

Semi-leptonic Λ_c^+ decays at **BESIII**

Xudong Yu Peking University (On behalf of BESIII collaboration)

2024.5 郑州·BESIII粲强子物理研讨会

Xudong Yu 余旭东

Outline

- Introduction \rightarrow
- → BESIII experiment

→ Published physics results

- → Other ongoing analysis
- → Summary & outlook

tt. 129, 231803 (2022). Phys. Rev. D 108, L031105 (2023).

- 107, 052005 (2023).

Introduction

Why semi-leptonic decay?

- the Standard Model.
- → Take $c(\Lambda_c^+) \rightarrow s(\Lambda)$ as an example

Differential decay width: $d\Gamma = \frac{1}{2m_{\Lambda^+}} (2\pi)^n d\Phi_n |\mathcal{M}|^2$

Helicity amplitude: $\mathcal{M} = \mathcal{H}^{\mu} \mathcal{L}_{\mu}$

Leptonic part can be precisely calculated

Hadronic part is hard to calculate from the first principle, since non-perturbative QCD effect is involved.

> Semi-leptonic (SL) decay: good platform to study weak/strong interaction and probe new physics beyond

Λ_{c}^{+} SL decays in theory

- which are hybrids of on-shell states and off-shell operators. $\langle \Lambda(p_2, s_2) | H_{\text{eff}} | \Lambda_c(p_1, s_1) \rangle = \langle \Lambda(p_2, s_2) | (V - A) | \Lambda_c(p_1, s_1) \rangle$ Form factor is a function of transfer momentum $q = p_1 - p_2$ $H_V(\lambda)_{\mu} = \left\langle \Lambda(p_2, s_2) \left| V_{\mu} \right| \Lambda_c(p_1, s_1) \right\rangle = \bar{u}(p_2, s_2) \left[\gamma_{\mu} f_1(q^2) + i\sigma_{\mu\nu} \frac{q^{\nu}}{m_1} f_2(q^2) + \frac{q^{\mu}}{m_1} f_3(q^2) \right] u(p_1, s_1)$ $H_A(\lambda)_{\mu} = \left\langle \Lambda(p_2, s_2) \middle| A_{\mu} \middle| \Lambda_c(p_1, s_1) \right\rangle = \bar{u}(p_2, s_2) \left[\gamma_{\mu} g_1(q^2) + i\sigma_{\mu\nu} \frac{q^{\nu}}{m_1} g_2(q^2) + \frac{q^{\mu}}{m_2} g_3(q^2) \right] u(p_1, s_1)$ → Total helicity amplitude: $H_{\lambda_{\Lambda}\lambda_{W}} = H_{\mu}(\lambda_{\Lambda})\epsilon^{\mu}(\lambda_{W}) = [H_{V}(\lambda_{\Lambda}) - H_{A}(\lambda_{\Lambda})]_{\mu}\epsilon^{\mu}(\lambda_{W}) = H_{V}(\lambda_{\Lambda}\lambda_{W}) - H_{A}(\lambda_{\Lambda}\lambda_{W})$ 6 helicity amplitudes: $H_V\left(\frac{1}{2},0\right), H_V\left(\frac{1}{2},1\right), H_V\left(\frac{1}{2},t\right), H_A\left(\frac{1}{2},0\right), H_A\left(\frac{1}{2},1\right), H_A\left(\frac{1}{2},1\right)$
 - In the limit of negligible lepton mass, only four of them remained

\rightarrow Physical observables:

- Branching Fraction (BF), Lepton Flavor Universality (LFU)
- * q^2 and angular dependent differential decay width, FF, Forward-backward asymmetry (A_{FB}), decay asymmetry, polarization...
- New physics observables

\rightarrow Various theoretical prediction: LQCD, HQET, Quark models, Bag model, Sum rules, $SU(3)_F$, ...

\rightarrow With the help of effective field theory, hadronic amplitude can be parameterized by Form Factors (FFs)

Λ_{c}^{+} SL decays in experiment

 \rightarrow Before 2019, few Λ_c^+ SL decay channels were measured

♦ Before 2005, $\Lambda_c^+ \to \Lambda e^+ \nu_e$ studied by ARGUS & CLEO

• $\Lambda_c^+ \to \Lambda e^+ \nu_e$ observed by ARGUS^[1], decay asymmetry & FFs measured by CLEO^[2,3,4]

• Using 587 fb^{-1} data, BESIII reported several absolute BF measurement results

 $\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38_{\text{stat.}} \pm 0.20_{\text{syst.}}) \%^{[5]}$

•
$$\mathscr{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) = (3.49 \pm 0.46_{\text{stat.}} \pm 0.27_{\text{syst.}}) \%^{[6]}$$

•
$$\mathscr{B}(\Lambda_c^+ \to Xe^+\nu_e) = (3.95 \pm 0.34_{\text{stat.}} \pm 0.09_{\text{syst.}})\,\%^{[7]}$$

$$\mathscr{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu})/\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (96 \pm 16_{\text{stat.}} \pm 4_{\text{stat.}})$$

 $\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_{\rho})/\mathscr{B}(\Lambda_c^+ \to X e^+ \nu_{\rho}) = (91.9 \pm 12.5_{\text{stat}} \pm$

 \rightarrow After 2019, BESIII took new $\Lambda_c^+ \Lambda_c^-$ data. What we do?

Precise measurement of golden channel $\Lambda_c^+ \to \Lambda e^+ \nu_e, \Lambda \mu^+ \nu_\mu$

- Improve precision (BF, LFU), dynamics study (FF)
- Search for other Λ_c^+ SL decays
 - Any rooms? 80% or 100%? Much less than D case \Rightarrow improve precision of BF of inclusive decay
 - Excited state: $\Lambda_c^+ \to \Lambda^*$? Cabibbo-suppressed: $\Lambda_c^+ \to n$?

$$(55.4_{syst.})\%^{[6]}$$

BESIII experiment

BESIII粲强子物理研讨会

BEPCII

Xudong Yu 余旭东

Beijing Electron Positron Collider II(BEPCII)

Linac ~ 200 m

2020: energy upgrade to 2.45 GeV 2004: started BEPCII upgrade, **BESIII construction**

2008: test run 2009-now: BESIII physics run

- **1989-2004 (BEPC)**:
 - $\mathcal{L}_{peak} = 1.0 \times 10^{31} \text{ cm}^{-2} \cdot \text{s}^{-1}$
- **2009-now (BEPCII):**
 - $\mathcal{L}_{peak} = 1.1 \times 10^{33} \text{ cm}^{-2} \cdot \text{s}^{-1}$

BESIII detector

Xudong Yu 余旭东

Pair production at threshold

Sample	\sqrt{s} (MeV)	\mathcal{L}_{int}^{i} (pb ⁻¹)
4600	$4599.53 \pm 0.07 \pm 0.74$	$586.9 \pm 0.1 \pm 3.9$
4612	$4611.86 \pm 0.12 \pm 0.30$	$103.65 \pm 0.05 \pm 0.55$
4626	$4628.00 \pm 0.06 \pm 0.32$	$521.53 \pm 0.11 \pm 2.76$
4640	$4640.91 \pm 0.06 \pm 0.38$	$551.65 \pm 0.12 \pm 2.92$
4660	$4661.24 \pm 0.06 \pm 0.29$	$529.43 \pm 0.12 \pm 2.81$
4680	$4681.92 \pm 0.08 \pm 0.29$	$1667.39 \pm 0.21 \pm 8.84$
4700	$4698.82 \pm 0.10 \pm 0.36$	$535.54 \pm 0.12 \pm 2.84$

→ Threshold effect: pair production of charmed baryons without accompanying hadrons

 $\bullet e^+e^- \to \gamma^* \to \Lambda_c^+ \bar{\Lambda}_c^-$

- → Center-of-mass energy: $E_{\rm cms} = 4.6 \sim 4.7 \; {\rm GeV}$ $2M_{\Lambda_c} < E_{\rm cms} < (2M_{\Lambda_c} + M_{\pi})$
- Clean backgrounds and well constrained kinematics $\bigstar \Delta E = E_{\Lambda_c} - E_{\text{beam}}$ $\bigstar M_{\rm BC} = \sqrt{E_{\rm beam}^2/c^4 - p^2 c^2}$
- \rightarrow Integrated luminosity: 4.5 fb⁻¹ (~7.5x 4600 data) ◆ 1.9 fb^{-1} data @ 4740 ~ 4950 GeV (not used in published SL analysis)

Double tag method & Partial reconstruction

Double Tag (DT) Method \rightarrow

- Reconstruct $\bar{\Lambda}_c^-$ by dominant and clean decay mo
- Search for Λ_c^+ signal decay in the recoiling side

BF formula:

$$N_{\text{ST}}^{i,j} = 2N_{\Lambda_c^+\bar{\Lambda}_c^-}^{j} \mathcal{B}_{\text{tag}}^{i} \epsilon_{\text{ST}}^{i,j}, \quad \mathcal{B}_{\text{sig}} = \frac{\sum_{i,j} N_{\text{DT}}^{i,j}}{\sum_{i,j} \left(\frac{N_{\text{ST}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{DT}}^{i,j}\right)} = \frac{N_{\text{DT}}}{\sum_{i,j} \left(\frac{N_{\text{ST}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{DT}}^{i,j}\right)} = \frac{N_{\text{T}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{DT}}^{i,j}\right)} = \frac{N_{\text{T}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{DT}}^{i,j}\right)} = \frac{N_{\text{T}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{T}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{T}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}}{\sum_{i,j} \left(\frac{N_{\text{T}}^{i,j}}{\epsilon_{\text{T}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}{\sum_{i,j} \left(\frac{N_{\text{T}}}{\epsilon_{\text{T}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}}{\sum_{i,j} \left(\frac{N_{\text{T}}}{\epsilon_{\text{T}}^{i,j}} \cdot \epsilon_{\text{T}}^{i,j}\right)} = \frac{N_{\text{T}}}}{\sum_{i,j}$$

→ Partial reconstruction technique

- Neutrino can not be detected at BESIII
- Determinant variable $U_{\text{miss}} = E_{\text{miss}} c |\vec{p}_{\text{miss}}|$
- Signal events peak at 0 in $U_{\rm miss}$

pdes, e.g.,
$$\bar{\Lambda}_{c}^{-} \rightarrow \bar{p}K_{S}^{0}, \bar{p}K^{+}\pi^{-}, \dots$$

$$\epsilon^{\text{sig}} = \sum_{i,j} \left(\frac{N_{\text{ST}}^{i,j}}{\epsilon_{\text{ST}}^{i,j}} \cdot \epsilon_{\text{DT}}^{i,j} \right) / \sum_{i,j} N_{\text{ST}} = \sum_{i,j} N_{\text{ST}}^{i,j}$$

Published physics results

 $\Lambda_c^+ \to \Lambda e^+ \nu_e$

ST data set reconstructed by 14 hadronic Λ_c^+ decay mode \rightarrow

 $M_{\mathrm{p}\pi^{-}}(\mathrm{GeV}/c^2)$

Fits to $M_{\rm BC}$ distributions for different ST modes at $\sqrt{s} = 4.682 \,{\rm GeV}$

Xudong Yu 余旭东

 \rightarrow Select signal Λ and e^+ in the recoiling side of Λ_c^-

 $\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11_{\text{stat.}} \pm 0.07_{\text{syst.}})\%$ Precision improved

BESIII粲强子物理研讨会

Decay dynamics of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

Definition of the polar and the azimuthal angles

4D fit to extract FFs

- $e^+\nu_e$ mass squared: q^2
- $\Lambda \to p\pi^-$ helicity angle: θ_p
- $W^+ \rightarrow e^+ \nu_e$ helicity angle: θ_e
- Acoplanarity angle between Λ and W^+ : χ

Parameterized by "Weinberg form factor"

$$H_{\frac{1}{2}1}^{V} = \sqrt{2Q_{-}}[F_{1}^{V}(q^{2}) + \frac{(M_{A_{c}^{+}} + M_{A})}{M_{A_{c}^{+}}}F_{2}^{V}(q^{2})],$$

$$H_{\frac{1}{2}1}^{A} = \sqrt{2Q_{+}}[F_{1}^{A}(q^{2}) - \frac{(M_{A_{c}^{+}} - M_{A})}{M_{A_{c}^{+}}}F_{2}^{A}(q^{2})],$$

$$H_{\frac{1}{2}0}^{V} = \sqrt{\frac{Q_{-}}{q^{2}}}[(M_{A_{c}^{+}} + M_{A})F_{1}^{V}(q^{2}) + \frac{q^{2}}{M_{A_{c}^{+}}}F_{2}^{V}(q^{2})],$$

$$H_{\frac{1}{2}0}^{A} = \sqrt{\frac{Q_{-}}{q^{2}}}[(M_{A_{c}^{+}} - M_{A})F_{1}^{V}(q^{2}) - \frac{q^{2}}{M_{A_{c}^{+}}}F_{2}^{A}(q^{2})],$$

$$H_{\frac{1}{2}0}^{A} = \sqrt{\frac{Q_{-}}{q^{2}}}[(M_{A_{c}^{+}} - M_{A})F_{1}^{V}(q^{2}) - \frac{q^{2}}{M_{A_{c}^{+}}}F_{2}^{A}(q^{2})],$$

$$H_{\frac{1}{2}0}^{A} = \sqrt{\frac{Q_{-}}{q^{2}}}[(M_{A_{c}^{+}} - M_{A})F_{1}^{V}(q^{2}) - \frac{q^{2}}{M_{A_{c}^{+}}}F_{2}^{A}(q^{2})],$$

$$H_{\frac{1}{2}0}^{A} = \sqrt{\frac{Q_{-}}{q^{2}}}[(M_{A_{c}^{+}} - M_{A})F_{1}^{A}(q^{2}) - \frac{q^{2}}{M_{A_{c}^{+}}}F_{2}^{A}(q^{2})],$$

$$H_{\frac{1}{2}0}^{A} = \sqrt{\frac{Q_{-}}{q^{2}}}[(M_{A_{c}$$

$$\begin{aligned} \text{Helicity amplitudes:} \\ H_{\lambda_{\Lambda}\lambda_{W}} = H_{\lambda_{\Lambda}\lambda_{W}}^{V} - H_{\lambda_{\Lambda}\lambda_{W}}^{A} \text{ and } H_{-\lambda_{\Lambda}-\lambda_{W}}^{V(A)} = +(-) \\ \\ \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{e}d\cos\theta_{p}d\chi} = \frac{G_{F}^{2}|V_{cs}|^{2}}{2(2\pi)^{4}} \cdot \frac{Pq^{2}}{24M_{\Lambda_{c}}^{2}} \left\{ \frac{3}{8}(1-\cos\theta_{e})^{2}|H_{\frac{1}{2}1}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) + \frac{3}{8}(1+\cos\theta_{e})^{2}|H_{-\frac{1}{2}-1}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p}) + \frac{3}{2\sqrt{2}}\alpha_{\Lambda}\cos\chi\sin\theta_{e}\sin\theta_{p} \right. \\ \\ \left. + \frac{3}{4}\sin^{2}\theta_{e}[|H_{\frac{1}{2}0}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) + |H_{-\frac{1}{2}0}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p})] + \frac{3}{2\sqrt{2}}\alpha_{\Lambda}\cos\chi\sin\theta_{e}\sin\theta_{p} \right. \\ \\ \left. \times \left[(1-\cos\theta_{e})H_{-\frac{1}{2}0}H_{\frac{1}{2}1} + (1+\cos\theta_{e})H_{\frac{1}{2}0}H_{-\frac{1}{2}-1} \right] \right\}, \end{aligned}$$

Four-dimensional fit

- \rightarrow z-expansion: FF is q^2 dependent, refer to LQCD parameterization • Free parameters: a_0^f and α_1^f
- \rightarrow Five independent free parameters in the fit: $a_1^{g_\perp}$, $a_1^{g_\perp}$ • Choose $a_0^{g_{\perp}}$ as the reference ♦ Set $a_1^{g_\perp} = a_1^{g_+}$ and $a_1^{f_\perp} = a_1^{f_+}$
- \rightarrow Four-dimensional fit to events within $-0.06 < U_{\text{miss}} < 0.06$ Normalization using BF: $a_0^{g_{\perp}} = 0.54 \pm 0.04_{\text{stat.}} \pm 0.01_{\text{syst.}}$

Parameters	$lpha_1^{g_\perp}$	$lpha_1^{f_\perp}$	r_{f_+}	$r_{f_{\perp}}$	
Values	$1.43 \pm 2.09 \pm 0.16$	$-8.15 \pm 1.58 \pm 0.05$	$1.75 \pm 0.32 \pm 0.01$	$3.62 \pm 0.65 \pm 0.02$	1.13 ±
Coefficients	$lpha_1^{g_\perp}$	$lpha_1^{f_\perp}$	r_{f_+}	$r_{f_{\perp}}$	
$\overline{a_0^{g_\perp}}$	-0.64	0.60	-0.66	-0.83	
$\alpha_1^{g_\perp}$		-0.63	0.62	0.53	
$\alpha_1^{f_\perp}$			-0.79	-0.67	
r_{f_+}				0.57	
$r_{f_{\perp}}$					

 $f(q^2) = \frac{a_0^f}{1 - q^2 / (m_{\text{nole}}^f)^2} \left[1 + \alpha_1^f \times z(q^2)\right]$

$$a_1^{f_\perp}, r_{f_+} = a_0^{f_+} / a_0^{g_\perp}, r_{f_\perp} = a_0^{f_\perp} / a_0^{g_\perp}, r_{g_+} = a_0^{g_+} / a_0^{g_\perp}$$

Indirect Test of SM

Xudong Yu 余旭东

Semi-leptonic Λ_c^+ decays at BESIII

Comparison with theoretical predictions

for the resulting differential decay rate of LQCD

Xudong Yu 余旭东

Comparison of $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ from theoretical TABLE III. calculations and our measurement. **Differ by > 2** σ

	$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ (%)
Constituent quark model (HONR) [9]	4.25
Light-front approach [10]	1.63
Covariant quark model [11]	2.78
Relativistic quark model [12]	3.25
Non-relativistic quark model [13]	3.84
Light-cone sum rule [14]	3.0 ± 0.3
Lattice QCD [15]	3.80 ± 0.22
<i>SU</i> (3) [16]	3.6 ± 0.4
Light-front constituent quark model [17]	3.36 ± 0.87
MIT bag model [17]	3.48
Light-front quark model [18]	4.04 ± 0.75
This Letter	$3.56 \pm 0.11 \pm 0.07$

LFU test in $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$

- Improved measurement of $\mathscr{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) = (3.48 \pm 0.14_{\text{stat.}} \pm 0.10_{\text{syst.}})\%$ \rightarrow
 - 3 times more precise than prior results
 - $\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)/\mathscr{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) = 0.98 \pm 0.05_{\text{stat.}} \pm 0.03_{\text{syst.}}$ consistent with LQCD (0.97)
- **Differential decay rates** in separate four-momentum transfer regions \rightarrow

$$\Delta \Gamma_i = \int_i \frac{d\Gamma}{dq^2} dq^2 = \sum_{j=1}^{N_{\text{bins}}} (\epsilon^{-1})_{ij} N_{\text{DT}}^j / (\tau_{\Lambda_c} \times N^{\text{ST}})$$

 ϵ_{ii} : efficiency matrix for reconstruction efficiency and migration effects across q^2 bins

Model-independent forward-backward asymmetries for lepton system and $p\pi^ \rightarrow$ system

$$A_{\text{FB}}^{\ell,p}(q^2) = \frac{\int_0^1 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} - \int_{-1}^0 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}}{\int_0^1 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} + \int_{-1}^0 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} + \int_{-1}^0 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} + \int_{-1}^0 \frac{d^2\Gamma$$

No evidence for a violation of LFU

 $\mathbf{\mathbf{x}}$

 \checkmark

 $\cos \theta_{\ell,p}$

 $\cos\theta_{\ell,p}$

 $3_{\rm stat} \pm 0.01_{\rm syst}$ $0.04_{\text{stat}} \pm 0.01_{\text{syst}}$

Decay asymmetry and New physics search in $\Lambda_c^+ \to \Lambda l^+ \nu_l$

- - Model-dependent determination:
- First model-independent determination of $\alpha_{\Lambda_{\Lambda}}(q^2)$ \Rightarrow q^2 averaged asymmetry

$$\langle A_{\rm FB}^p \rangle = -0.33 \pm 0.03_{\rm stat.} \pm 0.01_{\rm syst.}$$
 Only for $\Lambda_c^+ \to \Lambda e^-$
 $\langle A_{\rm FB}^p \rangle = -0.37 \pm 0.04_{\rm stat.} \pm 0.01_{\rm syst.}$ Only for $\Lambda_c^+ \to \Lambda \mu^-$
 $\langle \alpha_{\Lambda_c} \rangle = -0.94 \pm 0.07_{\rm stat} \pm 0.03_{\rm syst}$ Combine e and μ of

→ New physics search: T asymmetry parameter \mathcal{T}_n

- Consistent with zero as predicted from the SM

BESIII 上 Λ_c^+ 含轻衰变的研究

Improvement of $\Lambda_c^+ \to \Lambda$ FF parameters

 \rightarrow Improve measurement of the FF parameters in the $\Lambda_c^+ \rightarrow \Lambda$ transition

→ Differential decay width formula needs to consider lepton mass term

→ Test and calibrate LQCD

$$\begin{split} \frac{d^4\Gamma}{d\ell_{\ell}d\cos\theta_{p}d\chi} &= \frac{G_{F}^{2}|V_{cs}|^{2}}{2(2\pi)^{4}} \cdot \frac{Pq^{2}(1-m_{\ell}^{2}/q^{2})^{2}}{24M_{\Lambda_{c}}^{2}} \begin{cases} \frac{3}{8}(1-\cos\theta_{\ell}')^{2}|H_{\frac{1}{2}1}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) \\ &+ \frac{3}{8}(1+\cos\theta_{\ell}')^{2}|H_{-\frac{1}{2}-1}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p}) \\ &+ \frac{3}{4}\sin^{2}\theta_{\ell}'[|H_{\frac{1}{2}0}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) + |H_{-\frac{1}{2}0}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p})] + \frac{3}{2\sqrt{2}}\alpha_{\Lambda}\cos\chi \\ &\times \left[(1-\cos\theta_{\ell}')H_{-\frac{1}{2}0}H_{\frac{1}{2}1} + (1+\cos\theta_{\ell}')H_{\frac{1}{2}0}H_{-\frac{1}{2}-1}\right] + H_{m_{\ell}^{2}} \end{cases}, \end{split}$$

$$egin{aligned} &H^{V/A}_{rac{1}{2}1}=\sqrt{2Q_{\mp}}f_{\perp}/g_{\perp}(q^2),\ &H^{V/A}_{rac{1}{2}0}=\sqrt{Q_{\mp}/q^2}f_{+}/g_{+}(q^2)(M_{\Lambda_c}\pm M_{\Lambda}),\ &H^{V/A}_{rac{1}{2}t}=\sqrt{Q_{\pm}/q^2}f_{0}/g_{0}(q^2)(M_{\Lambda_c}\mp M_{\Lambda}), \end{aligned}$$

Comparison with theoretical calculations

TABLE I. Comparisons of $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu})$ (in %

	$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu)$	$\langle lpha_{\Lambda_c} angle$	$\langle A^e_{ m FB} angle$	$\langle A^{\mu}_{ m FB} angle$
CQM [20]	2.69	-0.87	-0.2	-0.21
RQM [21]	3.14	-0.86	-0.209	-0.242
CQM(HONR) [49]	4.25			
NRQM [50]	3.72			
HBM [24]	3.67 ± 0.23	-0.826	-0.176(5)	-0.143(6)
LQCD [28]	3.69 ± 0.22	-0.874(10)	-0.201(6)	-0.169(7)
LCSR [51]	3.0 ± 0.3			
<i>SU</i> (3) [25]	3.6 ± 0.4	-0.86(4)		
LFCQM [27]	3.21 ± 0.85	-0.97(3)		
MBM [27]	3.38	-0.83		
LFQM [22]	3.90 ± 0.73	-0.87(9)	0.20(5)	0.16(4)
LFCQM [26]	3.40 ± 1.02	-0.97(3)		
<i>SU</i> (3) [52]	3.45 ± 0.30			
This work	3.48 ± 0.17	-0.94(8)	-0.24(3)	-0.22(4)

 $\rightarrow \mathscr{B}(\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_{\mu})$: Disfavor Refs. [20,49] based on CQM at a confidence level of more than 95% Decay asymmetry: consistent with all theoretical prediction and model-dependent measurement by CLEO Lepton forward-backward asymmetry: clearly differ from Ref. [22] based on LFQM

 \rightarrow

%),	$\langle \alpha_{\Lambda_c} \rangle$,	$\langle A_{\rm FB}^e \rangle$,	and	$\langle A_{\rm FB}^{\mu} \rangle$	from	theories	and	measurement
-----	--	----------------------------------	-----	------------------------------------	------	----------	-----	-------------

$$\Lambda_c^+ \to X e^+ \nu_e$$

WS technique is used to subtract charge symmetric backgrounds in each momentum bin, e.g., $\pi^0 \rightarrow \gamma e^+ e^-$

$$\mathcal{B}(\Lambda_c^+ \to Xe^+\nu_e) = (4.06 \pm 0.10_{\text{stat}} \pm 0.09_{\text{syst}})\%.$$

$$\frac{\Gamma(\Lambda_c^+ \to Xe^+\nu_e)}{\bar{\Gamma}(D \to Xe^+\nu_e)} = 1.28 \pm 0.05$$
Compared with HQE(1.2), EQM(1.67)
$$BF \text{ determination}$$

$$\frac{\overline{Decay} \qquad \mathcal{B}[\%] \qquad \text{Mod}}{\Lambda_c^+ \to \Lambda e^+\nu_e \qquad 3.56 \pm 0.11 \pm 0.07 \qquad \text{Referent}} \Lambda_c^+ \to \rho K^-(n\bar{K}^0)e^+\nu_e \qquad 0.088 \pm 0.017 \pm 0.007 \qquad \text{PHS}} \Lambda_c^+ \to \Lambda(1405)e^+\nu_e \qquad 0.24 \qquad \text{HQET}} \Lambda_c^+ \to \Lambda(1520)e^+\nu_e \qquad 0.06 \qquad \text{HQET}}$$

 $\Lambda_c^+ \to p K^- e^+ \nu_{\rho}$

ST data set is same with last analysis \rightarrow

- \rightarrow Select signal pK^-e^+ in the recoiling side of Λ_c^-
- → Background veto
 - Suppress $\Lambda_c^+ \rightarrow pK^-\pi^+: M_{pK^-e^+} < 2.15 \,\mathrm{GeV}/c^2$
 - Suppress $\Lambda_c^+ \to p K^- \pi^+ \pi^0$: Additional π^0 search and veto $M_{\rm BC}$ signal region
- $\rightarrow \Lambda_c^+ \rightarrow p K^- e^+ \nu_e$ is firstly observed with significance of 8.2 σ ! * $\mathscr{B}(\Lambda_c^+ \to pK^-e^+\nu_{\rho}) = (0.82 \pm 0.15 \pm 0.06) \times 10^{-3}$
- \rightarrow The only observed SL channel beyond $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$ $\mathscr{B}(\Lambda_c^+ \to pK^- e^+ \nu_e)$ $\frac{1}{2} = (2.1 \pm 0.4_{\text{stat.}} \pm 0.1_{\text{syst.}}) \times 10^{-3}$ $\mathscr{B}(\Lambda_c^+ \to X e^+ \nu_e)$

Search for $\Lambda(1405)$ and $\Lambda(1520)$ in pK^- spectrum

- \rightarrow 2D fit is performed to the M_{pK^-} and U_{miss} distributions
- \rightarrow Evidence of $\Lambda_c^+ \rightarrow \Lambda(1520)e^+\nu_e$ (3.3 σ) & $\Lambda_c^+ \rightarrow \Lambda(1405)e^+\nu_e$ (3.2 σ)
 - ♦ $\mathscr{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e) = (1.02 \pm 0.52_{\text{stat.}} \pm 0.11_{\text{syst.}}) \times 10^{-3}$
 - ♦ $\mathscr{B}(\Lambda_c^+ \to \Lambda(1405)[\to pK^-]e^+\nu_e) = (0.42 \pm 0.19_{\text{stat.}} \pm 0.04_{\text{syst.}}) \times 10^{-3}$
- \rightarrow Comparisons of $\mathscr{B}(\Lambda_c^+ \rightarrow \Lambda(1520)/\Lambda(1405)e^+\nu_{\rho})$ with predicted values from theoretical models and LQCD
 - Consistent within two standard deviations

→ Prospects

- Amplitude analysis of pK^- mass spectrum to study Λ^*
- Extraction of $\Lambda_c^+ \to \Lambda(1520)$ FF

TABLE I.	Comparison of $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)/\Lambda(1405)e^+\nu_e)$ [in ×10 ⁻³] between theoretical calcul
BF of $\Lambda(14)$	$(05) \rightarrow pK^-$ is unknown [2].

	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1520) e^+ \nu_e)$	
Constituent quark model [8]	1.01	
Molecular state [9]		
Nonrelativistic quark model [10]	0.60	
Lattice QCD [12,13]	0.512 ± 0.082	
Measurement	$1.02 \pm 0.52 \pm 0.11$	

 $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e, p K_S^0 \pi^- e^+ \nu_e$

- \rightarrow Search for $\Lambda_c^+ \rightarrow \Lambda^* e^+ \nu_e$: $\Lambda \pi^+ \pi^-$ and $p K_S^0 \pi^-$ are used to tag Λ^* $\bigstar \mathscr{B}(\Lambda(1520) \to \Lambda \pi^+ \pi^-) = (10 \pm 1)\%$
 - \clubsuit Higher excited Λ^* states may decay to pK
- → ST data set reconstructed by 12 hadronic
- \rightarrow Reconstruct $\Lambda[\rightarrow p\pi^{-}]\pi^{+}\pi^{-}e^{+}$ and pK_{s}^{0}
- \rightarrow Challenge from misID between *e* and π

$$K^*(892)^-, K^*(892)^- \to K_S^0 \pi^-$$

$$\Lambda_c^-$$
 decay mode
 $\Lambda_c^0[\to \pi^+\pi^-]\pi^-e^+$ in the recoiling side of $\bar{\Lambda}_c^-$

Background Study

\rightarrow Tight PID requirement to generally improve PID ability

- Valid *e* EMC hit information
- Tight Prob(e)/[Prob(e)+Prob(π)+Prob(K)] requirement
- $\rightarrow \gamma$ -conversion background

 $\land \Lambda_c^+ \to \Lambda \pi^+ \pi^0, \Sigma^0 \pi^+ \pi^0 (p K_S^0 \pi^0, p K_S^0 \eta), \pi^0 / \eta \to \gamma \gamma$

- \clubsuit Under the action of the nucleus, γ converts into electron-positron pair
- \clubsuit Require a large angle between *e* and π

→ Miss-
$$\pi^{0}(\gamma)$$
 background
* $\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \omega / \eta, \omega / \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ or $\Sigma^{0} \pi^{+} \pi^{-} \pi^{+}, \Sigma^{0} \rightarrow \gamma \Lambda,$
 $\Lambda_{c}^{+} \rightarrow p K_{S}^{0} \eta, \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ or $\eta \rightarrow \gamma e^{+} e^{-}$

that M_{ρ^+} is replaced by M_{π^+}

 \bullet Require a large angle between $P_{\rm miss}$ and the most energetic shower

Semi-leptonic Λ_c^+ decays at BESIII

11 May, 2024

Upper limits

- → Profile likelihood method
- \rightarrow Joint likelihood

```
\mathcal{L} = \mathcal{P}(N^{\text{obs}} | N^{\text{eff}} \cdot \mathcal{B} + N_{\text{bkg1}} + N_{\text{bkg2}})
                 \cdot \mathcal{G}(N^{\text{eff}}|\mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon^{\text{sig}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon^{\text{sig}} \cdot \sigma)
                \cdot \mathcal{P}(N_{\text{bkg1}}^{\text{SB}}|N_{\text{bkg1}}/r)
                \cdot \mathcal{G}(N_{\text{bkg2}}|N_{\text{bkg2}}^{\text{MC}},\sigma_{\text{bkg2}}^{\text{MC}}).
```

- → Based on the Bayesian statistics, the likelihood distribution as a function of BF is obtained → The ULs at the 90% confidence level (CL) are determined

Assuming that all the $\Lambda \pi^+ \pi^-$ combinations come from $\Lambda(1520)/\Lambda(1600)$, $\mathscr{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e) < 4.3 \times 10^{-3} @ 90 \% CL$ $\mathscr{B}(\Lambda_c^+ \to \Lambda(1600)e^+\nu_e) < 9.0 \times 10^{-3} @ 90 \% CL$

Xudong Yu 余旭东

Other ongoing analysis

BESIII粲强子物理研讨会

Roadmap of Λ^+_{c} **SL**

 $\frac{\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) + \mathscr{B}(\Lambda_c^+ \to p K^- e^+ \nu_e)}{\mathscr{B}(\Lambda_c^+ \to X e^+ \nu_e)} = (8)$ $\rightarrow \mathscr{B}(\Lambda_c^+ \rightarrow \operatorname{non}[\Lambda, pK^-]e^+\nu_{\rho}) = (4.18 \pm 1.75)$

 $\rightarrow \Lambda^* e^+ \nu_{\rho} : \Sigma \pi e^+ \nu_{\rho}, n \bar{K}^0 e^+ \nu_{\rho}$ $\rightarrow N^{(*)}e^+\nu_e: ne^+\nu_e, N(1535)e^+\nu_e$

$$89.7 \pm 4.3) \% \Rightarrow (85.4 \sim 94.0) \%$$
$$\times 10^{-3} \Rightarrow (2.43 \sim 5.93) \times 10^{-3}$$

sub- 10^{-3} level rooms

Stay tuned

$\rightarrow \Lambda_c^+ \rightarrow n e^+ \nu_e$
Singly Cabibbo-suppressed transition $c \to d$
 Various theoretical-model calculations
Challenge in experimental study
• Two missing particles: <i>n</i> and ν_e
• Huge background from $\Lambda_c^+ \to \Lambda e^+ \nu_e$
$\rightarrow \Lambda_c^+ \rightarrow \Sigma \pi e^+ \nu_e$
$ \Re(\Lambda(1405) \to \Sigma \pi) \approx 100 \% \text{ and } \Re(\Lambda(1520) \to \Sigma \pi) $
 Search for Λ^* in $\Sigma\pi$ invariant mass spectrum
• Nature of $\Lambda(1405)$?
 uds bound state, dynamically generated molecular state, multi
$\rightarrow \Lambda_c^+ \rightarrow p \pi^- (\text{non} - \Lambda) e^+ \nu_e$
Singly Cabibbo-suppressed transition to nucleon excited s
* $\mathscr{B}(\Lambda_c^+ \to N^*(1535)e^+\nu_e): 4.03 \times 10^{-5}(8.06 \times 10^{-5})^{[1]}$
$\rightarrow \Lambda_c^+ \rightarrow n K_S^0 e^+ \nu_e$
• Isospin-symmetric channel to pK^-
Similar challenge with $ne^+\nu_e$: two missing particles

Summary

Summary & outlook

- test Standard Model and probe new physics
- \rightarrow Improved measurement of $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$ and
- \rightarrow First search for $\Lambda_c^+ \rightarrow \Lambda^* e^+ \nu_{\rho}$ in $pK^-, \Lambda \pi$
- → More physics results coming soon
- Larger data samples will be collected at BESIII after BEPCII-U

Thanks for your attention!

 \rightarrow Semi-leptonic Λ_c^+ decays provide good opportunities to study the dynamics of charm baryons,

nd
$$\Lambda_c^+ \to X e^+ \nu_e$$

 $\pi^+ \pi^-, p K_S^0 \pi^-$ channels

Backup

z-expansion

 \rightarrow z-expansion: FF is q^2 dependent, refer to LQCD parameterization * m_{pole}^{f} : pole mass, $m_{\text{pole}}^{f_{+},f_{\perp}} = 2.112 \,\text{GeV}/c^{2}$ and $m_{\text{pole}}^{g_{+},g_{\perp}} = 2.460 \,\text{GeV}/c^{2}$ $\Rightarrow a_0^f$ and α_1^f : free parameters $z(q^2) = \left[(\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}) / (\sqrt{t_+ - q^2} + \frac{1}{\sqrt{t_+ - q^2}} \right]$ $t_0 = q_{\text{max}}^2 = (m_{\Lambda_c} - m_{\Lambda})^2, t_+ = (m_D - m_K)^2$ * $m_D = 1.870 \,\text{GeV}/c^2$ and $m_K = 0.494 \,\text{GeV}/c^2$

$$f(q^2) = \frac{a_0^f}{1 - q^2 / (m_{\text{pole}}^f)^2} [1 + \alpha_1^f \times z(q^2)]^2$$

$$\sqrt{t_+ - t_0}$$
] with

(q^2)

 $\Lambda_c^+ \to X e^+ \nu_e$

FIG. 4. PID efficiencies as a function of momentum used to populate the A_{PID} matrices.

Positron yield in data after each procedure. The listed TABLE I. uncertainties are statistical.

Correction (see text)	RS yields	WS yields
Observed yields	3706 ± 71	394 ± 31
PID unfolding yields	3865 ± 80	376 ± 33
WS subtraction	3489 ± 87	
Tracking unfolding yields	4333 ± 107	
Extrapolation	4692 ± 117	

FIG. 3. Measured RS (blue) and WS (red) yields for each particle category as a function of momentum.

 $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e, p K_S^0 \pi^- e^+ \nu_e$ Signal yields & BKG number estimation

 \rightarrow No signals observed on data, plan to setting upper limits (ULs) on BFs \cong

- \rightarrow The backgrounds separated into two categories: Λ_c^+ background, denoted as bkg1 \Rightarrow Estimated by data sideband region Λ_c^+ background, denoted as bkg2 \Rightarrow Estimated by MC simulation
- \rightarrow The observed events N^{obs} follows a Poisson distribution(\mathscr{P}) $N^{\text{obs}} \sim \mathcal{P}(N^{\text{obs}} | N_{\text{sig}} + N_{\text{bkg1}} + N_{\text{bkg1}})$
- \rightarrow The signal event number $N_{\rm sig} = \mathscr{B}_{\rm sig}$ $* N^{\text{eff}} \sim \mathscr{G}(N^{\text{eff}} | \mathscr{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon^{\text{sig}}, \mathscr{B}$

$$g_{2})$$

$$g \cdot \mathscr{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon^{\text{sig}} = \mathscr{B}_{\text{sig}} \cdot N^{\text{eff}}$$

$$g^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon^{\text{sig}} \cdot \sigma) \Rightarrow \text{Rely on systematic uncertain}$$

