 0.461 \rightarrow 0.694 & 0.631 \rightarrow 0.778 \\ 0.261 \rightarrow 0.526 & 0.471 \rightarrow 0.701 & 0.611 \rightarrow 0.761 \end{pmatrix}$$
Hierarchical structure of quarks/lepton masses
$$\frac{25 \ 100 \ 1270 \ 4180 \ c \ b \ t \ [MeV]}$$

PDG ('20)

 \rightarrow Non-trivial structure of Yukawa couplings

"Traditional" flavor symmetry

• Field transformations:

$$\phi_i \xrightarrow{g} \rho_i(g) \phi_i \qquad g \in G_{\text{flavor}}$$

 Non-Abelian discrete symmetries well explain the flavor structure in the lepton sector

E.g., $\Gamma_3 \simeq A_4$: Tetrahedral sym.

- Flavor symmetries should be broken.
 - \rightarrow Many free parameters in symmetry breaking sector

$$m_{ij}(\tau) = m_{ij}^0 + f_{ij}(\tau)$$

Vacum alignment determined by flavon fields τ

F. Feruglio, 1706.08749

Modular transformations:

- Non-Abelian discrete symmetries ⊂ modular symmetry
- Small parameters

F. Feruglio, 1706.08749

 $SL(2,\mathbb{Z})$ modular sym. = geometrical sym. of T^2 torus

F. Feruglio, 1706.08749

 $SL(2,\mathbb{Z})$ modular sym. = geometrical sym. of T^2 torus

F. Feruglio, 1706.08749

 $SL(2,\mathbb{Z})$ modular sym. = geometrical sym. of T^2 torus

F. Feruglio, 1706.08749

 $SL(2,\mathbb{Z})$ modular sym. = geometrical sym. of T^2 torus

• Lattice vectors are related under $SL(2,\mathbb{Z})$ modular transformation:

$$\begin{pmatrix} e'_y \\ e'_x \end{pmatrix} = \begin{pmatrix} p & q \\ s & t \end{pmatrix} \begin{pmatrix} e_y \\ e_x \end{pmatrix}$$
Two
$$p, q, s, t \in \mathbb{Z} \text{ satisfying } pt - qs = 1$$
$$\tau \to \tau' = \frac{p\tau + q}{s\tau + t}$$

Two generators : S and T

F. Feruglio, 1706.08749

 $SL(2,\mathbb{Z})$ modular sym. = geometrical sym. of T^2 torus

• Lattice vectors are related under $SL(2,\mathbb{Z})$ modular transformation:

$$\begin{pmatrix} e'_y \\ e'_x \end{pmatrix} = \begin{pmatrix} p & q \\ s & t \end{pmatrix} \begin{pmatrix} e_y \\ e_x \end{pmatrix}$$
$$p, q, s, t \in \mathbb{Z} \text{ satisfying } pt - qs = 1$$
$$\tau \to \tau' = \frac{p\tau + q}{s\tau + t}$$

Two generators : S and T

Finite subgroups of modular group

Modular group

$$\Gamma \simeq \{S, T \mid S^2 = 1, (ST)^3 = 1\}$$

Finite subgroups

$$\Gamma_N = \Gamma / \Gamma(N)$$

 $\Gamma_N \simeq \{S, T \mid S^2 = 1, (ST)^3 = 1, T^N = 1\}$

Non-abelian discrete groups :

$$\Gamma_2 \simeq S_3, \ \Gamma_3 \simeq A_4, \ \Gamma_4 \simeq S_4, \ \Gamma_5 \simeq A_5,$$

Flavor symmetries of quarks/leptons

Finite subgroups of modular group

Modular group

$$\Gamma \simeq \{S, T \mid S^2 = 1, (ST)^3 = 1\}$$

Finite subgroups

$$\Gamma_N = \Gamma/\Gamma(N)$$

$$\Gamma_N \simeq \{S, T \mid S^2 = 1, (ST)^3 = 1, T^N = 1\}$$

E.g., $\Gamma_3 \simeq A_4$: Tetrahedral sym.

Generators : S and T

$$S^2 = T^3 = (ST)^3 = 1$$

Modular invariant 4D supersymmetric EFT

$$K = -\ln(i(\bar{\tau} - \tau)) + \sum_{i} \frac{|\phi_i|^2}{(i(\bar{\tau} - \tau))^{k_i}}$$
$$W = \sum_{n} Y_{i_1 \dots i_n}(\tau) \phi_{i_1} \cdots \phi_{i_n}$$

 ϕ_i : chiral superfields with modular weight k_i $Y_{i_1...i_n}(\tau)$: couplings

Modular invariant 4D supersymmetric EFT

$$K = -\ln(i(\bar{\tau} - \tau)) + \sum_{i} \frac{|\phi_i|^2}{(i(\bar{\tau} - \tau))^{k_i}}$$
$$W = \sum_{n} Y_{i_1 \dots i_n}(\tau) \phi_{i_1} \cdots \phi_{i_n}$$

 ϕ_i : chiral superfields with modular weight k_i $Y_{i_1...i_n}(\tau)$: couplings

Modular transformations:

$$\gamma \in \Gamma_N \subset SL(2,Z)$$

 $\tau \to R(\tau) = \frac{p\tau + q}{s\tau + t}$ $\phi_i \to (s\tau + t)^{-k_i} \rho_i(\gamma) \phi_i$ $Y(\tau) \to (s\tau + t)^{k_Y} \rho_Y(\gamma) Y(\tau) = Y(R(\tau))$ Representation matrix of Γ_N

Modular invariant 4D supersymmetric EFT

$$K = -\ln(i(\bar{\tau} - \tau)) + \sum_{i} \frac{|\phi_{i}|^{2}}{(i(\bar{\tau} - \tau))^{k_{i}}}$$
$$W = \sum_{n} Y_{i_{1}...i_{n}}(\tau) \phi_{i_{1}} \cdots \phi_{i_{n}}$$
$$\phi_{i} : \text{chiral superfields with modular weight } k_{i}$$
$$Y_{i_{1}...i_{n}}(\tau) : \text{couplings}$$

Modular transformations:

 $\tau \to R(\tau) = \frac{p\tau + q}{s\tau + t}$ $\phi_i \to (s\tau + t)^{-k_i} \rho_i(\gamma) \phi_i$ Representation matrix of Γ_N $Y(\tau) \rightarrow (s\tau + t)^{k_Y} \rho_V(\gamma) Y(\tau) = Y(R(\tau))$

 $\gamma \in \Gamma_N \subset SL(2,Z)$

Modular invariant W requires $k_Y = \sum_i k_i$ and $\rho_Y \bigotimes_i \rho_i \ni 1$

- Couplings are described by the modular function
- Flavor structure/CP violation are determined by the value of au

$$Y_i(R(\tau)) = (s\tau + t)^{k_Y} \rho_Y(\gamma)_{ij} Y_j(\tau) \qquad \tau \to R(\tau) = \frac{p\tau + q}{s\tau + t}$$

$$Y_i(R(\tau)) = (s\tau + t)^{k_Y} \rho_Y(\gamma)_{ij} Y_j(\tau) \qquad \tau \to R(\tau) = \frac{p\tau + q}{s\tau + t}$$

- Modular form $Y(\tau)$ is a holomorphic function @ Im $\tau > 0$ and Im $\tau \to \infty$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \tau \to \tau + 1 \qquad Y(\tau + 1) = Y(\tau)$$
$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \tau \to -1/\tau \qquad Y\left(-\frac{1}{\tau}\right) = (-\tau)^{k_Y}Y(\tau)$$
$$I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \tau \to \tau \qquad Y\left(\frac{-\tau}{-1}\right) = (-1)^{k_Y}Y(\tau) \qquad k_Y : \text{even}$$

• Finite number of modular forms depending on k_Y

$$Y_i(R(\tau)) = (s\tau + t)^{k_Y} \rho_Y(\gamma)_{ij} Y_j(\tau) \qquad \tau \to R(\tau) = \frac{p\tau + q}{s\tau + t}$$

Ex. A₄ triplet of modular function with
$$k = 2$$

 η : Dedekind eta-function

$$\begin{split} Y_{1}(\tau) &= \frac{i}{2\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right) \\ Y_{2}(\tau) &= \frac{-i}{\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega^{2} \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right), \quad \text{F. Feruglio, 1706.08749} \\ Y_{3}(\tau) &= \frac{-i}{\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega^{2} \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right), \end{split}$$

$$Y_i(R(\tau)) = (s\tau + t)^{k_Y} \rho_Y(\gamma)_{ij} Y_j(\tau) \qquad \tau \to R(\tau) = \frac{p\tau + q}{s\tau + t}$$

$$\begin{aligned} & \text{Ex. } \underline{A_4 \text{ triplet of modular function with } k = 2} \\ & \eta: \text{Dedekind eta-function} \end{aligned} \\ & Y_1(\tau) &= 1 + 12q + 36q^2 + 12q^3 + \cdots, \quad q = e^{2\pi i \tau} \\ & Y_2(\tau) &= -6q^{1/3}(1 + 7q + 8q^2 + \cdots), \qquad \text{Im} \tau \gg 1 \\ & Y_3(\tau) &= -18q^{2/3}(1 + 2q + 5q^2 + \cdots). \end{aligned}$$

$$Y_i(R(\tau)) = (s\tau + t)^{k_Y} \rho_Y(\gamma)_{ij} Y_j(\tau) \qquad \tau \to R(\tau) = \frac{p\tau + q}{s\tau + t}$$

$$\begin{split} & \text{Ex. } \underline{A_4 \text{ triplet of modular function with } k = 2} \\ & \eta : \text{Dedekind eta-function} \\ & Y_1(\tau) = 1 + 12q + 36q^2 + 12q^3 + \cdots, \quad q = e^{2\pi i \tau} \\ & Y_2(\tau) = -6q^{1/3}(1 + 7q + 8q^2 + \cdots), \quad \text{Im} \tau \gg 1 \\ & Y_3(\tau) = -18q^{2/3}(1 + 2q + 5q^2 + \cdots). \end{split}$$

- Modulus-dependent Yukawa couplings would lead to
- (1) Mass hierarchy of charged lepton masses
- (2) Differences of neutrino masses squared and mixing angles

Outline

1. Why modular symmetries ?

- 2. Modular flavor symmetry in Heterotic E_6 GUT
- 3. Hierarchical structure of physical Yukawa couplings
- 4. Conclusion

23

4D SUSY E_6 GUT from Heterotic string on 6D Calabi-Yau

Candelas-Horowitz-Strominger-Witten ('85)

• 4D gauge symmetry :

$$E_8 \times E_8^{\text{(hidden)}} \rightarrow E_6 \times SU(3) \times E_8^{\text{(hidden)}}$$

• Matters (E_6 : 27 or $\overline{27}$) \approx Moduli

 $27^i \approx \text{Kahler Moduli } t^i$ (2-cycle volume) $(i = 1, 2, ..., h^{1,1})$

Yukawa couplings (27³)

 $W = F_{ijk} 27^{i} 27^{j} 27^{k}$ $F_{ijk} = \partial_{t^{i}} \partial_{t^{j}} \partial_{t^{k}} F \quad (F(t) : \text{prepotential})$

Symplectic Modular Symmetric in CY moduli space

• Symplectic transformations :

A. Strominger ('90), P. Candelas, X. de la Ossa ('91)

Moduli:
$$t^i \rightarrow \tilde{t^i} \simeq \frac{\partial \tilde{X}^i}{\partial X^j} t^j$$
 (X^0, X^i) :
projective coordinates
with the gauge $X^0 = 1$
 $(i = 1, 2, ..., h^{1,1})$ Matters: $27^i \rightarrow \tilde{27}^i \simeq \frac{\partial \tilde{X}^i}{\partial X^j} 27^j$ (X^0, X^i) :
projective coordinates
with the gauge $X^0 = 1$
 $(i = 1, 2, ..., h^{1,1})$ Yukawa couplings: $F_{ijk} \rightarrow \tilde{F}_{ijk} = \frac{\partial X^l}{\partial \tilde{X}^i} \frac{\partial X^m}{\partial \tilde{X}^j} \frac{\partial X^n}{\partial \tilde{X}^k} F_{lmn}$ $F_{ijk} = \partial_{X^i} \partial_{X^j} \partial_{X^k} F_{(F(t): prepotential)}$

Yukawa couplings : tensor rep. under the modular symmetry $(t \rightarrow \gamma t)$

Symplectic modular symmetry of 6D CY ⊃ Flavor symmetry

$$\mathbf{G}_{\mathrm{flavor}}^{(27)} \subset Sp(2h^{1,1}+2,\mathbb{Z})$$

Ishiguro-Kobayashi-Otsuka, 2107.00487

Yukawa couplings

Classical level

Prepotential :
$$F = \frac{\kappa_{ijk}}{6} t^i t^j t^k$$

 \rightarrow Constant Yukawa coupling : $\partial_i \partial_j \partial_k F = \kappa_{ijk}$

$$W = \kappa_{ijk} 27^i 27^j 27^k$$

Quantum level

Prepotential : $F = \frac{\kappa_{ijk}}{6} t^i t^j t^k + O(e^{2\pi i t})$ Instanton effects \rightarrow Yukawa coupling : $\partial_i \partial_j \partial_k F = \kappa_{jik} + O(e^{2\pi i t})$

Instanton effects will lead to non-trivial flavor structure

K. Ishiguro, T. Kobayashi, S. Nishimura, H.O., arXiv:2402.13563 25

Instanton-corrected Yukawa couplings on 6D CY

$$y_{ijk} = \kappa_{ijk} + \sum_{d_1, d_2, \dots, d_n = 0}^{\infty} \frac{(d_i d_j d_k) n_{d_1, d_2, \dots, d_m}}{1 - \prod_{l=1}^m q_l^{d_l}} \prod_{l=1}^m q_l^{d_l}$$
$$q_l \equiv e^{2\pi i t_l}$$

Gromov-Witten invariants

We discuss two examples, where $SL(2,\mathbb{Z})$ modular symmetry emerges in asymptotic regions of the CY moduli space

 $P^{1,1,1,6,9}[18]$ with two Kahler moduli ($h^{1,1} = 2$)

• Prepotential :

$$F = -\frac{1}{6}(9t_1^3 + 9t_1^2t_2 + 3t_1t_2^2) + \cdots$$

• Yukawa couplings :

Candelas-Font-Katz-Morrison, 9403187

$$y_{ijk} = \kappa_{ijk} + \sum_{d_1,d_2=0}^{\infty} c_{ijk}(d_1,d_2)n_{d_1,d_2} \frac{q_1^{d_1}q_2^{d_2}}{1-q_1^{d_1}q_2^{d_2}}$$

$$\frac{d_1 \setminus d_2 \quad 0}{0} \quad \frac{1}{3} \quad \frac{2}{-6} \quad \frac{3}{27}$$

$$\frac{1}{1} \quad \frac{540}{540} \quad \frac{-1080}{143370} \quad \frac{2700}{-574560} \quad \frac{-17280}{5051970}$$

$$\frac{3}{540} \quad \frac{204071184}{204071184} \quad \frac{74810520}{-913383000} \quad \frac{-913383000}{-913383000}$$

Table 1: Instanton numbers up to $d_1, d_2 \leq 3$.

 $P^{1,1,1,6,9}[18]$ with two Kahler moduli ($h^{1,1} = 2$)

• Prepotential :

$$F = -\frac{1}{6}(9t_1^3 + 9t_1^2t_2 + 3t_1t_2^2) + \cdots$$

• Yukawa couplings :

Candelas-Font-Katz-Morrison, 9403187

$$y_{ijk} = \kappa_{ijk} + \sum_{d_1,d_2=0}^{\infty} c_{ijk}(d_1,d_2)n_{d_1,d_2} \frac{q_1^{d_1}q_2^{d_2}}{1 - q_1^{d_1}q_2^{d_2}}$$

$$\frac{d_1 \setminus d_2 \quad 0}{0} \quad \frac{1}{3} \quad \frac{2}{-6} \quad \frac{3}{27}$$

$$\frac{d_1 \setminus d_2 \quad 0}{1} \quad \frac{3}{-6} \quad \frac{27}{-1080} \quad \frac{2700}{-17280} \quad -17280$$

$$\frac{2}{3} \quad \frac{540}{540} \quad \frac{143370}{204071184} \quad \frac{-574560}{74810520} \quad \frac{5051970}{-913383000}$$

Table 1: Instanton numbers up to $d_1, d_2 \leq 3$.

 $P^{1,1,1,6,9}[18]$ with two Kahler moduli ($h^{1,1} = 2$)

• Prepotential :

$$F = -\frac{1}{6} \left(\frac{9}{4} t^3 + 3ts^2 \right) + \cdots \qquad t = t_1, \qquad s = \frac{3}{2} t_1 + t_2$$

• Yukawa couplings :

Candelas-Font-Katz-Morrison, 9403187

If we take $q_s \rightarrow 0$ (Im $s \rightarrow \infty$), d_2 =0 is relevant

$d_1 \setminus d_2$		1	2	3
0		3	-6	27
1	540	-1080	2700	-17280
2	540	143370	-574560	5051970
3	54	204071184	74810520	-913383000

Table 1: Instanton numbers up to $d_1, d_2 \leq 3$.

$$y_{ttt} = \frac{9}{4}E_4(t) \text{ (weight 4)}$$
$$y_{tss} = 1$$
$$y_{tts} = y_{sss} = 0$$

$$E_4(t) = 1 + 240 \sum_{k=0}^{\infty} \frac{k^3 q^k}{1 - q^k}$$

29

 $P^{1,1,1,6,9}[18]$ with two Kahler moduli ($h^{1,1}=2$)

Moduli Kahler potential :

$$K = -\ln[i(\frac{3}{8}(t-\bar{t})^3 + \frac{1}{2}(t-\bar{t})(s-\bar{s})^2)]$$

• Matter Kahler metric :

Dixon-Kaplunovsky-Louis ('90)

$$\begin{split} K_{t\bar{t}}^{(27)} &\sim e^{-\frac{K}{3}} K_{t\bar{t}} \simeq \frac{1}{(t-\bar{t})^{5/3}} \\ K_{s\bar{s}}^{(27)} &\sim e^{-\frac{K}{3}} K_{s\bar{s}} \simeq (t-\bar{t})^{1/3} \end{split}$$

Matter modular weight :

$$-5/3$$
 for $A_t^{(27)}$
1/3 for $A_s^{(27)}$

The action is invariant under $SL(2,\mathbb{Z})_t: t \to \frac{at+b}{ct+d}$

30

Two Kahler moduli ($h^{1,1}=2$) :

 \mathbb{CP}^2

 \mathbb{CP}^2

3

• Prepotential :

$$F = -\frac{1}{6}(9t_1^2t_2 + 9t_1t_2^2) + \cdots$$

• Yukawa couplings :

$y_{ijk} = \kappa_{ijk} + \sum_{d_1, d_2=0}^{\infty} c_{ijk}(d_1, d_2) n_{d_1, d_2} \frac{q_1^{d_1} q_2^{d_2}}{1 - q_1^{d_1} q_2^{d_2}}$								
$d_1 \setminus d_2$	0	1	2	3	4	5	6	
0		189	189	162	189	189	162	
1	189	8262	142884	1492290	11375073	69962130		
2	189	142884	13108392	516953097	12289326723			
3	162	1492290	516953097	55962304650				
4	189	11375073	12289326723					
5	189	69962130						21
6	162							

Two Kahler moduli ($h^{1,1}=2$) :

• Prepotential :

$$F = -\frac{1}{6}(9t_1^2t_2 + 9t_1t_2^2) + \cdots$$

Yukawa couplings :

• Prepotential :

$$F = -\frac{1}{6} \left(-\frac{9}{4}t^3 + 9ts^2 \right) + \cdots$$

$$t = t_1, \quad s = \frac{1}{2}t_1 + t_2$$

Two Kahler moduli ($h^{1,1} = 2$) :

• Yukawa couplings :

If we take $q_s \rightarrow 0$ (Im $s \rightarrow \infty$), d_2 =0 is relevant

	$\mathbf{\Lambda}$	1		I.	
$d_1 \setminus d_2$	0	1	2	3	4
0		189	189	162	189
1	189	8262	142884	1492290	11375073
2	189	142884	13108392	516953097	12289326723
3	162	1492290	516953097	55962304650	
4	189	11375073	12289326723		
5	189	69962130			
6	162				
			-		

Table 3: Instanton numbers up to bidegree $d_1 + d_2 \leq 6$. Note that there symmetry $n_{d_1,d_2} = n_{d_2,d_3}$.

$$y_{ttt} = \frac{63}{80} E_4(t) - \frac{243}{80} E_4(3t) \quad (\Gamma_0(N) \text{ modular form of weight 4})$$

$$y_{tss} = 9 \qquad t \to \frac{pt+q}{st+t} \quad s \equiv 0 \pmod{3}$$

Note that $E_4(nt)$ is a $\Gamma_0(N)$ modular form if n|N

Two Kahler moduli ($h^{1,1} = 2$) :

Moduli Kahler potential :

$$K = -\ln\left(i\left(\frac{1}{2}(t-\bar{t})(s-\bar{s})^2\right)\right)$$

Matter Kahler metric :

$$\begin{split} &K_{t\bar{t}}^{(27)} \sim e^{-\frac{K}{3}} K_{t\bar{t}} \simeq \frac{1}{(t-\bar{t})^{5/3}} \\ &K_{s\bar{s}}^{(27)} \sim e^{-\frac{K}{3}} K_{s\bar{s}} \simeq (t-\bar{t})^{1/3} \end{split}$$

- Matter modular weight :

$$-5/3$$
 for $A_t^{(27)}$
1/3 for $A_s^{(27)}$

The action is invariant under $\Gamma_0(3)_t$: $t \to \frac{pt+q}{st+t}$

$$s\equiv 0 \pmod{3}$$

3

Dixon-Kaplunovsky—Louis ('90)

Outline

- 1. Why modular symmetries ?
- 2. Modular flavor symmetry in Heterotic E_6 GUT
- 3. Hierarchical structure of physical Yukawa couplings
- 4. Conclusion

Non-trivial structure of 4D Yukawa couplings

- Mechanisms
 - 1. Charge assignments of quarks/leptons under continuous or discrete flavor symmetries U(1) : Froggatt-Nielsen ('79),...
 - 2. Localization of matter wavefunctions in extra-dimensional spaces

Arkani-Hamed and Schmaltz ('99), Kaplan-Tait ('00) ,...

They can be engineered in the UV completion of the SM, such as string theory

Yukawa couplings in 4D N=1 SUSY

Kinetic term of matters A^i : $K = K_{i\bar{j}}A^i\bar{A}^j$

Holomorphic Yukawa couplings : $W = y_{ijk}A^iA^jA^k$

Physical Yukawa couplings (after canonically normalizing fields A^{i})

$$Y_{abc} = e^{\frac{K}{2}} L_a^i L_b^j L_c^k y_{ijk}$$

 L_a^i : diagonalizing the kinetic terms $K_{i\bar{i}}$

Physical Yukawa couplings (after canonically normalizing fields A^i)

$$Y_{abc} = e^{\frac{K}{2}} L_a^i L_b^j L_c^k y_{ijk}$$

 L_a^i : diagonalizing the kinetic terms $K_{i\bar{j}}$

Hierarchical structure of Yukawa couplings :

1. Flavor structure of holomorphic Yukawa couplings y_{ijk} (controlled by modular symmetries (modular forms))

 $y_{ttt} \propto E_4(t)$ (weight 4) $y_{tss} = \text{consant}$

K. Ishiguro, T. Kobayashi, HO, arXiv: 2103.380240

Physical Yukawa couplings (after canonically normalizing fields A^{i})

$$Y_{abc} = e^{\frac{K}{2}} L_a^i L_b^j L_c^k y_{ijk}$$

 L_a^i : diagonalizing the kinetic terms $K_{i\bar{j}}$

Hierarchical structure of Yukawa couplings :

1. Flavor structure of holomorphic Yukawa couplings y_{ijk} (controlled by modular symmetries (modular forms))

 $y_{ttt} \propto E_4(t)$ (weight 4) $y_{tss} = \text{consant}$

2. Kinetic mixing of matter field Kahler metric $K_{i\bar{J}}$ (positive and negative modular weights \rightarrow large kinetic mixing)

$$\begin{split} K_{t\bar{t}}^{(27)} &\sim e^{-\frac{K}{3}} K_{t\bar{t}} \simeq \frac{1}{(t-\bar{t})^{5/3}} \\ K_{s\bar{s}}^{(27)} &\sim e^{-\frac{K}{3}} K_{s\bar{s}} \simeq (t-\bar{t})^{1/3} \end{split}$$

K. Ishiguro, T. Kobayashi, HO, arXiv: 2103.350240

- Geometric symmtries
- $SL(2,\mathbb{Z})$ for toroidal backgrounds
- $Sp(2g,\mathbb{Z})$ for multi-moduli

Modular symmetry

Strong constraints on the EFT

- Flavor symmetry ⊂ Modular symmetry
 - Holormorphic Yukawa couplings \sim modular forms
 - Large kinetic mixings induced by modular weights

Discussion (1/2) Higher-order couplings in SUSY E_6 GUT

Bershadsky-Cecotti-Ooguri-Vafa ('93)

<u>Dimension-5</u>

• *n*-point couplings : $F_{ij...n} = \partial_i \partial_j \dots \partial_n F$ *F* : prepotential

From hep-th/9309140

- Non-trivial representations under $Sp(2h + 2, \mathbb{Z})$

Discussion (2/2) Higher-order couplings in SUSY E_6 GUT

Bershadsky-Cecotti-Ooguri-Vafa ('93)

<u>Dimension-5</u>

Prepotential : $F = F_{\text{cubic polynomial}} + F_{\text{instanton}}$ E.g., $F_{ijkl} = \partial_i \partial_j \partial_k \partial_l F_{\text{instanton}}$ are exponentially suppressed
 -> no dangerous flavor/CP-violating processes under Im $t^i \gg_{42}$ Thank you!

Appendix

4D CP and modular symmetry

4D CP \subset 10D proper Lorentz transformation

Consider simultaneous transformations of Strominger-Witten ('85) Dine-Leigh-MacIntire ('92) — 4D parity Choi-Kaplan-Nelson ('92) - 6D orientation reversing : $z_i \rightarrow -\bar{z}_i$ (i = 1,2,3) $(z_i: \text{local coordinates of 6D space})$ (Volume form : $dV \rightarrow -dV$) $dV \propto dz_1 \wedge dz_2 \wedge dz_3 \wedge d\overline{z}_1 \wedge d\overline{z}_2 \wedge d\overline{z}_3$

10D Majorana-Weyl spinor under $SO(1,9) = SO(1,3) \times SO(6)$:

 $16 = (2, 4_+) \bigoplus (2', \overline{4}_-)$ 2, 2': left- and right-handed spinors of $SL(2, \mathbb{C})$

 $4_+, \overline{4}_-: +$ and - chirality spinors of SU(4)

4D CP and modular symmetry

4D CP \subset 10D proper Lorentz transformation

10D Majorana-Weyl spinor under $SO(1,9) = SO(1,3) \times SO(6)$:

 $16 = (2, 4_{+}) \bigoplus (2', \overline{4}_{-})$ $2, 2' : \text{left- and right-handed spinors of } SL(2, \mathbb{C})$ $4_{+}, \overline{4}_{-} : + \text{ and } - \text{chirality spinors of } SU(4)$

 $(2, 4_+) \rightarrow (2', \overline{4}_-)$ E.g., in heterotic string, E_6 :

$$\overline{27} \rightarrow \overline{27}^*$$

Such transformations correspond to 4D CP

4D CP and modular symmetry

4D CP \subset 10D proper Lorentz transformation

10D Majorana-Weyl spinor under $SO(1,9) = SO(1,3) \times SO(6)$:

 $16 = (2, 4_{+}) \bigoplus (2', \overline{4}_{-})$ $2, 2' : \text{left- and right-handed spinors of } SL(2, \mathbb{C})$ $4_{+}, \overline{4}_{-} : + \text{ and } - \text{chirality spinors of } SU(4)$

 $(2, 4_+) \rightarrow (2', \overline{4}_-)$ E.g., in heterotic string, E_6 :

 $\overline{27} \rightarrow \overline{27}^*$

 $\tau^i \rightarrow (\tau^i)$

Such transformations correspond to 4D CP

CP as an outer automorphism of symplectic modular group

• Under CP and symplectic modular transf. $\gamma \in Sp(2h^{2,1} + 2, \mathbb{Z})$

$$\Pi \xrightarrow{\mathrm{CP}} \mathcal{CP} \overline{\Pi} \xrightarrow{\gamma} \mathcal{CP} \cdot \gamma \overline{\Pi} \xrightarrow{\mathrm{CP}^{-1}} \mathcal{CP} \cdot \gamma \cdot \mathcal{CP}^{-1} \Pi$$
$$\gamma = \begin{pmatrix} d & c \\ b & a \end{pmatrix} \to \mathcal{Q}(\gamma) \equiv \mathcal{CP} \cdot \gamma \cdot \mathcal{CP}^{-1} = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

- Outer automorphism Q:
 - (i) $\mathcal{Q}(\gamma_1)\mathcal{Q}(\gamma_2) = \mathcal{CP} \cdot \gamma_1 \cdot \mathcal{CP}^{-1}\mathcal{CP} \cdot \gamma_2 \cdot \mathcal{CP}^{-1} = \mathcal{Q}(\gamma_1\gamma_2)$
 - (ii) No group element $\hat{\gamma} \in Sp(2h^{2,1} + 2, \mathbb{Z})$ exists s.t. $\mathcal{Q}(\gamma) = \hat{\gamma}^{-1}\gamma\hat{\gamma}$

Enlarging the symplectic modular group

• Symplectic modular group $Sp(2h^{2,1}+2,\mathbb{Z})$ is enlarged to

$$Sp(2h^{2,1}+2,\mathbb{Z})\rtimes \mathcal{CP}$$

• Natural extension of T^2 toroidal case (Modular group : $SL(2,\mathbb{Z})$)

$$GL(2,\mathbb{Z}) \simeq SL(2,\mathbb{Z}) \rtimes \mathcal{CP}$$

 $SL(2,\mathbb{Z}) \simeq Sp(2,\mathbb{Z})$

H. P. Nilles, M. Ratz, A. Trautner, P. K. S. Vaudrevange ('18), P.P. Novichkov, J. T. Penedo, S. T. Petcov, A. V. Titov (**9)