

BESILL案介子纯轻衰变研究

刘良辰 (liulc@mail.nankai.edu.cn)

南开大学,中国科学院高能物理研究所

BESIII 粲强子物理研讨会,郑州大学&河南工业大学,2024年5月11日

物理动机

 在SM中,CKM矩阵元描述W玻色子发生弱相互作用的耦合强度,是待定的参数,只 能由实验来测量

粒子物理标准模型

● 研究夸克强相互作用力和弱相互作用力的理想衰变道

 $\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2}}{8\pi} |V_{cd(s)}|^{2} f_{D_{(s)}^{+}}^{2} m_{\ell}^{2} m_{D_{(s)}^{+}}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$ 测量 f_D 检验LQCD; 精确测量 |V_{cs}|和 |V_{cd}|; 还可检验轻子普适性,寻找新物理迹象

物理动机

• 在BESIII之前, CLEO-c, BaBar以及Belle, 测量了|V_{cs}|和|V_{cd}|。

SC solenoid 1.5T CsI(TI) $16X_0$ TOF counter 8 GeV e Si vtx. det. 3(4) lyr. DSSD n=1.015~1.030 3.5 GeV e⁺ Central Drift Chamber small cell +He/C₂H₅ μ / K_L detection 14/15 lyr. RPC+Fe

Aerogel Cherenkov cnt.

The Belle detector

Data samples:

- > 0.52 ab⁻¹@10.6 GeV (γ (4S))
- \succ σ(e⁺e⁻ → cc = 1.3) nb
- > $L_{\text{peak}} = 1 \times 34 \text{ cm}^{-2} \text{s}^{-1}$

Data samples:

- > 0.98 ab⁻¹@10.6 GeV (γ (4S))
- \succ $\sigma(e^+e^- \rightarrow cc) = 1.3$ nb
- > $L_{\text{peak}} = 2 \times 34 \text{ cm}^{-2} s^{-1}$

Collaboration	V _{cs}	V _{cd}
BaBar	4.3%	-
Belle	3.3%	-
CLEO-c	4.3%	4.4%

Data samples:

- ➢ 0.8 fb⁻¹@3.774 GeV
- ➢ 0.6 fb⁻¹@4.170 GeV

BEPC-II和BES-III

北京谱仪-III:

- BES-III是大型通用探测器,其原理主要采用现代粒子探测技术。
 用于分析和记录质心能
 - 量对撞产生的末态粒子 的信息。
- MUC 超导磁铁(1 Tesla) 电磁量能器(EMC): $\frac{\sigma_E}{E} = 2.5\%$ @1 GeV (桶部) $\frac{\sigma_E}{E} = 5\%$ @1 GeV (端盖) 飞行时间计数器(TOF): $\sigma_t = 68 \text{ ps} (桶部)$ $\sigma_t = 60 \text{ ps} (端盖2015)$ 主漂移室(MDC): $\sigma_{\gamma\phi} = 130 \ \mu m (\text{single wire})$ $\sigma_{p_t}/p_t = 0.5\%$ @ 1 GeV

 $D_{S}^{+} \rightarrow \ell^{+} \nu_{\ell}$

数据1:7.33 fb⁻¹ @ 4.128-4.226 GeV 数据2:482 pb⁻¹ @ 4.009 GeV 14个单标记道@ 4.128-4.226 GeV : *N*_{ST}~0.89 M

信号侧重建 $X(X = e^+, \pi^+, \pi^+, \pi^0, \mu^+)$, 丢失掉的中微子的的运动学信息:

$$M_{\rm miss}^2 = E_{\rm miss}^2 - |\vec{p}_{\rm miss}|^2$$
$$E_{\rm miss}^2 = E_{\rm cm} - \sqrt{|\vec{p}_{\rm tag}|^2 + m_{Ds}^2 - E_{\gamma(\pi^0)} - E_X}$$
$$\vec{p}_{\rm miss} = -\vec{p}_{\rm tag} - \vec{p}_{\gamma(\pi^0)} - \vec{p}_X$$

7

 $D_s^+ \rightarrow \ell^+ \nu_\ell$: $\ell = \mu^+, \tau^+$

PRD 94, 072004 (2016)

 $\mathcal{B}(\boldsymbol{D}_{\boldsymbol{s}}^{+} \to \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}) = (0.517 \pm 0.075_{\text{stat}} \pm 0.021_{\text{syst}})\%$ $\mathcal{B}(\boldsymbol{D}_{\boldsymbol{s}}^{+} \to \boldsymbol{\tau}^{+} \boldsymbol{\nu}_{\boldsymbol{\tau}}) = (3.28 \pm 1.83_{\text{stat}} \pm 0.37_{\text{syst}})\%$

 $D_{s}^{+} \rightarrow \ell^{+} \nu_{\ell} : \ell = \mu^{+}$

数据:3.19 fb⁻¹ @ 4.178 GeV $e^+e^- \rightarrow D_s^+D_s^{*-} \rightarrow \gamma(\pi^0)D_s^+D_s^-$ PRL 122, 071802 (2019) 双标拟合:误差棒为数据,直方图为蒙卡模拟的背景

 $D_{s}^{+} \rightarrow \ell^{+} \nu_{\ell} : \ell = \mu^{+}$

数据:7.33 fb⁻¹ @4.128-4.226 GeV e⁺e⁻ → $D_s^+ D_s^{*-} \rightarrow \gamma(\pi^0) D_s^+ D_s^-$ PRD 108, 112001(2023) 双标拟合:误差棒为数据,直方图为蒙卡模拟的背景

 $D_{S}^{+} \rightarrow \ell^{+} \nu_{\ell} \colon \ell = \mu^{+}, \tau^{+} \rightarrow \pi^{+} \overline{\nu}$

数据:6.32 fb⁻¹ @4.178-4.226 GeV

PRD 104, 052009(2021)

拟合(@4.178 GeV): • μ -like (upper): 220 F 350 $E_{\rm EMC} \leq 300$ MeV, mixture 200 300 180 of $D_s^+ \to \tau^+ (\to \pi^+ \bar{\nu}_\tau) \nu_\tau$ 160 250 and $D_s^+ \rightarrow \mu^+ \nu_{\nu}$ • BF精度:~5.8%
 Number of events/0.02 (GeV/c²)²

 0
 0
 0
 00
 01
 • π -like (lower): $E_{\rm EMC}$ > 300 MeV, dominated of $D_s^+ \to \tau^+ (\to \pi^+ \bar{\nu}_\tau) \nu_\tau$ $N_{D_s^+ \to \mu^+ \nu} = 2198 \pm 55, \quad N_{D_s^+ \to \tau^+ \nu} = 946^{+46}_{-45}$ $\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (0.535 \pm 0.013 \pm 0.016)\%$ $\mathcal{B}(D_s^+ o au^+
u_ au) = (5.21 \pm 0.25 \pm 0.17)\%$ *Vcs*|精度 0.1 $M_{\rm miss}^2 ({\rm GeV}/c^2)^2$ $M_{inv}(D_s)(MeV/c^2)$ ~2.0 % $f_{D_c^+} = 249.8 \pm 3.0 \pm 3.7 \pm 1.0 \text{ MeV}, \quad |V_{cs}| = 0.973 \pm 0.012 \pm 0.015 \pm 0.004,$ ~2.9 % $249.7 \pm 6.0 \pm 4.1 \pm 1.0$ MeV. $0.972 \pm 0.023 \pm 0.016 \pm 0.004$, SM约束 ——— ~1.7 % $249.9 \pm 2.4 \pm 3.4 \pm 1.0$ MeV. $0.973 \pm 0.009 \pm 0.013 \pm 0.004$.

 $D_{S}^{+} \rightarrow \ell^{+} \nu_{\ell}$: $\ell = \tau^{+}, \tau^{+} \rightarrow \pi^{+} \pi^{0} \overline{\nu}$

 $D_{S}^{+} \rightarrow \ell^{+} \nu_{\ell}$: $\ell = \tau^{+}, \tau^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\tau}$

数据:6.32 fb⁻¹ @ 4.178-4.226 GeV

PRL 127, 171801(2021)

 $E_{\rm extra}^{\rm tot}$: the total energy of the good EMC showers, excluding FSR and those associated in ST

	外推拟合
E ^{tot} extra: 未使用的径迹	· 信号区 ∈ (0, 0.4) GeV
在EMC中沉积的总能量	背景区 ∈ (0.6, 2.0) GeV
$\mathcal{B} = (5.27 \pm$	$0.10_{stat} \pm 0.12_{syst})\%$
$f_{D_s^+} V_{cs} = (244.4 \pm 10^{-5})$	$\pm 2.3_{stat} \pm 2.9_{syst}$) MeV
$f_{D_s^+} = (251.1)$	$\pm 2.4_{stat} \pm 3.0_{syst}$) MeV
$ V_{cs} = 0.978 \pm$	$0.009_{\text{stat}} \pm 0.012_{\text{syst}}$
• V _{cs} 精度:~1.5	5 %

 $D_{s}^{+} \rightarrow \ell^{+} \nu_{\ell} : \ell = \tau^{+}, \tau^{+} \rightarrow \mu^{+} \nu_{\mu} \overline{\nu}_{\tau}$

数据:7.33fb⁻¹@ 4.128-4.226 GeV

JHEP 09 (2023) 124

 $D_s^+ \to \ell^+ \nu_\ell$: $\ell = \tau^+, \tau^+ \to \pi^+ \overline{\nu}$

PRD 108, 092014(2023) 数据:7.33fb⁻¹@ 4.128-4.226 GeV BDT输入 采用增强法分类的决策树集 (BDT) p (GeV/c) M²_{mirs} (GeV²/c⁴ Events / 0.02 400 PDF: Total PDF: Signal PDF: BKG 200 $\mathcal{B} = (5.44 \pm 0.17_{\text{stat}} \pm 0.13_{\text{syst}})\%$ Pull $f_{D_s^+}|V_{cs}| = (248.3 \pm 3.9_{\text{stat}} \pm 3.1_{\text{syst}} \pm 1.0_{\text{input}}) \text{MeV}$ 0.2 -0.6 -0.4 -0.2 0 $f_{D_s^+} = (255.0 \pm 4.0_{\text{stat}} \pm 3.2_{\text{syst}} \pm 1.0_{\text{input}}) \text{MeV}$ BDT $|V_{cs}| = 0.993 \pm 0.015_{\text{stat}} \pm 0.012_{\text{syst}} \pm 0.004_{\text{input}}$ $N_{D_s^+ \to \tau^+ \nu} = 2411 \pm 75$ i• |V_{cs}|精度:~2.1% 15

 $D_s^+ \rightarrow \ell^+ \nu_\ell$:结果比较

H+H

Hell

H

H

H•-1

H

H

1

╟╼╢

H

根据来自PDG2022的G_F, m_D, m_{$D_s^+}, m_{<math>\tau$}, m_{μ}, 输入|V_{cs}|, f_D,</sub>

0	$\frac{100}{f_{D_s^+}}(MeV$	200 V)			-1 (V _{cs})	
BESIII Combine BESIII Combine	ed τv ed $\tau v + \mu v$	252.37±1.74±2.07 250.90±1.44±1.86		BESIII Combined BESIII Combined	diτν diτν + μν	0.9831±0.0068±0.0080 0.9774±0.0056±0.0072
BESIII 0.482 fb ⁻ CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	¹ PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν PRD104(2021)052009, μν PRD108(2023)112001, μν	245.5±17.8±5.1 256.7±10.2±4.0 264.9±8.4±7.6 248.8±6.6±4.8 ₩ 253.0±3.7±3.6 249.8±3.0±3.9 248.4±2.5±2.2		CLEO BaBar Belle BESIII 0.482 fb ⁻¹ BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRD94(2016)072004, μν PRL122(2019)071802, μν PRD104(2021)052009, μν PRD108(2023)112001, μν	1.000±0.040±0.016 1.032±0.033±0.029 0.969±0.026±0.019 0.956±0.069±0.020 ⊨ 0.985±0.014±0.014 0.973±0.012±0.015 0.968±0.010±0.009
HFLAV21 CLEO CLEO CLEO BaBar Belle BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	PRD107(2023)052008 PRD79(2009)052002, $\tau_e v$ PRD80(2009)112004, $\tau_\rho v$ PRD79(2009)052001, $\tau_\pi v$ PRD82(2010)091103, $\tau_{e,\mu} v$ JHEP09(2013)139, $\tau_{e,\mu,\pi} v$ PRD104(2021)052009, $\tau_\pi v$ PRD104(2021)032001, $\tau_\rho v$ PRL127(2021)171801, $\tau_e v$ PRD108(2023)092014, $\tau_\pi v$ JHEP09(2023)124, $\tau_\mu v$	252.2±2.5 251.8±11.2±5.3 ⊨ 257.0±13.3±5.0 □ 277.1±17.5±4.0 244.6±8.6±12.0 ⊨ 261.1±4.8±7.2 249.7±6.0±4.2 ⊭ 251.6±5.9±4.9 251.1±2.4±3.0 255.0±4.0±3.4 253.4±4.0±3.7	Image: second secon	CLEO CLEO CLEO BaBar Belle BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	PRD79(2009)052002, $\tau_e v$ PRD80(2009)112004, $\tau_\rho v$ PRD79(2009)052001, $\tau_\pi v$ PRD82(2010)091103, $\tau_{e,\mu} v$ JHEP09(2013)139, $\tau_{e,\mu,\pi} v$ PRD104(2021)052009, $\tau_\pi v$ PRD104(2021)032001, $\tau_\rho v$ PRL127(2021)171801, $\tau_e v$ PRD108(2023)092014, $\tau_\pi v$ JHEP09(2023)124, $\tau_\mu v$	0.981±0.044±0.021 1.001±0.052±0.019 1.079±0.068±0.016 0.953±0.033±0.047 1.017±0.019±0.028 0.972±0.023±0.016 0.980±0.023±0.019 0.978±0.009±0.012 0.993±0.015±0.013 0.987±0.016±0.014
ETM(2+1+1) FMILC(2+1+1) FLAG21(2+1+1)	PRD91(2015)054507 PRD98(2018)074512) EPJC82(2022)869	247.2±4.1 249.9±0.4 249.9±0.5	 + 	CKMFitter HFLAV21	PTEP2022(2022)083C01 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081

 $D^+ \rightarrow \ell^+ \nu_\ell : \ell = \mu^+$

 $D^+ \rightarrow \ell^+ \nu_\ell : \ell = \tau^+$

数据:2.93 fb⁻¹ ψ (3770) @3.773 GeV 单标记: 拟合**D**⁻事例

PRL 123, 211802 (2019)

联合拟合: μ^+ –like(左) π^+ –like(右)

 $D^+ \rightarrow \ell^+ \nu_\ell$:结果比较

根据来自PDG2022的 G_F , m_D , m_{τ} , m_{μ} , 输入 $|V_{cd}|$, f_D

							,	_
FLAG21(2+1+1)	Eur.Phys.J.C 82 (2022)	212.1±0.7		• '	1	' '		F
FMILC(2+1+1)	PRD98(2018)074512	212.7±0.6		•				ł
FMILC(2+1+1)	PRD90(2014)074509	212.6±0.4		•				-
ETM(2+1+1)	PRD91(2015)054507	207.4±3.8	H •-1					ł
ETM(2+1+1)	LATTICE2013(2014)314	202.0±8						E
FMILC(2+1+1)	LATTICE2013(2014)405	212.3±0.3±1.0		•				
FMILC(2+1+1)	LAT2012(2012)159	209.2±3.0±3.6	H-+	н				(
HFLAV21	PRD(2023) 107, 052008	205.1±4.4	⊢⊷⊣					I
CLEO	PRD78(2008)052003, μν	205.8±8.5±2.5	F	-				1
BESIII	PRD89(2014)051104 , μν	203.2±5.3±1.8	⊢⊷					1
BESIII	PRL123(2019)211802, τν	224.5±22.8±11.	3 H					E
100	150		200			250	-(0
	f [M_{O}						
	י _{D+} ך	ivie v]						

PDG22	PDG22(2022)	0.225±0.00067			
HFLAV21	PRD(2023) 107, 052008	0.2208±0.0040 ■			
HPQCD	PRD84(2011)114505 ,π ⁰⁽⁻⁾ Ι⁺ν ₁	0.225±0.06±0.10	-1		
ETM(2+1+1)	PRD96(2017)054514 ,π ⁰⁽⁻⁾ Ι⁺ν ₁	0.2330±0.0137±0.0067			
CLEO	PRD80(2015)032005 ,π ⁰⁽⁻⁾ e⁺ν _e	0.234±0.007±0.025			
BESIII	PRD96(2017)012002 ,π⁰e⁺∨ _e	0.210±0.004±0.009			
BESIII	PRD92(2019)072012, π [•] e ⁺ ν _e	0.2155±0.0027±0.0095			
BESIII	PRL124(2020)231801, $\eta\mu^*\nu_{\mu}$	0.242±0.022±0.034 ► • •			
BESIII	PRD89(2014)051104, μ⁺ν _μ	0.2165±0.0055±0.0019			
BESIII	PRL123(2019)211802	0.237±0.024±0.012			
0.6	-0.4 -0.2	0 0.2			
V _{cd}					

- 精确测量 $|V_{cs}|$, $|V_{cd}|$ 和 $B(D_{(s)}^+ \rightarrow \ell^+ \nu_\ell)$ 在更高精度下检验标准模型CKM矩阵幺正 性以及轻子普适性十分重要
- 通过BESIII采集的7.33 fb⁻¹ @4.128-4.226 GeV和2.93 fb⁻¹ @3.773 GeV数据样本对 纯 轻 过 程 $D_s^+ \rightarrow \ell^+ \nu_\ell$ 和 $D^+ \rightarrow \ell^+ \nu_\ell$ ($\ell = \mu^+, \tau^+$)分别进行分析,精确了测量 $|V_{cs}|$ (~1.5%), $|V_{cd}|$ (~2.8%)。

数据: @ 3.773 GeV :
$$D^+ \rightarrow \mu^+ \nu_{\mu}, D^+ \rightarrow \tau^+ \nu_{\tau} 和 D^+ \rightarrow e^+ \nu_e$$

	数据 (fb ⁻¹)	V _{cd} 精度(%)	状态
2010-2011	2.93	2.8	已发表
2021-2022	7.9	1.8	已发布
2023-2024	20	1.3	重建中

数据: @ 4.237 - 4.700 GeV: 10.64 fb⁻¹ $D_s^+ \rightarrow \mu^+ \nu_\mu \pi D_s^+ \rightarrow \tau^+ \nu_\tau$

- 不同衰变链: $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$ • 测量: $D_s^+ \rightarrow \ell^+ \nu_{\ell}$ ($\ell = \mu^+, \tau^+$)
- •能量点更高,检验补充
- BF ($D_s^+ \rightarrow \mu^+ \nu_\mu$) 精度: ~8.5%
- BF ($D_s^+ \rightarrow \tau^+ \nu_{\tau}$) 精度: ~4.0%

数据: @更多更高能量点: $D_s^+ \rightarrow \mu^+ \nu_{\mu} n D_s^+ \rightarrow \tau^+ \nu_{\tau}$

Backup : $D_s^{*+} \rightarrow e^+ \nu_e$

PRL 131, 141802 (2023)

