"Workshop on Grand Unified Theories: Phenomenology and Cosmology" Hangzhou April 2024

 \mathcal{F}-theory GUTs: Prospects and ChallengesGeorge Leontaris

University of Ioannina
I $\omega \alpha \nu \nu \iota \nu \alpha$
GREECE

Outline of the Talk

© Introductory remarks
© \mathcal{F}-Theory basics
© Building \mathcal{F}-Theory GUTs
© \mathcal{F}-GUTs and Discrete Symmetries
© Concluding Remarks

A few remarks

F-theory is an exciting reformulation of String Theory in a twelve dimensional space

It involves a number of fascinating mathematical concepts such as: Topology, Algebraic Geometry and Elliptic Fibrations

The aim of this talk is to describe the methodology in building effective unified theories (GUTs) and discuss possible phenomenological predictions

The Defining Features of F-theory (C. Vafa, hep-th/9602022)
i) Non-perturbative formulation of Type II-B string compactifications
ii) Presence of 7-branes which backreact on the geometry
in particular
iii) D 7 branes are magnetic sources for the $\mathbf{R R}$ axion C_{0}.
iv) Inherits $S L(2, Z)$ invariance from Type II-B

SL(2, Z)-invariance

1. The dilaton ϕ determines the string coupling:

$$
g_{I I B}=e^{\phi}
$$

2. The $R R$ axion C_{0}, and the dilaton ϕ are combined to one modulus, the axio-dilaton field:

$$
\tau=C_{0}+i e^{-\phi} \rightarrow C_{0}+\frac{i}{g_{I I B}}
$$

3. The importance of τ is that it can be used to write the type IIB action in an $S L(2, Z)$ invariant way

$$
\begin{aligned}
S_{I I B} \propto & \int d^{10} x \sqrt{-g}\left(R-\frac{1}{2} \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\operatorname{Im} \tau)^{2}}-\frac{1}{2} \frac{\left|G_{3}\right|^{2}}{\operatorname{Im} \tau}-\frac{1}{4}\left|F_{5}\right|^{2}\right) \\
& -\frac{i}{4} \int \frac{1}{\operatorname{Im} \tau} C_{4}+G_{3} \wedge \tilde{G}_{3}
\end{aligned}
$$

Elliptic Curves \& Elliptic Fibration

An extremely important implication of the variation of the axio-dilaton τ is that it gives rise to an elliptic fibration over the physical space-time. In order to see this, let's start with II-B theory which is defined in 10-d space described by: $\mathcal{R}^{3,1} \times \mathcal{B}_{3}$

$\Delta \mathcal{R}^{3,1}$ is the usual 4-d space-time
$\Delta \mathcal{B}_{3}$ Calabi-Yau (CY) manifold of 3 complex dimensions (3-fold)
$\Delta \Delta F$-theory is compactified on an elliptically fibered manifold where \mathcal{B}_{3} is the base of the fibration.

Fibration is implemented by the axio-dilaton modulus $\tau=C_{0}+\imath e^{-\phi}$ which can be thought as describing a torus

More precisely, we make a continuous mapping of τ to the points of the base B_{3}. Thus, we say that:
\triangle F-theory is defined on $\mathcal{R}^{3,1} \times \mathcal{X}$
where \mathcal{X}, elliptically fibered $\mathbf{C Y} 4$-fold over the base B_{3}
This is depicted below where τ-tori are associated with points of B_{3}. Red points correspond to possible geometric singularities of the fiber

Mathematically, the Elliptic Fibration is described by the vanishing locus of the \mathcal{W} eierstraß \mathcal{E} quation

$$
y^{2}=x^{3}+f(z) x w^{4}+g(z) w^{6}
$$

1. $f(z), g(z) \rightarrow 8^{t h}$ and $12^{\text {th }}$ degree polynomials.
2. Equivalence relations of homogeneous (projective) coordinates $(x, y, w, z) \simeq\left(\lambda^{2} x, \lambda^{3} y, \lambda w, z\right)$ and $(x, y, z, w) \simeq\left(\lambda^{4} x, \lambda^{6} y, \lambda z, w\right)$
3. The zero section σ_{0} is described by the intersection $w=0$ which marks the point $[x: y: w] \rightarrow[1: 1: 0]$.
4. The elliptic fibration is a CY, as long as $f(z)$ and $g(z)$ are holomorphic sections of line bundles ${ }^{\text {a }} \mathcal{O}\left(K_{B}^{-4}\right)$ and $\mathcal{O}\left(K_{B}^{-6}\right)$ respectively.
[^0]
Two important quantities characterise the fibration:

© The discriminant: $\left(24^{\text {th }}\right.$-degree in $\left.z\right)$

$$
\Delta(z)=4 f(z)^{3}+27 g(z)^{2}
$$

Δ The zeros of the discriminant determine the fiber singularities:

$$
\Delta=\prod_{i=1}^{24}\left(z-z_{i}\right)=0
$$

24 roots z_{i}
$\boldsymbol{\Delta}$ the j-invariant:

$$
j(\tau)=\frac{4(24 f(z))^{3}}{\Delta(z)}
$$

$\Delta \Delta$ The j-invariant provides a relation between the modulus τ and the coordinate $z:^{\text {a }}$

$$
\begin{equation*}
j(\tau(z))=4 \frac{(24 f(z))^{3}}{\Delta(z)} \propto e^{-2 \pi i \tau}+\cdots \tag{1}
\end{equation*}
$$

$$
\left.{ }^{{ }^{a} j(\tau) \sim e^{-2 \pi i \tau}+744+\mathcal{O}\left(e^{2} \pi i \tau\right.}\right) \sim e^{2 \pi / g_{s}} e^{-2 \pi i C_{0}}+744+\mathcal{O}\left(e^{-2 \pi / g_{s}}\right)
$$

Its solution determines the axio-dilaton τ around the zeros z_{i} of Δ :

$$
\tau \approx \frac{1}{2 \pi i} \log \left(z-z_{i}\right)
$$

Now recall that the \log is a multivalued function
Δ Hence, while Encircling a root z_{i}, the real component of τ shifts:

$$
\tau \rightarrow \tau+1 \Rightarrow C_{0} \rightarrow C_{0}+1
$$

In other words, τ and thus C_{0} undergo Monodromy.
\triangle The Interpretation of this picture is that at each root

$$
z=z_{i}
$$

there is a source of RR-flux which is associated with a $D 7$-brane perpendicular to the "tangent plane".
$D 7$ branes are magnetic sources for the RR axion C_{0}

Figure 1: Moving around $z_{i}, \log (z) \rightarrow \log |z|+i(2 \pi+\theta)$ and the modulus shifts by $\tau \rightarrow \tau+1$

Geometric Singularities

Summarising the analysis so far, the elliptic fibration is represented by the Weierstraß equation (fixing $w=1$):

$$
y^{2}=x^{3}+f(z) x+g(z)
$$

- At the points where the discriminant $\Delta=27 g^{2}+4 f^{3}$ vanishes, the elliptic fiber degenerates.
- The type of Manifold singularity is specified by the vanishing order of Δ and the polynomials $f(z), g(z)$ of Weierstraß eqn
- As proved by Kodaira (in '60s), these geometric singularities are classified in terms of $\mathcal{A D} \mathcal{E}$ Lie groups.

In F-theory these singularities are interpreted as:
$\stackrel{\Downarrow}{C Y_{4} \text {-Singularities } \rightleftarrows \text { gauge symmetries }}$
Δ The above description concerns the non-abelian part of the effective theory which according to $\mathcal{A D} \mathcal{E}$ classification will result to an effective model with one of the following gauge groups (in standard notation)

$\Delta \triangle$ There are also Abelian symmetries associated with the elliptic fibers of the $C Y_{4}$ and will be discussed shortly

(C)

The Non Abelian Sector

Rôle of Geometric Singularities in EFTs

Kodaira classified the type of singularities in terms of the vanishing order of $f(z), g(z)$ and $\Delta(z)=4 f(z)^{3}+27 g(z)^{2}$.

For phenomenological applications in local model building it is more convenient to use
Tate's Algorithm

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

All information is encoded in the coefficients a_{i}

$$
a_{n}=\sum_{\ell=k \geq 0} a_{n, \ell} z^{\ell}
$$

An ADE classification of the Geometric Singularities w.r.t. vanishing order of a_{i} and Δ is shown in the following Table:

	Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
T	$S U(2)$	1	1	1	1	2	3
a	$S U(3)$	1	1	1	2	3	4
t	$S U(2 n)$	1	1	n	n	$2 n$	$2 n$
e	$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
A	$S O(4 k+1)$	1	1	k	$k+1$	$2 k$	$2 k+3$
g	$S O(4 k+2)$	1	1	k	$k+1$	$2 k+1$	$2 k+3$
o	$S O(4 k+3)$	1	1	$k+1$	$k+1$	$2 k+1$	$2 k+4$
l	$S U(5)$	0	1	2	3	5	5
i	$S O(10)$	1	1	2	3	5	7
t	\mathcal{E}_{6}	1	2	3	3	5	8
h	\mathcal{E}_{7}	1	2	3	3	5	9
m	\mathcal{E}_{8}	1	2	3	4	5	10

$\mathcal{E X} \mathcal{A M P} \mathcal{L E}$

Define $b_{k}=b_{k, 0}+b_{k, 1} z+\cdots,\left(b_{k, 0} \neq 0\right)$, then choose a_{i} to be:

$$
a_{1}=-b_{5}, a_{2}=b_{4} z, a_{3}=-b_{3} z^{2}, a_{4}=b_{2} z^{3}, a_{6}=b_{0} z^{5}
$$

Then, the vanishing orders of each a_{n} is:

Vanishing	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ	
order	-	z^{1}	z^{2}	z^{3}	z^{5}	z^{5}	$\rightarrow \mathbf{S U}(5)$

\Rightarrow Weierstraß' equation for the $S U(5)$ singularity

$$
\begin{equation*}
y^{2}=x^{3}+b_{0} z^{5}+b_{2} x z^{3}+b_{3} y z^{2}+b_{4} x^{2} z+b_{5} x y \tag{2}
\end{equation*}
$$

* A useful notion for local model building is the spectral cover obtained by defining homogeneous coordinates $z \rightarrow U, x \rightarrow V^{2}$, $y \rightarrow V^{3}$ and affine parameter $s=\frac{U}{V}$, so that (2) implies:

$$
\mathcal{C}_{5}: 0=b_{0} s^{5}+b_{2} s^{3}+b_{3} s^{2}+b_{4} s+b_{5}
$$

F-theory Model Building
(Original papers: Beasley, Heckman, Vafa : 0802.3391, 0806.0102
Donagi et al 0808.2223, 0904.1218)
Early reviews: 1001.0577, 1203.6277, 1212.0555
Recent: 1806.01854; 2212.07443

A Class of 'semi-local' constructions

The final effective (GUT) model depends on the choice of:

$$
\Downarrow
$$

1) Manifold
2) Fluxes
3) Monodromies

Δ The manifold:

© The candidate GUT is embedded in \mathcal{E}_{8} which is the maximal exceptional group in elliptic fibration.
Thus, we consider a CY with a divisor accommodating our choice while the rest is the symmetry commutant to it.

$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\mathrm{GUT}} \times \mathcal{C}
$$

Example: Assuming a Manifold with $S U(5)$ divisor:

$$
\begin{aligned}
\mathcal{E}_{8} & \rightarrow S U(5) \times S U(5)_{\perp} \\
& \rightarrow S U(5) \times U(1)_{\perp}^{4}
\end{aligned}
$$

Matter descends from the \mathcal{E}_{8}-Adjoint which decomposes as:

$$
248 \rightarrow(24,1)+(1,24)+(10,5)+(\overline{5}, 10)+(\overline{10}, \overline{5})+(5, \overline{10})
$$

When branes intersect, the singularity increases and the gauge symmetry is further enhanced. Yukawa couplings are formed at tripple intersections. For example, in the $\mathbf{S U (5)}$ case: ${ }^{\text {a }}$

$$
\lambda_{b} 10 \cdot \overline{5} \cdot \overline{5} \in \mathbf{S O}(\mathbf{1 2}), \lambda_{t} 10 \cdot 10 \cdot 5 \in \mathbf{E}_{\mathbf{6}}
$$

[^1]Δ The fluxes:
Three important implications
Δ determine $S U(5)$ chirality
\triangle trigger $S U(5)$ Symmetry Breaking
(fluxes act as the surrogate of the Higgs vev)
∇ Split the $S U(5)$-representations
$S U(5)$ chirality from perpendicular $U(1)_{\perp}$ Flux $U(1)_{\perp}$-Flux on \in 10's:
$$
\# 10-\# \overline{10}=M_{10}
$$
$U(1)_{\perp}$ - Flux on $\in 5$'s:
$$
\# 5-\# \overline{5}=M_{5}
$$

SM chirality form Hypercharge Flux

$U(1)_{Y}$-Flux-splitting of $\mathbf{1 0}$'s:

$$
\begin{aligned}
n_{(3,2)_{\frac{1}{6}}}-n_{(\overline{3}, 2)_{-\frac{1}{6}}} & =M_{10} \\
n_{(\overline{3}, 1)_{-\frac{2}{3}}}-n_{(3,1)_{\frac{2}{3}}} & =M_{10}-N_{Y_{10}} \\
n_{(1,1)_{1}}-n_{(1,1)_{-1}} & =M_{10}+N_{Y_{10}}
\end{aligned}
$$

$U(1)_{Y}-$ Flux-splitting of 5 's:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5} \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}
\end{aligned}
$$

The Spectral surface $\mathcal{C}_{5} \leftrightarrow U(5)_{\perp}$ is described by $5^{\text {th }}$ degree equation:

$$
\sum_{k=0}^{5} b_{k} t^{k}=0
$$

© Topological properties are encoded $\in b_{k}$ coeffs

> however:
\triangle the description of the EFT model relies on the roots t_{i}
Solutions $t_{i}\left(b_{k}\right)$ induce branch-cuts and a non-trivial monodromy.

- Simplest case:
Z_{2} monodromy reduces the "perpendicular symmetry":

$$
Z_{2}: t_{1} \leftrightarrow t_{2} \Rightarrow U(1)_{\perp}^{4} \rightarrow U(1)_{\perp}^{3}
$$

A simple Z_{2} model
(GKL \mathcal{E} GG Ross), (GKL \& Q. Shafi 1706.08372)

$S U(5), U(1)_{i}$	SM spectrum	Exotics	R-parity
$10_{i}, t_{i}$	$Q_{i}, u_{i}^{c}, d_{i}^{c}$	-	-
$\overline{5}_{1}, t_{3}+t_{4}$	d_{1}^{c}, ℓ_{1}	-	-
$\overline{5}_{2}, t_{1}+t_{3}$	d_{2}^{c}, ℓ_{2}	-	-
$\overline{5}_{3}, t_{1}+t_{4}$	d_{3}^{c}, ℓ_{3}	-	-
$5_{H_{u}},-2 t_{1}$	H_{u}	D	+
$\overline{5}_{H_{d}}, t_{3}+t_{5}$	H_{d}	-	+
$5_{x},-\left(t_{1}+t_{5}\right)$	-	$\left(H_{u_{i}}, D_{i}\right)_{i=1, \ldots, n}$	+
$\overline{5}_{\bar{x}}, t_{4}+t_{5}$	-	$D^{c}+\left(H_{d_{i}}, D_{i}^{c}\right)_{i=1, \ldots, n}$	+
$\theta_{12,21}$		$S(\operatorname{singlet})$	-

Geometric picture of a generic Z_{2} model

(D)

Origin

of

Abelian and Discrete Symmetries

Our interest in Abelian Groups and other discrete symmetries arises from phenomenological considerations, in particular, of the

$$
\begin{aligned}
& \text { necessity to } \\
& \text { constrain the Yukawa Lagrangian }
\end{aligned}
$$

There are three sources of such symmetries in F-theory

$$
\mathcal{D}_{\mathcal{A}}
$$

Abelian Symmetries from Elliptic Fibration

In \mathcal{F}-Theory, Abelian gauge symmetries (other than those embedded in E_{8}) are encoded in rational sections of the Elliptic

Fibration and constitute the so called Mordell-Weil group.

Simplest Case (Morrison-Park: 1208.2695):
Rank-1 Mordell-Weil
\Downarrow
GUT accompanied by new $U(1)$:

$$
G_{\mathrm{GUT}} \times U(1)_{\mathrm{MW}}
$$

but now Tate's coefficients are not all independent!
(Antoniadis, GKL: 1404.6720)

$$
\begin{aligned}
y^{2}+2 \frac{b_{3}}{a_{2}} x y z \pm b_{1} a_{2} y z^{3}= & x^{3} \pm\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) x^{2} z^{2} \\
& -b_{0} a_{2}^{2} x z^{4}-b_{0} a_{2}^{2}\left(b_{2}-\frac{b_{3}^{2}}{a_{2}^{2}}\right) z^{6}
\end{aligned}
$$

Comparing with standard general Tate's form:

$$
y^{2}+\alpha_{1} x y z+\alpha_{3} y z^{3}=x^{3}+\alpha_{2} x^{2} z^{2}-\alpha_{4} x z^{4}-\alpha_{6} z^{6}
$$

we observe

$$
\alpha_{6}=\alpha_{2} \alpha_{4}
$$

\downarrow
This eliminates most of the groups in Tate's algorithm!

	Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
T	$S U(2)$	1	1	1	1	2	3
a	$S U(3)$	1	1	1	2	3	4
t	$S U(2 n)$	1	1	n	n	$2 n$	$2 n$
e	$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
A	$S O(4 k+1)$	1	1	k	$k+1$	$2 k$	$2 k+3$
g	$S O(4 k+2)$	1	1	k	$k+1$	$2 k+1$	$2 k+3$
o	$S O(4 k+3)$	1	1	$k+1$	$k+1$	$2 k+1$	$2 k+4$
l	$S U(5)$	0	1	2	3	5	5
i	$S O(10)$	1	1	2	3	5	7
t	\mathcal{E}_{6}	1	2	3	3	5	8
h	\mathcal{E}_{7}	1	2	3	3	5	9
m	\mathcal{E}_{8}	1	2	3	4	5	10

Restricted Tate's Algorithm for one $U(1)_{\text {MW }}$

$$
y^{2}+a_{1} x y z+a_{3} y z^{3}=x^{3}+a_{2} x^{2} z^{2}+a_{4} x z^{4}+a_{2} a_{4} z^{6}
$$

Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
$S U(2)$	0	1	1	1	2	2
$S U(3)$	0	1	1	2	3	3
\mathcal{E}_{6}	1	2	3	3	5	8
\mathcal{E}_{7}	1	2	3	3	5	9

$\mathcal{D}_{\mathcal{B}}$

Discrete Symmetries from Modular String Symmetries

- In String Theories, Dualities imply modular invariance w.r.t. various moduli fields, in particular, the axio-dilaton, Kähler and Complex Structure (CS) moduli. They appear in the fluxed induced superpotential (we restrict here in type-IIB)

$$
W_{\mathrm{IIB}} \propto \int G_{3} \wedge \Omega \equiv \int\left(F_{3}-\tau H_{3}\right) \wedge \Omega
$$

as well as in the Kähler potential

$$
\hat{K}=-\ln (-i(\tau-\bar{\tau}))-2 \log (\mathcal{V})+\int \Omega \wedge \bar{\Omega}+\cdots
$$

where $\mathcal{V}=\frac{1}{6} \kappa_{i j k} t_{i} t_{j} t_{k},\left(t_{i}=\operatorname{Im} T_{i}\right)$

- Supersymmetric conditions $D_{\tau_{i}} W_{\text {IIB }}=0$ impose restrictions and reduce the initial $S L(2, Z)$ symmetry to some congruence group (note that flux parameters are integers)
- Symmetry may further break down from the Yukawa sector, $W \supset \lambda_{i j}\left(g_{s}\right) f_{i} f_{j} h$ unless certain criteria are imposed.
\mathcal{A}). Axio-dilaton τ
Noticing that

$$
\operatorname{Im} \tau=\frac{\tau-\bar{\tau}}{2 i}=\frac{1}{g_{s}}
$$

we can readily deduce that $e^{K} \rightarrow|c \tau+d|^{2} e^{K}$. Since the gravitino mass $m_{3 / 2}^{2}=e^{K}|W|^{2}$ must stay invariant, W must transform as

$$
\begin{equation*}
W \rightarrow \frac{W}{c \tau+d} \tag{3}
\end{equation*}
$$

In most common cases the Yukawa couplings are $\lambda \propto g_{s}{ }^{-1 / 2}$

$$
\lambda \propto g_{s}^{-1 / 2} \rightarrow \frac{g_{s}^{-1 / 2}}{|c \tau+d|} \rightarrow \frac{g_{s}^{-1 / 2}}{\left|C_{0}^{2}+g_{s}^{-2}\right|^{1 / 2}} \sim g_{s}^{+1 / 2}
$$

(\rightarrow i.e., strong-weak coupling duality!)
\mathcal{B}). Kähler moduli T_{i}

Let Q^{a} various fields,

$$
K=\hat{K}+\tilde{K}_{a \bar{b}} Q^{a} \bar{Q}^{\bar{b}}+\cdots, \tilde{K}_{a \bar{b}}=\tilde{K}_{a \bar{b}}\left(T_{i}\right)
$$

Canonical kinetic terms imply

$$
\tilde{K}_{a} Q^{a} \bar{Q}^{\bar{a}}=\hat{Q}^{a} \hat{\bar{Q}}^{a}, \quad \hat{\bar{Q}}^{a}=\sqrt{\tilde{K}_{a}\left(T_{i}\right)} \bar{Q}^{a}
$$

and a redefinition of the Yukawa couplings in the superpotential

$$
W=\frac{\lambda_{i j l}}{\sqrt{\tilde{K}_{i} \tilde{K}_{j} \tilde{K}_{l}}} \hat{\bar{Q}}_{i} \hat{\bar{Q}}_{j} \hat{\bar{Q}}_{l} \Rightarrow \tilde{\lambda}_{i j}=e^{\hat{K} / 2} \frac{\lambda_{i j}}{\sqrt{\tilde{K}_{i} \tilde{K}_{j} \tilde{K}_{h}}}
$$

\mathcal{C}). CS moduli τ_{i} : similar analysis...
(Basiouris, Crispin-Romao, King, GKL, work in progress)

$\mathcal{D}_{\mathcal{C}}$

Discrete Symmetries from E_{8}

Another origin of Non-Abelian Discrete Groups is from the group "perpendicular" to the GUT group, (both $\in E_{8}$)

$$
\begin{equation*}
E_{8} \quad \supset \quad S U(5) \times S U(5)_{\perp} \tag{4}
\end{equation*}
$$

A wide class of Discrete Groups is $P S L_{2}(p), p$ prime
\triangle Requirements:

- must be subgroups of $\mathrm{SU}(\mathbf{5})_{\perp} \rightarrow \mathbf{p} \leq \mathbf{1 1}$
- must have 3 -d representations $\left(m_{\nu} \rightarrow 3 \times 3\right) \rightarrow \mathrm{p} \leq 7$

A promising candidate:

$$
P S L_{2}(7) \in S U(3)_{\perp}
$$

Then, the maximal symmetry embedded in E_{8} is

$$
E_{8} \supset E_{6} \times S U(3)_{\perp} \supset E_{6} \times P S L_{2}(7)
$$

promising low energy phenomenology! (see arXiv:1612.06161)

CONCLUSIONS

F-theory models :

$$
\Downarrow
$$

Provide a Geometric interpretation of GUTs Calculability, form a handful of topological properties Predict natural Doublet-Triplet splitting... May accommodate a Variety of new states for New Physics

Discrete symmetries emanate from various sources and can be used to interpret CKM and the Neutrino data
$\mathcal{T H A N K}$ YOU

APPENDIX

EXAMPLE ..Simplest monodromy Z_{2} : :

$$
a_{1}+a_{2} s+a_{3} s^{2}=0 \rightarrow s_{1,2}=\frac{-a_{2} \pm \sqrt{\Delta}}{2 a_{3}}
$$

Under $\theta \rightarrow \theta+2 \pi \rightarrow \sqrt{\Delta} \rightarrow-\sqrt{\Delta}$ branes interchange locations

$$
s_{1} \leftrightarrow s_{2} \text { or } t_{1} \leftrightarrow t_{2}
$$

Two $\mathbb{U}(\mathbb{1})$'s related by monodromies, gauge symmetry reduces to:

$$
S U(5) \times U(1)^{4} \rightarrow \mathbf{S U}(\mathbf{5}) \times \mathbf{U}(\mathbf{1})^{\mathbf{3}}
$$

A Superstring Theories are characterised by dualities associated with the modular group $S L(2, \mathbb{Z})$. The latter is represented by 2×2 matrices
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $\operatorname{det} A=1, a, b, c, d \in \mathbb{Z}$.
© $S L(2, Z)$ describes the equivalence class of diffeomorphisms of the torus and as such it is related to toroidal compactifications.
Δ Because the action of A and $-A$ on the modulus is the same, we define the projective group $\bar{\Gamma}=P S L(2, Z) \equiv S L(2, Z) /\{I,-I\}$.
© The principal congruence subgroup of level N is defined by the subset of matrices $\Gamma(N) \in S L(2, Z)$ which are equal to identity matrix $\bmod N$. Identification of positive and negative unit matrices results to $\bar{\Gamma}(N)$.
In Physical applications we deal with the quotient (finite) groups

$$
\Gamma_{N}=P S L(2, Z) / \bar{\Gamma}(N), \quad S^{2}=(S T)^{3}=T^{N}=1
$$

\triangle Construction of 3-d. irreducible representation of $P S L_{2}(7)$ (E.G.Floratos, GKL arXiv:1511.01875)

$$
\mathfrak{a}^{2}=\mathfrak{b}^{3}=(\mathfrak{a b})^{7}=([\mathfrak{a}, \mathfrak{b}])^{4}=I
$$

Method: use of Weil's Metaplectic Representation
(based on Balian \&J Itzykson Acad. Dc. Paris 303 (1986).)

Defining $\eta=e^{2 \pi i / 7}$, we generators are found to be:

$$
\mathfrak{a} \rightarrow A^{[3]}=\frac{i}{\sqrt{7}}\left(\begin{array}{ccc}
\eta^{2}-\eta^{5} & \eta^{6}-\eta & \eta^{3}-\eta^{4} \\
\eta^{6}-\eta & \eta^{4}-\eta^{3} & \eta^{2}-\eta^{5} \\
\eta^{3}-\eta^{4} & \eta^{2}-\eta^{5} & \eta-\eta^{6}
\end{array}\right)
$$

and

$$
\mathfrak{b} \rightarrow B^{[3]}=\frac{i}{\sqrt{7}}\left(\begin{array}{ccc}
\eta-\eta^{4} & \eta^{4}-\eta^{6} & \eta^{6}-1 \\
\eta^{5}-1 & \eta^{2}-\eta & \eta^{5}-\eta \\
\eta^{2}-\eta^{3} & 1-\eta^{3} & \eta^{4}-\eta^{2}
\end{array}\right)
$$

Application to neutrino mixing:
Invariance of M_{ν} under $P S L_{2}(7)$ (sub)group A_{i}

$$
\left[M, A_{i}\right]=0
$$

\Rightarrow common eigenvectors, \rightarrow mixing matrix.
Observation: $P S L_{2}(7)$ generators have Latin square structure:

$$
U \propto\left(\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{2} & r_{3} & r_{1} \\
r_{3} & r_{1} & r_{2}
\end{array}\right)
$$

Imposing conditions: orthogonality, unitarity , ..., roots satisfy:

$$
x^{3}+x^{2}-r_{1} r_{2} r_{3}=0
$$

for $P S L_{2}(7), r_{1} r_{2} r_{3}=\frac{1}{7}$
classification of all 168 elements : (Aliferis, GKL Vlachos)
Example: The following elements give the correct mixing
(commuting with $\left.\left[M_{\nu}, U_{1}\right]=0,\left[M_{\ell}, U_{2}\right]=0\right]$ respectively)

$$
\begin{gathered}
U_{1}=\left(\begin{array}{ccc}
r_{3} & -r_{1} & -r_{2} \\
-r_{1} & r_{2} & r_{3} \\
-r_{2} & r_{3} & r_{1}
\end{array}\right), U_{2}=\left(\begin{array}{ccc}
0 & 0 & -e^{\frac{6 \pi i}{7}} \\
e^{-\frac{2 \pi i}{7}} & 0 & 0 \\
0 & e^{-\frac{4 \pi i}{7}} & 0
\end{array}\right) \\
U_{\nu}=\left(\begin{array}{ccc}
0.802 e^{0.57 i} & 0.577 e^{2.39 i} & 0.153 e^{-1.27 i} \\
0.366 e^{0.1065 i} & 0.577 e^{-0.87 i} & 0.729 e^{-0.35 i} \\
0.471 e^{-1.66 i} & 0.577 e^{3.05 i} & 0.667 e^{0.64 i}
\end{array}\right)
\end{gathered}
$$

Comparison with experimental data:
$\Delta \theta_{12}, \theta_{23}, \theta_{13}$ in agreement with experimental values.
$\Delta \theta_{13}$ automatically non-zero (see arXiv:1612.06161)

[^0]: ${ }^{\text {a }} K_{B}$ is the canonical class of the base B_{3}.

[^1]: ${ }^{\text {a }}$ Here we assume that there is a Z_{2} monodromy so that λ_{t} exists.

