BESIII上A⁺强子衰变的研究

王泓鉴

兰州大学

BESIII粲强子物理研讨会 2024年5月11日 河南郑州

BEPCII & BESIII

First HEP collider in China (1988) c.m.s energy: 2 ~ 5 GeV Max luminosity: 1×10³³cm⁻²s⁻¹ Non-perturbative $\tau - charm$ region $\tau^{\pm} \ D/D_s \ \Lambda_c^{\pm}...$

 J/ψ : 2.97 fb⁻¹(10B) ψ (3686): 4.07 fb⁻¹(2.7B) ψ (3770): 20 fb⁻¹ 4.6~4.95GeV: 6.4 fb⁻¹

Λ_c^+ : The lightest charmed baryon

- Most of the charmed baryons will eventually decay to Λ⁺_c.
- The Λ⁺_c is one of important tagging hadrons in c-quark counting in the productions at high energy experiment.
- Λ⁺_c may reveal more information of strong- and weak-interactions in charm region, complementary to D/D_s.

New data samples in 2020 and 2021

Two major changes in BEPCII machine:

- max beam energy: 2.30→2.35(2020)→ 2.48 GeV(2021)
- **top-up injection:** data taking efficiency increased by 20~30%

Available data for charmed baryons

- ✓ 0.567 fb⁻¹ at 4.6 GeV (35 days in 2014)
- ✓ 3.9 fb⁻¹ scan at 4.61, 4.63, 4.64, 4.66, 4.68, 4.7 GeV (186 days in 2020)
- ✓ 1.93 fb⁻¹ scan at 4.74, 4.75, 4.78, 4.84, 4.92, 4.95 GeV (99 days in 2021)
- 8x Λ_c data that those at 4.6GeV.(~0.77M $\Lambda_c^+\overline{\Lambda}_c^-$)
- accessible to $\Sigma_c / \Xi_c / \Lambda_c^*$ prod. & decays

Production measurement near threshold

• $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ cross section are measured at twelve energy points from 4.612-4.951 GeV.

$$\sigma_{\pm} = \frac{N_{\rm ST}^{\pm}}{\varepsilon_{\rm ST}^{\pm} f_{\rm ISR} f_{\rm VP} \mathcal{L}_{\rm int} N_{\rm DT}} \sum_{n=1}^{9} \left(\frac{N_{\rm ST}^{\pm,n} \varepsilon_{\rm DT}^{n}}{\varepsilon_{\rm ST}^{\pm,n}} \right)$$

- Indicate no enhancement around Y(4630) resonance.
 => Conflict with Belle.
- $|G_E/G_M|$ ratio are derived by fitting to angular distribution.
- The oscillations on $|G_E/G_M|$ ratio is significantly observed with higher frequency than of the proton.

PhysRevLett.131.191901(2023)

Studies on the Λ_c^+ hadronic measurements at BESIII using data 20/21

- Two-body decays
 - $\begin{array}{c} \Box \quad \Lambda_c^+ \rightarrow n\pi^+ \checkmark \\ \Box \quad \Lambda_c^+ \rightarrow \Sigma^0 K^+, \Sigma^+ K_S^0 \\ \Box \quad \Lambda_c^+ \rightarrow p\pi^0 \\ \Box \quad \Lambda_c^+ \rightarrow p\eta, p\omega \\ \Box \quad \Lambda_c^+ \rightarrow \Lambda K^+ \\ \Box \quad \Lambda_c^+ \rightarrow p\eta' \\ \Box \quad \Lambda_c^+ \rightarrow \Xi^0 K^+ \checkmark \end{array}$
- $\begin{array}{l} & \text{Multi-body decays} \\ & \square \ \Lambda_c^+ \rightarrow nK_S^0\pi^+\pi^0 \\ & \square \ \Lambda_c^+ \rightarrow nK_S^0\pi^+, nK_S^0K^+ \\ & \square \ \overline{\Lambda_c^-} \rightarrow \overline{n}X \\ & \square \ \Lambda_c^+ \rightarrow \Lambda K^+\pi^0, \Lambda K^+\pi^+\pi^- \\ & \square \ \Lambda_c^+ \rightarrow \Xi^0K^+\pi^0 \\ & \square \ \Lambda_c^+ \rightarrow \Sigma^-K^+\pi^+ \\ & \square \ \Lambda_c^+ \rightarrow \Sigma^+K^+K^-, \Sigma^+\phi, \Sigma^+K^+\pi^-(\pi^0) \\ & \square \ \Lambda_c^+ \rightarrow n\pi^+\pi^0, n\pi^+\pi^-\pi^+, nK^-\pi^+\pi^+ \\ & \square \ \Lambda_c^+ \rightarrow \Lambda\pi^+\pi^0 \end{array}$

- : PRL 128.142001 (2022).
- : PRD 106.052003 (2022).
- : arXiv 2311.06883.
- : JHEP 11.137 (2023).
- : PRD 106.L111101 (2022).
- : PRD 106.072002 (2022).
- : PRL 132.031801 (2024).
- : PRD 109.053005 (2024). : PRD 109.072010 (2024). : PRD 108.L031101 (2023). : PRD 109.032003 (2024). : PRD 109.052001 (2024). : PRD 109.L071103 (2024). : JHEP 09.125 (2023). : CPC 47.023001 (2023).
- : JHEP 12.033 (2022).

First observation of $\Lambda_c^+ \rightarrow n\pi^+$

PRL 128.142001 (2022)

• First singly Cabibbo-suppressed Λ_c^+ decay involved neutron was observed (7.3 σ).

• Absolute BF is measured to be $\mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{stat.} \pm 0.4_{syst.}) \times 10^{-4}$. =>Consistent with SU(3) flavor symmetry prediction. [PLB790,225 (2019)]

=>Twice larger than the dynamical calculation based on Pole model and CA. [PRD97,074028 (2018)]

• $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+) = (1.31 \pm 0.08_{stat.} \pm 0.05_{syst.}) \times 10^{-2}$. => Consistent with previous BESIII results

•
$$\mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+) = (1.22 \pm 0.08_{stat.} \pm 0.07_{syst.}) \times 10^{-2}$$
. => Consistent with previous BESIII results

• $R = \frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+)}{\mathcal{B}(\Lambda_c^+ \to p\pi^0)} > 7.2 @90\% C.L. (\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5} @90\% C.L.$ From Belle) =>Disagrees with SU(3) flavor symmetry and dynamical calculation (2.0-4.7) while in consistent with SU(3) plus topological-diagram approach (9.6).

Decay Asymmetry of $\Lambda_c^+ \to \Xi^0 K^+$

- $\Lambda_c^+ \to \Xi^0 K^+$ is pure W-exchange process which have significant contributions in charmed baryon decay. Λ_c^+
- Nonfactorizable W-exchange diagram cannot be calculated using theoretical approaches.
- Long-standing puzzle on how large the S-wave amplitude.

PRL 132.031801	(2024)
----------------	--------

FIG. 1. Feynman diagrams for $\Lambda_c^+ \to \Xi^0 K^+$.

Theory or experiment	$\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) \; (\times 10^{-3})$	$lpha_{\Xi^0K^+}$	$ A \; (\times 10^{-2} G_F \; \mathrm{GeV}^2)$	$ B \; (\times 10^{-2} G_F \; \mathrm{GeV}^2)$	$\delta_p - \delta_s \text{ (rad)}$
Körner (1992), CCQM [7]	2.6	0			
Xu (1992), Pole [8]	1.0	0	0	7.94	
Źencaykowski (1994), Pole [9]	3.6	0			
Ivanov (1998), CCQM [10]	3.1	0			
Sharma (1999), CA [11]	1.3	0			
Geng (2019), SU(3) [12]	5.7 ± 0.9	$0.94\substack{+0.06\\-0.11}$	2.7 ± 0.6	16.1 ± 2.6	
Zou (2020), CA [6]	7.1	0.90	4.48	12.10	
Zhong (2022), $SU(3)^a$ [13]	$3.8^{+0.4}_{-0.5}$	$0.91\substack{+0.03\\-0.04}$	3.2 ± 0.2	$8.7^{+0.6}_{-0.8}$	
Zhong (2022), $SU(3)^b$ [13]	$5.0^{+0.6}_{-0.9}$	0.99 ± 0.01	$3.3^{+0.5}_{-0.7}$	$12.3^{+1.2}_{-1.8}$	
BESIII (2018) [14]	$5.90 \pm 0.86 \pm 0.39$		• • •		
PDG fit (2022) [2]	5.5 ± 0.7		••••		

• Experimental measurement of decay asymmetry is crucial and urgent.

Decay Asymmetry of $\Lambda_c^+ \to \Xi^0 K^+$

α_{BP} =	$=\frac{2\operatorname{Re}(s^*p)}{ s ^2+ p ^2}\qquad\beta_{BP}=$	$= \frac{2 \text{Im}(s^* p)}{ s ^2 + p ^2}$	$\gamma_{BP} = \frac{ s ^2 - p ^2}{ s ^2 + p ^2}$
	$\beta_{BP} = \chi$	$\sqrt{1-\alpha_{BP}^2}\sin\Delta_{BP}$	$\gamma_{BP} = \sqrt{1 - \alpha_{BP}^2 \cos\Delta_{BP}}$
Level	Decay	Helicity angle	Helicity amplitude
0	$e^+e^- \to \Lambda_c^+(\lambda_1) \bar{\Lambda}_c^-(\lambda_2)$	$(heta_0)$	$\mathcal{A}_{\lambda_1,\lambda_2}$
1	$\Lambda_c^+ \to \Xi^0(\lambda_3) K^+$	$_{(heta_1,\phi_1)}$	\mathcal{B}_{λ_3}
2	$\Xi^0 o \Lambda(\lambda_4) \pi^0$	$(heta_2,\!\phi_2)$	\mathcal{C}_{λ_4}
3	$\Lambda o p(\lambda_5) \pi^-$	$_{(heta_3,\phi_3)}$	\mathcal{D}_{λ_5}

 $\Lambda \to p(\lambda_5) \pi^ (\theta_3,\phi_3)$

- $d\cos\theta_0 \ d\cos\theta_1 \ d\cos\theta_2 \ d\cos\theta_3 \ d\phi_1 \ d\phi_2 \ d\phi_3$
- $\propto 1 + \alpha_0 \cos^2 \theta_0$

- + $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\equiv^0 K^+} \alpha_{\Lambda \pi^0} \cos \theta_2$
- + $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Xi^0 K^+} \alpha_{p\pi^-} \cos \theta_2 \cos \theta_3$
- + $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Lambda \pi^0} \alpha_{n\pi^-} \cos \theta_3$
- $-(1+\alpha_0\cos^2\theta_0) \alpha_{\Xi^0K^+} \sqrt{1-\alpha_{\Lambda\pi^0}^2} \alpha_{p\pi^-}\sin\theta_2\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Xi^0K^+}\sin\theta_1\sin\phi_1$
- + $\sqrt{1 \alpha_0^2 \sin \Delta_0 \sin \theta_0 \cos \theta_0 \alpha_{\Lambda \pi^0} \sin \theta_1 \sin \phi_1 \cos \theta_2}$
- $-\alpha_0^2 \sin \Delta_0 \sin \theta_0 \cos \theta_0 \alpha_{\Xi^0 K^+} \alpha_{\Lambda \pi^0} \alpha_{p \pi^-} \sin \theta_1 \sin \phi_1 \cos \theta_3$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{p\pi}-\sin\theta_1\sin\phi_1\cos\theta_2\cos\theta_3$
- $-\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\sin\theta_1\sin\phi_1\sin\theta_2\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\pm 0\,K^+}^2}\alpha_{\Lambda\pi^0}\cos\phi_1\sin\theta_2\sin(\Delta_{\pm 0\,K^+}+\phi_2)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\pm 0\,K^+}^2}\alpha_{\Lambda\pi^0}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\pm 0\,K^+}+\phi_2)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)\cos\theta_3$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\alpha_{p\pi^-}\cos\phi_1\sin\theta_2\sin(\Delta_{\Xi^0K^+}+\phi_2)\cos\theta_3$
- $-\sqrt{1-\alpha_0^2}\,\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0\,K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\,\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\sin(\Delta_{\Xi^0\,K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0\,K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\cos\theta_2\cos(\Delta_{\Xi^0\,K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$ $+\sqrt{1-\alpha_0^2}\,\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0\,K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\,\alpha_{p\pi^-}\cos\phi_1\cos(\Delta_{\Xi^0\,K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\phi_1\cos\theta_2\sin(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$

The joint angular distribution for $\Lambda_c^+ \to \Xi^0 K^+$ is derived based on helicity amplitude.

2024/5/11

BESIII上A⁺强子衰变的研究

Decay Asymmetry of $\Lambda_c^+ \to \Xi^0 K^+$

PRL 132.031801 (2024)

- From the fit, we obtain $\alpha_{\Xi^0K^+} = 0.01 \pm 0.16_{stat.} \pm 0.03_{syst.},$ $\Delta_{\Xi^0K^+} = 3.84 \pm 0.90_{stat.} \pm 0.17_{syst.}.$
- α_{Ξ⁰K⁺} is in good agreement with zero.
 => strong identification for theoretical predictions.

$$\begin{split} \Gamma_{\Xi^{0}K^{+}} &= \frac{\mathcal{B}(\Lambda_{c}^{+} \to \Xi^{0}K^{+})}{\tau_{\Lambda_{c}^{+}}} = \frac{|\vec{p}_{c}|}{8\pi} \Big[\frac{(m_{\Lambda_{c}^{+}} + m_{\Xi^{0}})^{2} - m_{K^{+}}^{2}}{m_{\Lambda_{c}^{+}}^{2}} |A|^{2} + \frac{(m_{\Lambda_{c}^{+}} - m_{\Xi^{0}})^{2} - m_{K^{+}}^{2}}{m_{\Lambda_{c}^{+}}^{2}} |B|^{2} \Big] \\ \alpha_{\Xi^{0}K^{+}} &= \frac{2\kappa |A| |B| \cos(\delta_{p} - \delta_{s})}{|A|^{2} + \kappa^{2} |B|^{2}} \\ \Delta_{\Xi^{0}K^{+}} &= \arctan \frac{2\kappa |A| |B| \sin(\delta_{p} - \delta_{s})}{|A|^{2} - \kappa^{2} |B|^{2}} \end{split}$$

- Especially, cos(δ_p δ_s) is measured to close to zero. => Not considered in previous literature.
- Fills the long-standing puzzle on how to model $\alpha_{\Xi^0K^+}$ and $\mathcal{B}(\Lambda_c^+ \to \Xi^0K^+)$ simultaneously.
- After considered the phase shift, some calculations
 - Geng (2023), SU(3) -0.15 ± 0.14 : PRD 109.L071302 (2024).
 - Zhong (2024), TDA -0.16 ± 0.13 : arXiv 2401.15926.
 - ✓ Zhong (2024), IRA
- -0.19 ± 0.12 : arXiv 2401.15926.

BF measurement of $\Lambda_c^+ \to \Xi^0 K^+ \pi^0$

PRD 109.052001 (2024)

✓ $\mathcal{B}(\Lambda_c^+ \to \Xi(1530)^0 K^+) \Rightarrow$ Consistent with previous BESIII results.

✓ $\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+ \pi^0)$ => Lower than prediction based on SU(3) symmetry.

Observation of SCS decay $\Lambda_c^+ \rightarrow \Sigma^- K^+ \pi^+$

PRD 109.L071103 (2024)

- Singly Cabibbo-suppressed decay $\Lambda_c^+ \to \Sigma^- K^+ \pi^+$ was observed for the first time (5.4 σ).
- Absolute BF is measured to be $\mathcal{B}(\Lambda_c^+ \to \Sigma^- K^+ \pi^+) = (3.8 \pm 1.2_{stat.} \pm 0.2_{syst.}) \times 10^{-4}$. =>Consistent with SU(3) flavor symmetry prediction $(3.3 \pm 2.3) \times 10^{-4}$. [PRD99, 073003 (2019)]
- $\mathcal{B}(\Lambda_c^+ \to \Xi^- K^+ \pi^+) = (7.74 \pm 0.76_{stat.} \pm 0.54_{syst.}) \times 10^{-3}$. => Consistent with PDG Fit
- $\mathcal{B}(\Lambda_c^+ \to \Xi(1530)^0 K^+) = (5.03 \pm 0.77_{stat.} \pm 0.20_{syst.}) \times 10^{-3}$. => Consistent with previous BESIII results [PLB783, 200-206 (2018)]

•
$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^- K^+ \pi^+)}{\mathcal{B}(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+)} = (2.03 \pm 0.73)\% \simeq (0.4 \pm 0.1)s_c^2 \ (s_c^2 \equiv sin\theta_c = 0.2248)$$
$$=> \text{Close to } \frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} \text{ and deviates significantly from } 1.0s_c^2.$$

=>Ratio of isospin partner modes $\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^+ \pi^-)}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-)}$ consistent with $1.0s_c^2$.

Observation of multi-body SCS/CF decay involved neutron

CPC 47.023001 (2023)

• Absolute BF is measured to be

$$\begin{aligned} \mathcal{B}(\Lambda_c^+ \to n\pi^+\pi^0) &= (0.64 \pm 0.09 \pm 0.02)\%, \\ \mathcal{B}(\Lambda_c^+ \to n\pi^+\pi^-\pi^+) &= (0.45 \pm 0.07 \pm 0.03)\%, \\ \mathcal{B}(\Lambda_c^+ \to nK^-\pi^+\pi^+) &= (1.90 \pm 0.08 \pm 0.09)\%. \end{aligned}$$

- $\frac{\mathcal{B}(\Lambda_c^+ \to p\pi^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to n\pi^+\pi^0)} = 0.72 \pm 0.11$ Provides key SU(3) symmetry constraint
- $\frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+\pi^0)}{\mathcal{B}(\Lambda_c^+ \to n\pi^+)} = 9.2 \pm 2.4$ Rich intermediate resonance states
- $\frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+\pi^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to nK^-\pi^+\pi^+)} = 0.24 \pm 0.04$ Consistent with $1.0s_c^2$

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

JHEP 12.033 (2022)

- About 10K events survived which purity is larger than 80%.
- PWA based on helicity amplitude is performed.
- Interference mostly exist $\Lambda \rho(770)$ and $\Sigma(1385)^{0/+}\pi^{+/0}$.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

$\frac{1}{2}^{+}(\Lambda_{c}^{+}) \to \frac{3}{2}^{+}(\Sigma(1385)^{+}) + 0^{-}(\pi^{0})$			$\frac{1}{2}^{+}(\Lambda_{c}^{+})$ -	$\rightarrow \frac{3}{2}^+ (\Sigma(1385))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{1,\frac{3}{2}}^{\Sigma(1385)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{1,\frac{3}{2}}^{\Sigma(1385)^0}$	1.0 (fixed)	0.0 (fixed)	
$g_{2,\frac{3}{2}}^{\Sigma(1385)^+}$	1.29 ± 0.25	2.82 ± 0.18	$g_{2,\frac{3}{2}}^{\Sigma(1385)^0}$	1.70 ± 0.38	2.70 ± 0.22	α_{I}
$\frac{1}{2}^+(\Lambda_c^+$	$T^{-}) \rightarrow \frac{3}{2}^{-}(\Sigma(1670)^{+})$	$) + 0^{-}(\pi^{0})$	$\frac{1}{2}^{+}(\Lambda_{c}^{+})$ -	$\rightarrow \frac{3}{2}^{-}(\Sigma(1670))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{1,\frac{3}{2}}^{\Sigma(1670)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{1,\frac{3}{2}}^{\Sigma(1670)^0}$	1.0 (fixed)	0.0 (fixed)	
$g_{2,\frac{3}{2}}^{\Sigma(1670)^+}$	1.39 ± 0.42	0.85 ± 0.26	$g_{2,\frac{3}{2}}^{\Sigma(1670)^0}$	0.74 ± 0.18	0.29 ± 0.24	
$\frac{1}{2}^{+}(\Lambda_{c}^{+}) \rightarrow \frac{1}{2}^{-}(\Sigma(1750)^{+}) + 0^{-}(\pi^{0})$			$\frac{1}{2}^+(\Lambda_c^+)$ -	$\rightarrow \frac{1}{2}^{-}(\Sigma(1750))$	$)^{0}) + 0^{-}(\pi^{+})$	a
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{0,\frac{1}{2}}^{\Sigma(1750)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{0,\frac{1}{2}}^{\Sigma(1750)^0}$	1.0 (fixed)	0.0 (fixed)	
$g_{1,\frac{1}{2}}^{\Sigma(1750)^+}$	0.45 ± 0.10	-2.28 ± 0.22	$g_{1,\frac{1}{2}}^{\Sigma(1750)^0}$	0.38 ± 0.10	-2.03 ± 0.20	
$\frac{1}{2}^{+}(\Lambda_{c}^{+}) \rightarrow \frac{1}{2}^{+}(\Lambda) + 1^{-}(\rho(770)^{+})$			$\frac{1}{2}^+(\Lambda_c^+)$	$) \rightarrow \frac{1}{2}^+(\Lambda) +$	$1^{-}(NR_{1^{-}})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g^{\rho}_{0,\frac{1}{2}}$	1.0 (fixed)	0.0 (fixed)	$g^{N\!R}_{0,\frac{1}{2}}$	1.0 (fixed)	0.0 (fixed)	
$g^{\rho}_{1,\frac{1}{2}}$	0.48 ± 0.12	-1.69 ± 0.12	$g_{1,\frac{1}{2}}^{N\!R}$	0.94 ± 0.12	-0.49 ± 0.16	
$g^{\rho}_{1,\frac{3}{2}}$	0.90 ± 0.10	0.48 ± 0.13	$g_{1,\frac{3}{2}}^{N\!R}$	0.21 ± 0.09	-2.84 ± 0.53	
$g^{\rho}_{2,\frac{3}{2}}$	0.55 ± 0.08	-0.04 ± 0.18	$g^{N\!R}_{2,\frac{3}{2}}$	0.33 ± 0.14	-1.92 ± 0.30	
1/2	$^{+}(\Lambda) \to \frac{1}{2}^{+}(p) + 0^{-}$	(π^{-})				
Amplitude	Magnitude	Phase ϕ (rad)				
$g^{\Lambda}_{0,\frac{1}{2}}$	1.0 (fixed)	0.0 (fixed)				
$g_{1,\frac{1}{2}}^{\Lambda}$	0.435376 (fixed)	0.0 (fixed)				

JHEP 12.033 (2022)

$$\begin{split} {}_{\Lambda\rho(770)^{+}} &= \frac{|H^{\rho}_{\frac{1}{2},1}|^{2} - |H^{\rho}_{-\frac{1}{2},-1}|^{2} + |H^{\rho}_{\frac{1}{2},0}|^{2} - |H^{\rho}_{-\frac{1}{2},0}|^{2}}{|H^{\rho}_{\frac{1}{2},1}|^{2} + |H^{\rho}_{-\frac{1}{2},-1}|^{2} + |H^{\rho}_{\frac{1}{2},0}|^{2} + |H^{\rho}_{-\frac{1}{2},0}|^{2}} \\ &= \frac{\sqrt{\frac{1}{9}} \cdot 2 \cdot \Re\left(g^{\rho}_{0,\frac{1}{2}} \cdot \bar{g}^{\rho}_{1,\frac{1}{2}} - g^{\rho}_{1,\frac{3}{2}} \cdot \bar{g}^{\rho}_{2,\frac{3}{2}}\right) - \sqrt{\frac{8}{9}} \cdot 2 \cdot \Re\left(g^{\rho}_{0,\frac{1}{2}} \cdot \bar{g}^{\rho}_{1,\frac{3}{2}} + g^{\rho}_{1,\frac{1}{2}} \cdot \bar{g}^{\rho}_{2,\frac{3}{2}}\right)}{|g^{\rho}_{0,\frac{1}{2}}|^{2} + |g^{\rho}_{1,\frac{1}{2}}|^{2} + |g^{\rho}_{1,\frac{3}{2}}|^{2} + |g^{\rho}_{2,\frac{3}{2}}|^{2}} \end{split}$$

$$\alpha_{\Sigma(1385)\pi} = \frac{|H_{0,\frac{1}{2}}^{\Sigma(1385)}|^2 - |H_{0,-\frac{1}{2}}^{\Sigma(1385)}|^2}{|H_{0,\frac{1}{2}}^{\Sigma(1385)}|^2 + |H_{0,-\frac{1}{2}}^{\Sigma(1385)}|^2} = \frac{2\Re\left(g_{1,\frac{3}{2}}^{\Sigma(1385)} \cdot \bar{g}_{2,\frac{3}{2}}^{\Sigma(1385)}\right)}{|g_{1,\frac{3}{2}}^{\Sigma(1385)}|^2 + |g_{2,\frac{3}{2}}^{\Sigma(1385)}|^2}.$$

 Decay asymmetry parameters can be obtained by the fit results of the partial wave amplitudes.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

Table 9. The comparison among this work, various theoretical calculations and PDG results. Here,the uncertainties of this work are the combined uncertainties. "—" means unavailable.

	Theoretical c	This work	PDG	
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	$4.0 \ [14, \ 15]$	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.070	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91^{+0.4}_{-0.1}$	-0.917 ± 0.089		
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91^{+0.4}_{-0.1}$	-0.79 ± 0.11		

- No theoretical models is able to explain both BFs and decay asymmetries simultaneously.
- Fruitful results are extracted which provide crucial input to extend the understanding of dynamics of charmed baryon hadronic decays.

Some new results

0.54

FIG. 3. Combined simultaneous fit results to the distributions of $M_{\rm BC}$ for (a) $\Lambda_c^+ \rightarrow \Lambda K^+ \pi^0$ and (b) $\Lambda_c^+ \rightarrow \Lambda K^+ \pi^- \pi^-$ at 13 energy points.

2024/5/11

FIG. 4. Combined simultaneous fit results to the distributions of $M_{\rm BC}$ for (a) $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ and (b) $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^-$ at 13 energy points.

✓ $\mathcal{B}(\Lambda_c^+ \to nK_S^0 \pi^+ \pi^0) = (0.85 \pm 0.13 \pm 0.03)\%$ ✓ Differ from theoretical prediction based on isospin by 4.4*σ*.

$$\checkmark \frac{\mathcal{B}(\Lambda_{c}^{+} \to \Lambda K^{+} \pi^{0})}{\mathcal{B}(\Lambda_{c}^{+} \to \Lambda \pi^{+} \pi^{0})} = (2.09 \pm 0.39 \pm 0.07) \times 10^{-2}$$

$$\checkmark \frac{\mathcal{B}(\Lambda_{c}^{+} \to \Lambda K^{+} \pi^{+} \pi^{-})}{\mathcal{B}(\Lambda_{c}^{+} \to \Lambda \pi^{+} \pi^{+} \pi^{-})} = (1.13 \pm 0.41 \pm 0.06) \times 10^{-2}$$

$$\checkmark \mathcal{B}(\Lambda_{c}^{+} \to \Lambda K^{+} \pi^{0}) = (1.49 \pm 0.27 \pm 0.05 \pm 0.08_{\text{ref.}}) \times 10^{-3}$$

$$= > \text{Lower than prediction based on SU(3)}$$

$$\checkmark \mathcal{B}(\Lambda_{c}^{+} \to \Lambda K^{+} \pi^{+} \pi^{-}) = (4.13 \pm 1.48 \pm 0.20 \pm 0.33_{\text{ref.}}) \times 10^{-4}$$

$$= > \text{Consistent with BaBar experiment}$$

Summary

- > BESIII have collected the largest data samples with 6.4fb⁻¹ integrated luminosity from 4.60 to 4.95 GeV near the $\Lambda_c^+ \overline{\Lambda}_c^-$ production threshold.
- > Many singly Cabibbo-suppressed Λ_c^+ decay involved neutron were observed for the first time.
- ➤ The polarization of pure W-exchange process Λ⁺_c → Ξ⁰K⁺ was measured for the first time, which fills the long-standing puzzle on how to model α_{Ξ⁰K⁺} and B(Λ⁺_c → Ξ⁰K⁺) simultaneously.
- → The process $\Lambda_c^+ \to \Lambda K^+ \pi^0$ was observed and BF of $\Lambda_c^+ \to \Xi^0 K^+ \pi^0$ was updated, which are both lower than prediction based on SU(3) symmetry.
- ➤ The SCS decay $\Lambda_c^+ \to \Sigma^- K^+ \pi^+$ was observed for the first time and consistent with SU(3) flavor symmetry prediction $(3.3 \pm 2.3) \times 10^{-4}$.
- ➤ The polarization of two-body intermediate channels in the three-body decay $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ was measured, and more similar analyses are ongoing.
 ✓ $\Lambda_c^+ \to pK^-\pi^+$ ✓ $\Lambda_c^+ \to pK_s^0\pi^0$ ✓ $\Lambda_c^+ \to \Lambda_c^0\pi^+\eta$ ✓ $\Lambda_c^+ \to \Sigma^-\pi^+\pi^+$ ✓ $\Lambda_c^+ \to pK_s^0\pi^+$ ✓ $\Lambda_c^+ \to \Sigma^+\pi^+\pi^-$ ✓ ...
- → More polarization information about $\Lambda_c^+ \rightarrow pK_s^0/\Lambda^0 \pi^+/\Sigma^0 \pi^+/\Sigma^+ \pi^0$ will be released soon.

Thanks!