

A phenomenological study of SU(5) with Type-I+III seesaw

Gao-Xiang Fang (HIAS) 2024-04-10

Based on GXF, Y.L. Zhou, arXiv:2404.xxxxx

- 1. Introduction
- 2. Unification
- 3. Flavor mixing
- 4. Proton decay
- 5. Conclusion

基础物理与数学科学学院 School of Fundamental Physics and Mathematical Sciences

GUT theory

SM: $G_{\rm SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$, neutrinos are massless

Unify three fundamental forces into a single force GUTs: SU(5) GUTs, SO(10) GUTs

- Unification of symmetries
- Unification of gauge couplings

Three gauge couplings are unified at scale called M_{GUT}

Unification of matters

Zhou' SUSY2023

SU(5) GUTs

Georgi-Glashow model(1974) SU(5)

• Gauge couplings do not unify

Bajc, Nemevsek, Senjanovic, 0703080 Perez, Gross, Murgui, 1804.07831 Calibbi, Gao, 2206.10682 Senjanović, Zantedeschi, 2402.19224

• Neutrinos are massless and predicts wrong mass relations $m_d = m_e, m_s = m_\mu, m_t = m_\tau$

$$\overline{\mathbf{5}}_{F} = \begin{pmatrix} d_{rR}^{c} \\ d_{gR}^{c} \\ d_{bR}^{c} \\ e_{L} \\ -\nu_{L} \end{pmatrix}, \quad \mathbf{10}_{F} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_{bR}^{c} & -u_{gR}^{c} & -u_{L}^{r} & -d_{L}^{r} \\ -u_{bR}^{c} & 0 & u_{rR}^{c} & -u_{L}^{g} & -d_{L}^{g} \\ u_{gR}^{c} & -u_{rR}^{c} & 0 & -u_{L}^{b} & -d_{L}^{b} \\ u_{L}^{r} & u_{L}^{g} & u_{L}^{b} & 0 & -e_{R}^{c} \\ d_{L}^{r} & d_{L}^{g} & d_{L}^{b} & e_{R}^{c} & 0 \end{pmatrix}$$

Minimally extended SU(5)

- Generating neutrino mass: type-I+III seesaw 24_F ; type-II seesaw 15_H
- Achieving gauge unification and predicting correct mass of quarks and leptons:

dimension=5 operators; 45_H ; vector-like fermions($5_F + \overline{5}_F, 10_F + \overline{10}_F, 15_F + \overline{15}_F$)

Seesaw mechanism

Theory: Non-SUSY dimension=6 operators: $\frac{1}{\Lambda_1^2} \left[(\overline{u_R^c} \gamma^\mu Q) (\overline{d_R^c} \gamma_\mu L) + (\overline{u_R^c} \gamma^\mu Q) (\overline{e_R^c} \gamma_\mu Q) \right] + \frac{1}{\Lambda_2^2} \left[(\overline{d_R^c} \gamma^\mu Q) (\overline{u_R^c} \gamma_\mu L) + (\overline{d_R^c} \gamma^\mu Q) (\overline{\nu_R^c} \gamma_\mu Q) \right]$ non-SUSY SU(5) Diameter 68m Experiments: A STATE OF A ater Depth 71m

Current Super-K: $\tau(p \to \pi^0 e^+) > 2.4 \times 10^{34} \text{yr},$ $\tau(p \to K^+ \bar{\nu}) > 6.6 \times 10^{33} \text{ yr}$ SK, 2010.16098

Future JUNO: Futu
 $\tau(p \to K^+ \bar{\nu}) > 9.6 \times 10^{33} \,\mathrm{yr}$ $\tau(p \to \tau)$

JUNO, 2212.08502

Future HK: $\tau(p \to K^+ \bar{\nu}) > 3.2 \times 10^{34} \,\mathrm{yr}$

HK, 1805.04163 ⁶

Field contents

An economical model:		
Fields	SU(5)	$\supset SU(3)_c \times SU(2)_L \times U(1)_Y$
Fermion	10_F	$ ightarrow ({f 3},{f 2},+rac{1}{6})_{q_L}+(\overline{f 3},{f 1},-rac{2}{3})_{u_R^c}+({f 1},{f 1},+1)_{e_R^c}$
	$\overline{5}_F$	$ ightarrow (\overline{f 3}, f 1, +rac{1}{3})_{d^c_R} + (f 1, f 2, -rac{1}{2})_{\ell_L}$
11	24_{F}	$ ightarrow ({f 1},{f 1},0)_N+({f 1},{f 3},0)_\Sigma+({f 3},{f 2},-{5\over 6})_{Q_L}+({f \overline 3},{f 2},{f 5\over 6})_{Q_R^c}+({f 8},{f 1},0)_{Q_8}$
Higgs	5_{H}	$ ightarrow ({f 1},{f 2},{f 1\over 2})_{h_1}$
	45_{H}	$ ightarrow (1,2,rac{1}{2})_{h_2}$
	24_{Φ}	$ ightarrow (1,1,0)_{\phi_1}$
-	75_{Φ}	$ ightarrow (1,1,0)_{\phi_2}$
$-\mathcal{L} \hspace{0.1in} \supset ar{f 5}_F(Y_1 m 5_H^{\dagger} + Y_2 m 4 m 5_H^{\dagger}) m 1 m 0_F + m 1 m 0_F(Y_3 m 5_H + Y_4 m 4 m 5_H) m 1 m 0_F$		
$+ar{f 5}_F($	$(Y_5 5_H + Y_5)$	$(\kappa_{6} 4 5_{H}) 24_{F} + 24_{F} (M_{1} + \kappa_{1} 24_{\Phi} + \kappa_{2} 75_{\Phi}) 24_{F} + \text{h.c.}$
		$M_e = aY_1^* - 3bY_2^* ,$
$M_N = M_1 -$	$-M_{24}+5$	M_{75} , $M_d = aY_1^{\dagger} + bY_2^{\dagger}$, two I III seesaw
$M_{\Sigma} = M_1 -$	$-3M_{24} - $	$3M_{75}, M_u = cY_3^* + dY_4^*, \longrightarrow M_\nu = M_I M_N^{-1} M_I^T + M_{III} M_\Sigma^{-1} M_{III}^T$
$M_Q = M_1 - \frac{1}{2}M_{24} + M_{75}, M_{\rm I} = \sqrt{3}fY_5^* + \sqrt{5}gY_6^*,$		
$M_{Q_8} = M_1 + 2M_{24} - M_{75} . M_{\rm III} = \sqrt{5} f Y_5^* - \sqrt{3} g Y_6^* ,$		
Ne	w particles	SM particles

Renormalization group equation (RGE)

Only considering fermion's contribution in RGE

New particles contribution

Gauge coupling unification

We only focus on the situation where 24_F has only one copy

The precise measurement of experiments requires us to calculate RGE at two-loop level

Two-loop threshold effect increase M_{GUT} $M_{GUT} = 3.05 \times 10^{15} \text{ GeV}$

Scan Parameter Space

$$M_{N} = M_{1} - M_{24} + 5M_{75},$$

$$M_{\Sigma} = M_{1} - 3M_{24} - 3M_{75},$$

$$M_{Q} = M_{1} - \frac{1}{2}M_{24} + M_{75},$$

$$M_{Q_{8}} = M_{1} + 2M_{24} - M_{75}.$$

$$M_{N} = \frac{12}{5}M_{Q} - \frac{4}{5}M_{Q_{8}} - \frac{3}{5}M_{\Sigma}$$

$$M_{\Sigma} \uparrow M_{N} \downarrow M_{GUT} \downarrow$$

When $M_{\Sigma} = 500$ GeV, the maximal value of M_{GUT} is 2.51×10^{15} GeV, which is allowed by gauge unification

Flavor mixing

$$\begin{split} |V_{ub}| &< |V_{td}| \ll |V_{ts}| < |V_{cb}| \ll |V_{cb}| \ll |V_{cd}| < |V_{us}| \ll |V_{cs}| < |V_{ud}| < |V_{tb}| \\ \hline \mathcal{O}(1) \end{split}$$
Scenario 1: $Y_d = \hat{Y}_d$

$$\begin{matrix} \mathbf{u} & \mathbf{v} & \mathbf{v} \\ 2(U'_u)_{11}V_{ud}^* + (U'_u)_{21}V_{us}^* \\ (U'_u)_{11}V_{ud}^* + (U'_u)_{21}V_{us}^* \\ (U'_u)_{11}V_{us}^* + (U'_u)_{21}V_{us}^* \\ (U'_u)_{11}V_{us}^$$

 $M_{\Sigma} = 500$ GeV, $M_{\rm GUT} = 2 \times 10^{15}$ GeV are determined

 $M_{\rm GUT}$ **†** Proton lifetime **†** Parameter Space **†**

Scenario 2: $Y_d^{\dagger} = Y_d$ and $Y_u^{\dagger} = Y_u$ numerical solution: $\begin{array}{ccc} \overline{\mathbf{S}} & \tau(p \to \pi^0 e^+) = \\ V_{ud} & \log_{10} \left(\frac{6.88 \times 10^{32}}{(U_u)_{11}^2 + 0.27(U_u)_{11}(U_u)_{12} + 0.02(U_u)_{12}^2} \right) \\ V_{us} & \tau(p \to K^0 e^+) = \end{array}$ $2(U_u)_{11}V_{ud} + (U_u)_{12}V_{cd}$ $(U_u)_{11}V_{ud} + (U_u)_{12}V_{cd}$ $\log_{10}\left(\frac{4.22 \times 10^{34}}{(U_u)_{11}^2 + 5.22(U_u)_{11}(U_u)_{12}| + 7.56(U_u)_{12}^2}\right)$ **v $p \to K^+ \bar{\nu}$ $p \to \pi^0 e^+$ $\tau(p \to K^+ \bar{\nu}) = 3.5 \times 10^{34} \text{ years} > \text{HK bound}$ $\tau(p \to \pi^+ \bar{\nu}) = 1.8 \times 10^{33} \text{ years} > \text{SK} \text{ bound}$ $\begin{array}{c}
 3 \\
 2(U_u)_{11}V_{us} + (U_u)_{12}V_{cs} \\
 (U_u)_{11}V_{us} + (U_u)_{12}V_{cs}
\end{array}$ Only two free parameters: $(U_u)_{11}, (U_u)_{12}$ V_{ud} $(U_u)_{11} \to 0, (U_u)_{12} \to 0, \tau \to +\infty$ `μ⁺

Two free parameters: $(U_u)_{11}, (U_u)_{12}$

Similar to S1, there is hope to test this assumption in future proton decay experiments

Scenario 3: $Y_u = \hat{Y}_u$ $\tau(p \to \pi^0 e^+)_{\text{max}} = 8.5 \times 10^{32} \text{ years} < 2.4 \times 10^{34} \text{ years}(\text{SK bound})$ $2V_{ud}$ V_{ud} V_{us} Scenario 3 is excluded $p \to \pi^0 e^+$ $p \to K^+ \bar{\nu}$ $\tau(p \to \pi^0 e^+) = \log_{10}(\frac{3.3865 \times 10^{33}}{(U'_d)_{11}^2 + 3.9737}),$ numerical solution: $\tau(p \to K^0 e^+) = \log_{10} \left(\frac{1.0607 \times 10^{34}}{(U'_d)_{12}^2 + 0.2012} \right),$ $\tau(p \to K^+ \bar{\nu}) = 3.49 \times 10^{34} \text{ years} > 3.2 \times 10^{34} \text{ years}(\text{HK targeted})$ $\begin{array}{c} 2V_{us} \\ (U_d')_{12} \end{array}$ $\rightarrow K^0 e^+$

- 1. New particles in $\mathbf{24}_F$ satisfy the following mass hierarchy $M_{\Sigma} < M_{Q_8} < M_Q$.
- 2. M_{Σ} should be lighter than $10^{4.8}$ GeV in ordeer to make $M_{GUT} > 10^{15}$ GeV when $\mathbf{24}_F$ has only one copy.
- 3. There is hope to test this economical model in future proton decay experiments.
- 4. Future neutrino experiments can provide multiple tests of GUTs via multiple proton decay channels.

Thanks!