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A○

A few remarks

F-theory is an exciting reformulation of String Theory in a twelve

dimensional space

It involves a number of fascinating mathematical concepts such as:

Topology, Algebraic Geometry and Elliptic Fibrations

The aim of this talk is to describe the methodology in building

effective unified theories (GUTs) and discuss possible

phenomenological predictions



–4–

B○

The Defining Features of F-theory ( C. Vafa, hep-th/9602022)

-

i) Non-perturbative formulation of Type II-B string

compactifications

-

ii) Presence of 7-branes which backreact on the geometry

-

in particular

iii) D7 branes are magnetic sources for the RR axion C0.

-

iv) Inherits SL(2, Z) invariance from Type II-B
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SL(2, Z)-invariance

1. The dilaton φ determines the string coupling:

g
IIB

= eφ

2. The RR axion C0, and the dilaton φ are combined to one

modulus, the axio-dilaton field:

τ = C0 + i e−φ → C0 +
i

g
IIB

3. The importance of τ is that it can be used to write the type

IIB action in an SL(2, Z) invariant way

SIIB ∝
∫

d10x
√−g

(

R − 1

2

∂µτ∂
µτ̄

(Imτ)2
− 1

2

|G3|2
Imτ

− 1

4
|F5|2

)

− i

4

∫

1

Imτ
C4 +G3 ∧ G̃3
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Elliptic Curves & Elliptic Fibration

An extremely important implication of the variation of the

axio-dilaton τ is that it gives rise to an elliptic fibration over the

physical space-time. In order to see this, let’s start with II-B theory

which is defined in 10-d space described by: R3,1 × B3

B
3

N R3,1 is the usual 4-d space-time

N B3 Calabi-Yau (CY) manifold of 3 complex dimensions (3-fold)
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N N F-theory is compactified on an

elliptically fibered manifold where

B3 is the base of the fibration.

Fibration is implemented by the axio-dilaton modulus

τ = C0 + ı e−φ which can be thought as describing a torus
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More precisely, we make a continuous mapping of τ to the points of

the base B3. Thus, we say that:

N F-theory is defined on R3,1 × X N

where X , elliptically fibered CY 4-fold over the base B3

This is depicted below where τ -tori are associated with points of B3.

Red points correspond to possible geometric singularities of the fiber

.
.

B

T

T

T

3

2

2

2
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Mathematically, the Elliptic Fibration is described by the

vanishing locus of the Weierstraß Equation

y2 = x3 + f(z)xw4 + g(z)w6

1. f(z), g(z) → 8th and 12th degree polynomials.

2. Equivalence relations of homogeneous (projective) coordinates

(x, y, w, z) ≃ (λ2x, λ3y, λw, z) and

(x, y, z, w) ≃ (λ4x, λ6y, λz, w)

3. The zero section σ0 is described by the intersection w = 0

which marks the point [x : y : w] → [1 : 1 : 0].

4. The elliptic fibration is a CY, as long as f(z) and g(z) are

holomorphic sections of line bundlesa O(K−4
B ) and O(K−6

B )

respectively.

aKB is the canonical class of the base B3.
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Two important quantities characterise the fibration:

N The discriminant: (24th-degree in z)

∆(z) = 4 f(z)3 + 27g(z)2

N The zeros of the discriminant determine the fiber singularities:

∆ =
24
∏

i=1

(z − zi) = 0

⇓
24 roots zi

———————————
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NN the j-invariant:

j(τ) =
4(24f(z))3

∆(z)

NN The j-invariant provides a relation between the modulus τ

and the coordinate z:a

j(τ(z)) = 4
(24f(z))3

∆(z)
∝ e−2πiτ + · · · (1)

aj(τ) ∼ e−2πiτ + 744 +O(e2πiτ ) ∼ e2π/gse−2πiC0 + 744 +O(e−2π/gs ).
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Its solution determines the axio-dilaton τ around the zeros zi of ∆:

τ ≈ 1

2πi
log(z − zi)

Now recall that the log is a multivalued function

N Hence, while Encircling a root zi, the real component of τ shifts:

τ → τ + 1 ⇒ C0 → C0 + 1

In other words, τ and thus C0 undergo Monodromy.

N The Interpretation of this picture is that at each root

z = zi

there is a source of RR-flux which is associated with a

D7-brane perpendicular to the “tangent plane”.
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D7 branes are magnetic sources for the RR axion C0

Figure 1: Moving around zi, log(z) → log |z| + i(2π + θ) and the

modulus shifts by τ → τ + 1



–14–

Geometric Singularities

Summarising the analysis so far, the elliptic fibration is represented

by the Weierstraß equation (fixing w = 1):

y2 = x3 + f(z)x+ g(z)

• At the points where the discriminant ∆ = 27g2 + 4f3 vanishes,

the elliptic fiber degenerates.

• The type of Manifold singularity is specified by the vanishing

order of ∆ and the polynomials f(z), g(z) of Weierstraß eqn

• As proved by Kodaira (in ’60s), these geometric

singularities are classified in terms of ADE Lie groups.

In F-theory these singularities are interpreted as:

⇓
CY4-Singularities ⇄ gauge symmetries
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N The above description concerns the non-abelian part of the

effective theory which according to AD E classification will result

to an effective model with one of the following gauge groups (in

standard notation)

NonAbelian

GaugeGroups
⇒















SU(n)

SO(m)

En

NN There are also Abelian symmetries associated with the elliptic

fibers of the CY4 and will be discussed shortly
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C○

The Non Abelian Sector

Rôle of Geometric Singularities in EFTs
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Kodaira classified the type of singularities in terms of the vanishing

order of f(z), g(z) and ∆(z) = 4f(z)3 + 27g(z)2.

For phenomenological applications in local model building it is

more convenient to use

Tate’s Algorithm

y2 + a1x y + a3y = x3 + a2 x
2 + a4x+ a6

All information is encoded in the coefficients ai

an =
∑

ℓ=k≥0 an,ℓz
ℓ

An ADE classification of the Geometric Singularities w.r.t.

vanishing order of ai and ∆ is shown in the following Table:
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Group a1 a2 a3 a4 a6 ∆

T SU(2) 1 1 1 1 2 3

a SU(3) 1 1 1 2 3 4

t SU(2n) 1 1 n n 2n 2n

e SU(2n+ 1) 0 1 n n+ 1 2n+ 1 2n+ 1

A SO(4k + 1) 1 1 k k + 1 2k 2k + 3

g SO(4k + 2) 1 1 k k + 1 2k + 1 2k + 3

o SO(4k + 3) 1 1 k + 1 k + 1 2k + 1 2k + 4

l SU(5) 0 1 2 3 5 5

i SO(10) 1 1 2 3 5 7

t E6 1 2 3 3 5 8

h E7 1 2 3 3 5 9

m E8 1 2 3 4 5 10
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EXAMPLE
Define bk = bk,0 + bk,1z + · · · , (bk,0 6= 0), then choose ai to be:

a1 = −b5, a2 = b4z, a3 = −b3z
2, a4 = b2z

3, a6 = b0z
5

Then, the vanishing orders of each an is:

Vanishing a1 a2 a3 a4 a6 ∆

order − z1 z2 z3 z5 z5 → SU(5)

⇒ Weierstraß’ equation for the SU(5) singularity

y2 = x3 + b0z
5 + b2xz

3 + b3yz
2 + b4x

2z + b5xy (2)

⋆ A useful notion for local model building is the spectral cover

obtained by defining homogeneous coordinates z → U , x → V 2,

y → V 3 and affine parameter s = U
V , so that (2) implies:

C5 : 0 = b0s
5 + b2s

3 + b3s
2 + b4s+ b5
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E○

F-theory Model Building

(Original papers: Beasley, Heckman, Vafa : 0802.3391, 0806.0102

Donagi et al 0808.2223, 0904.1218)

Early reviews: 1001.0577, 1203.6277, 1212.0555

Recent: 1806.01854; 2212.07443

A Class of ‘semi-local’ constructions

The final effective (GUT) model depends on the choice of:

⇓

1) Manifold 2) Fluxes 3) Monodromies

⇓
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NH The manifold: NH

N The candidate GUT is embedded in E8 which is the maximal

exceptional group in elliptic fibration.

Thus, we consider a CY with a divisor accommodating our choice

while the rest is the symmetry commutant to it.

E8 → GGUT × C

Example: Assuming a Manifold with SU(5) divisor:

E8 → SU(5)× SU(5)⊥

→ SU(5)× U(1)4⊥

Matter descends from the E8-Adjoint which decomposes as:

248 → (24, 1) + (1, 24) + (10, 5) + (5, 10) + (10, 5) + (5, 10)
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When branes intersect, the singularity increases and the gauge

symmetry is further enhanced. Yukawa couplings are formed at

tripple intersections . For example, in the SU(5) case:a

λb 10 · 5̄ · 5̄ ∈ SO(12), λt 10 · 10 · 5 ∈ E6

aHere we assume that there is a Z2 monodromy so that λt exists.
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NHThe fluxes: NH

Three important implications

NH determine SU(5) chirality

NH trigger SU(5) Symmetry Breaking

( fluxes act as the surrogate of the Higgs vev )

NH Split the SU(5)-representations
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SU(5) chirality from perpendicular U(1)⊥ Flux

U(1)⊥−Flux on ∈ 10’s:

#10−#10 = M10

U(1)⊥− Flux on ∈ 5’s:

#5−#5 = M5
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SM chirality form Hypercharge Flux

U(1)Y −Flux-splitting of 10’s:

n(3,2) 1

6

− n(3̄,2)
−

1

6

= M10

n(3̄,1)
−

2

3

− n(3,1) 2

3

= M10 −NY10

n(1,1)1 − n(1,1)
−1

= M10 +NY10

U(1)Y − Flux-splitting of 5’s:

n(3,1)
−

1

3

− n(3̄,1) 1

3

= M5

n(1,2) 1

2

− n(1,2)
−

1

2

= M5 +NY5
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The Spectral surface C5 ↔ U(5)⊥ is described by 5th degree

equation:
5

∑

k=0

bkt
k = 0

N Topological properties are encoded ∈ bk coeffs

however:

N the description of the EFT model relies on the roots ti

Solutions ti(bk) induce branch-cuts and a non-trivial monodromy.

N Simplest case:

Z2 monodromy reduces the “perpendicular symmetry”:

Z2 : t1 ↔ t2 ⇛ U(1)4⊥ → U(1)3⊥
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A simple Z2 model

(GKL & GG Ross), (GKL & Q. Shafi 1706.08372 )

SU(5), U(1)i SM spectrum Exotics R-parity

10i, ti Qi, u
c
i , d

c
i − −

5̄1, t3 + t4 dc1, ℓ1 − −
5̄2, t1 + t3 dc2, ℓ2 − −
5̄3, t1 + t4 dc3, ℓ3 − −
5Hu

,−2t1 Hu D +

5̄Hd
, t3 + t5 Hd − +

5x,−(t1 + t5) − (Hui
, Di)i=1,...,n +

5̄x̄, t4 + t5 − Dc + (Hdi
, Dc

i )i=1,...,n +

θ12,21 S (singlet) −
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Geometric picture of a generic Z2 model

5

10

10

:
2Z

SU(5)SO(12)

X

5

n
q< >

h

h
d

u

t
t

t

t t
t+

+
2

3
4

5

1

2

tt1 2=

5

t
1

2

t_
_

m-term

E
6
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D○

Origin

of

Abelian and Discrete Symmetries

Our interest in Abelian Groups and other discrete symmetries

arises from phenomenological considerations, in particular, of the

necessity to

constrain the Yukawa Lagrangian

There are three sources of such symmetries in F-theory
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DA

Abelian Symmetries from Elliptic Fibration

In F-Theory, Abelian gauge symmetries (other than those

embedded in E8) are encoded in rational sections of the Elliptic

Fibration and constitute the so called

Mordell-Weil group.

Simplest Case (Morrison-Park: 1208.2695):

Rank-1 Mordell-Weil

⇓
GUT accompanied by new U(1):

GGUT × U(1)MW
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but now Tate’s coefficients are not all independent!

(Antoniadis, GKL: 1404.6720)

y2 + 2
b3
a2

xyz ± b1a2yz
3 = x3 ±

(

b2 −
b23
a22

)

x2z2

−b0a
2
2xz

4 − b0a
2
2

(

b2 −
b23
a22

)

z6

Comparing with standard general Tate’s form:

y2 + α1xyz + α3yz
3 = x3 + α2x

2z2 − α4xz
4 − α6z

6

we observe

α6 = α2α4

↓

This eliminates most of the groups in Tate’s algorithm!



–32–

Group a1 a2 a3 a4 a6 ∆

T SU(2) 1 1 1 1 2 3

a SU(3) 1 1 1 2 3 4

t SU(2n) 1 1 n n 2n 2n

e SU(2n+ 1) 0 1 n n+ 1 2n+ 1 2n+ 1

A SO(4k + 1) 1 1 k k + 1 2k 2k + 3

g SO(4k + 2) 1 1 k k + 1 2k + 1 2k + 3

o SO(4k + 3) 1 1 k + 1 k + 1 2k + 1 2k + 4

l SU(5) 0 1 2 3 5 5

i SO(10) 1 1 2 3 5 7

t E6 1 2 3 3 5 8

h E7 1 2 3 3 5 9

m E8 1 2 3 4 5 10
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Restricted Tate’s Algorithm for one U(1)MW

y2 + a1x y z + a3y z
3 = x3 + a2 x

2z2 + a4x z
4 + a2a4z

6

Group a1 a2 a3 a4 a6 ∆

SU(2) 0 1 1 1 2 2

SU(3) 0 1 1 2 3 3

E6 1 2 3 3 5 8

E7 1 2 3 3 5 9
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DB

Discrete Symmetries from Modular String Symmetries
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N In String Theories, Dualities imply modular invariance w.r.t.

various moduli fields, in particular, the axio-dilaton, Kähler and

Complex Structure (CS) moduli. They appear in the fluxed

induced superpotential (we restrict here in type-IIB)

W IIB ∝
∫

G3 ∧ Ω ≡
∫

(F3 − τH3) ∧ Ω

as well as in the Kähler potential

K̂ = − ln(−i(τ − τ̄))− 2 log(V) +
∫

Ω ∧ Ω̄ + · · ·

where V = 1
6κijktitjtk, (ti =ImTi)

• Supersymmetric conditions DτiW IIB = 0 impose restrictions and

reduce the initial SL(2, Z) symmetry to some congruence group

(note that flux parameters are integers)

• Symmetry may further break down from the Yukawa sector,

W ⊃ λij(gs)fifjh unless certain criteria are imposed.
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A). Axio-dilaton τ

Noticing that

Imτ =
τ − τ̄

2i
=

1

gs

we can readily deduce that eK → |cτ + d|2eK . Since the gravitino

mass m2
3/2 = eK |W |2 must stay invariant, W must transform as

W → W

cτ + d
, (3)

In most common cases the Yukawa couplings are λ ∝ gs
−1/2

λ ∝ g−1/2
s → g

−1/2
s

|cτ + d| → g
−1/2
s

|C2
0 + g−2

s |1/2 ∼ g+1/2
s

(→ i.e., strong-weak coupling duality!)
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B). Kähler moduli Ti

Let Qa various fields,

K = K̂ + K̃ab̄Q
aQ̄b̄ + · · · , K̃ab̄ = K̃ab̄(Ti)

Canonical kinetic terms imply

K̃aQ
aQ̄ā = Q̂a ˆ̄Q

a
, ˆ̄Q

a
=

√

K̃a(Ti) Q̄
a

and a redefinition of the Yukawa couplings in the superpotential

W =
λijl

√

K̃iK̃jK̃l

ˆ̄Qi
ˆ̄Qj

ˆ̄Ql ⇒ λ̃ij = eK̂/2 λij
√

K̃iK̃jK̃h

C). CS moduli τi : similar analysis...

(Basiouris, Crispin-Romao, King, GKL, work in progress )
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DC

Discrete Symmetries from E8
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Another origin of Non-Abelian Discrete Groups is from the

group “perpendicular” to the GUT group, (both ∈ E8)

E8 ⊃ SU(5)× SU(5)⊥ (4)

A wide class of Discrete Groups is PSL2(p), p prime

N Requirements:

• must be subgroups of SU(5)⊥ → p ≤ 11

• must have 3-d representations (mν → 3× 3) → p ≤ 7

A promising candidate:

PSL2(7) ∈ SU(3)⊥

Then, the maximal symmetry embedded in E8 is

⇓

E8 ⊃ E6 × SU(3)⊥ ⊃ E6 × PSL2(7)

promising low energy phenomenology! (see arXiv:1612.06161)
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CONCLUSIONS
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F-theory models :

⇓⇓⇓

Provide a Geometric interpretation of GUTs

Calculability, form a handful of topological properties

Predict natural Doublet-Triplet splitting...

May accommodate a Variety of new states for New Physics

Discrete symmetries emanate from various sources and can be used

to interpret CKM and the Neutrino data
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T HANK YOU
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E
APPENDIX
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EXAMPLE ..Simplest monodromy Z2 : :

a1 + a2s+ a3s
2 = 0 → s1,2 =

−a2 ±
√
∆

2a3

Under θ → θ + 2π →
√
∆ → −

√
∆ branes interchange locations

s1 ↔ s2 or t1 ↔ t2

O

8

Two U(1)’s related by monodromies , gauge symmetry reduces to:

SU(5)× U(1)4 → SU(5)×U(1)3
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N Superstring Theories are characterised by dualities associated

with the modular group SL(2,Z). The latter is represented by

2× 2 matrices

A =
(

a b

c d

)

with detA = 1, a, b, c, d ∈ Z.

N SL(2, Z) describes the equivalence class of diffeomorphisms of

the torus and as such it is related to toroidal compactifications.

N Because the action of A and −A on the modulus is the same, we

define the projective group Γ̄ = PSL(2, Z) ≡ SL(2, Z)/{I,−I}.
N The principal congruence subgroup of level N is defined by

the subset of matrices Γ(N) ∈ SL(2, Z) which are equal to identity

matrix modN . Identification of positive and negative unit matrices

results to Γ̄(N).

In Physical applications we deal with the quotient (finite) groups

ΓN = PSL(2, Z)/Γ̄(N), S2 = (ST )3 = TN = 1
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N Construction of 3-d. irreducible representation of PSL2(7)

(E.G.Floratos, GKL arXiv:1511.01875)

a
2 = b

3 = (ab)7 = ([a, b])4 = I

Method: use of Weil’s Metaplectic Representation

(based on Balian & Itzykson Acad. Dc. Paris 303 (1986).)

Defining η = e2πi/7, we generators are found to be:

a → A[3] =
i√
7

(

η2
− η5 η6

− η η3
− η4

η6
− η η4

− η3 η2
− η5

η3
− η4 η2

− η5 η − η6

)

and

b → B[3] =
i√
7

(

η − η4 η4
− η6 η6

− 1

η5
− 1 η2

− η η5
− η

η2
− η3

1 − η3 η4
− η2

)
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Application to neutrino mixing:

Invariance of Mν under PSL2(7) (sub)group Ai

[M,Ai] = 0

⇒ common eigenvectors, → mixing matrix.

Observation: PSL2(7) generators have Latin square structure:

U ∝









r1 r2 r3

r2 r3 r1

r3 r1 r2









Imposing conditions: orthogonality, unitarity , . . . , roots satisfy:

x3 + x2 − r1r2r3 = 0

for PSL2(7), r1r2r3 = 1
7
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classification of all 168 elements : (Aliferis, GKL Vlachos)

Example:The following elements give the correct mixing

( commuting with [Mν , U1] = 0, [Mℓ, U2] = 0] respectively )

U1 =









r3 −r1 −r2

−r1 r2 r3

−r2 r3 r1









, U2 =









0 0 −e
6πi
7

e−
2πi
7 0 0

0 e−
4πi
7 0









Uν =









0.802e0.57i 0.577e2.39i 0.153e−1.27i

0.366e0.1065i 0.577e−0.87i 0.729e−0.35i

0.471e−1.66i 0.577e3.05i 0.667e0.64i









Comparison with experimental data:

N θ12, θ23, θ13 in agreement with experimental values.

N θ13 automatically non-zero (see arXiv:1612.06161)


