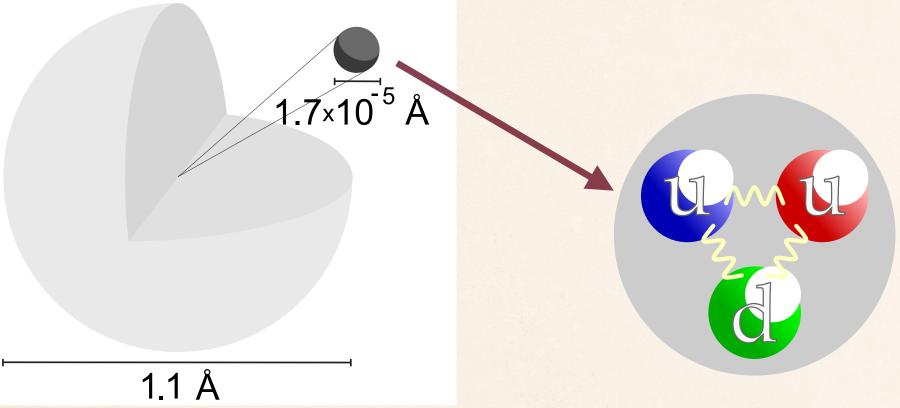
2024年BESIII粲强子物理研讨会

築重子弱衰变的拓扑图方案

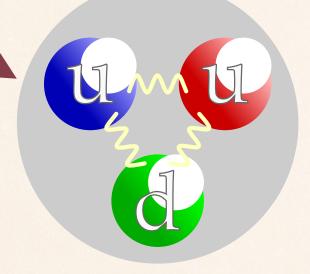
徐繁荣

暨南大学

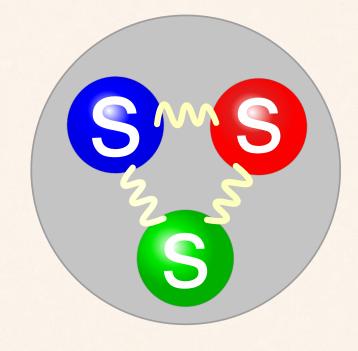
Huiling Zhong, FX, Hai-Yang Cheng,2401.15926; 2404.01350


2024年5月11-13日,河南郑州

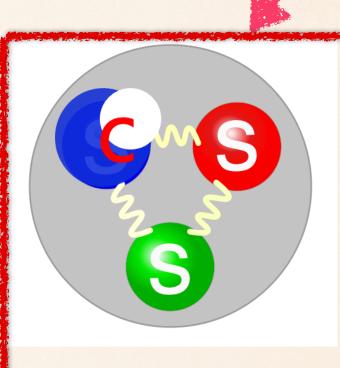
OUTLINE


- Introduction
- * Topological diagram approach (TDA)
- Some remarks
- Summary

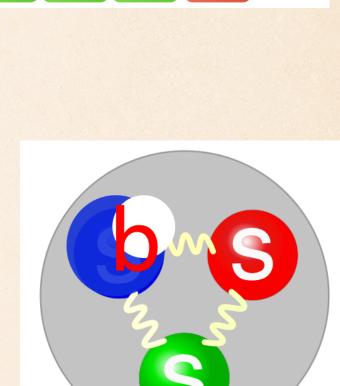
INTRODUCTION


The role of baryons

hydrogen atom



proton


hyperon

e.g., Ω discovered at BNL in 1964

charmed baryon

e.g., charmed Ω discovered in 1985

Standard Model of Elementary Particles

bottom(ed) baryon

e.g., bottom Ω discovered in 2008 by DФ

Watershed of charmed baryon experiments

PRL **113**, 042002 (2014)

PHYSICAL REVIEW LETTERS

week ending 25 JULY 2014

Measurement of the Branching Fraction $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$

A. Zupanc,²² C. Bartel,²⁴ N. Gabyshev,⁴ I. Adachi,¹³ H. Aihara,⁶¹ D. M. Asner,⁴⁷ V. Aulchenko,⁴ T. Aushev,²¹ A. M. Bakich,⁵⁵ A. Bala,⁴⁸ K. Belous,¹⁹ B. Bhuyan,¹⁵ A. Bondar,⁴ G. Bonvicini,⁶⁷ A. Bozek,⁴² M. Bračko,^{33,22} T. E. Browder, ¹² D. Červenkov, ⁵ M.-C. Chang, ⁸ V. Chekelian, ³⁴ B. G. Cheon, ¹¹ K. Chilikin, ²¹ R. Chistov, ²¹ I.-S. Cho, ⁶⁹ K. Cho,²⁶ V. Chobanova,³⁴ S.-K. Choi,¹⁰ Y. Choi,⁵⁴ D. Cinabro,⁶⁷ J. Dalseno,^{34,57} M. Danilov,^{21,36} Z. Doležal,⁵ Z. Drásal,⁵ D. Dutta, ¹⁵ K. Dutta, ¹⁵ S. Eidelman, ⁴ D. Epifanov, ⁶¹ H. Farhat, ⁶⁷ J. E. Fast, ⁴⁷ M. Feindt, ²⁴ T. Ferber, ⁷ V. Gaur, ⁵⁶ S. Ganguly,⁶⁷ A. Garmash,⁴ R. Gillard,⁶⁷ R. Glattauer,¹⁸ Y. M. Goh,¹¹ B. Golob,^{31,22} J. Haba,¹³ K. Hayasaka,³⁸ H. Hayashii, ³⁹ X. H. He, ⁴⁹ Y. Hoshi, ⁵⁹ W.-S. Hou, ⁴¹ M. Huschle, ²⁴ H. J. Hyun, ²⁹ T. Iijima, ^{38,37} A. Ishikawa, ⁶⁰ R. Itoh, ¹³ Y. Iwasaki, ¹³ T. Iwashita, ²⁵ I. Jaegle, ¹² T. Julius, ³⁵ J. H. Kang, ⁶⁹ E. Kato, ⁶⁰ Y. Kato, ³⁷ T. Kawasaki, ⁴⁴ H. Kichimi, ¹³ D. Y. Kim,⁵³ H. J. Kim,²⁹ J. B. Kim,²⁷ J. H. Kim,²⁶ M. J. Kim,²⁹ Y. J. Kim,²⁶ K. Kinoshita,⁶ J. Klucar,²² B. R. Ko,²⁷ P. Kodyš, S. Korpar, 33,22 P. Križan, 1,22 P. Krokovny, B. Kronenbitter, T. Kuhr, T. Kumita, A. Kuzmin, Y.-J. Kwon, 69 S.-H. Lee, ²⁷ J. Li, ⁵² Y. Li, ⁶⁶ J. Libby, ¹⁶ C. Liu, ⁵¹ Y. Liu, ⁶ Z. Q. Liu, ¹⁷ D. Liventsev, ¹³ J. MacNaughton, ¹³ K. Miyabayashi, ³⁹ H. Miyata, ⁴⁴ R. Mizuk, ^{21,36} G. B. Mohanty, ⁵⁶ A. Moll, ^{34,57} R. Mussa, ²⁰ E. Nakano, ⁴⁶ M. Nakao, ¹³ H. Nakazawa, ⁷⁰ Z. Natkaniec, 42 M. Nayak, 16 E. Nedelkovska, 34 M. Niiyama, 28 N. K. Nisar, 56 S. Nishida, 13 O. Nitoh, 64 S. Ogawa, 58 S. L. Olsen, 52 W. Ostrowicz, 42 P. Pakhlov, 21,36 G. Pakhlova, 21 C. W. Park, 54 H. Park, 29 H. K. Park, 29 T. K. Pedlar, 32 R. Pestotnik,²² M. Petrič,²² L. E. Piilonen,⁶⁶ M. Ritter,³⁴ M. Röhrken,²⁴ A. Rostomyan,⁷ S. Ryu,⁵² H. Sahoo,¹² T. Saito,⁶⁰ Y. Sakai, ¹³ S. Sandilya, ⁵⁶ L. Santelj, ²² T. Sanuki, ⁶⁰ V. Savinov, ⁵⁰ O. Schneider, ³⁰ G. Schnell, ^{1,14} C. Schwanda, ¹⁸ D. Semmler, K. Senyo, O. Seon, M. E. Sevior, M. Shapkin, C. P. Shen, T.-A. Shibata, L.-G. Shiu, B. Shwartz, A. Sibidanov,⁵⁵ F. Simon,^{34,57} Y.-S. Sohn,⁶⁹ A. Sokolov,¹⁹ E. Solovieva,²¹ S. Stanič,⁴⁵ M. Starič,²² M. Steder,⁷ T. Sumiyoshi,⁶³ U. Tamponi,^{20,65} K. Tanida,⁵² G. Tatishvili,⁴⁷ Y. Teramoto,⁴⁶ K. Trabelsi,¹³ M. Uchida,⁶² S. Uehara,¹³ Y. Unno, ¹¹ S. Uno, ¹³ P. Urquijo, ³ Y. Usov, ⁴ C. Van Hulse, ¹ P. Vanhoefer, ³⁴ G. V V. Vorobyev, M. N. Wagner, C. H. Wang, P. Wang, X. L. Wang, M. Watar E. Won,²⁷ H. Yamamoto,⁶⁰ Y. Yamashita,⁴³ S. Yashchenko,⁷ Y. Yook,⁶⁹ Z. P. 2

(Belle Collaboration)

(Received 30 December 2013; revised manuscript received 5 May 2014; published 25 July 2014)

We present the first model-independent measurement of the absolute branching fraction of the $\Lambda_c^+ \to 0$ $pK^-\pi^+$ decay using a data sample of 978 fb⁻¹ collected with the Belle detector at the KEKB asymmetricenergy e^+e^- collider. The number of Λ_c^+ baryons is determined by reconstructing the recoiling $D^{(*)-}\bar{p}\pi^+$ system in events of the type $e^+e^- \to D^{(*)-}\bar{p}\pi^+\Lambda_c^+$. The branching fraction is measured to be $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$, where the first and second uncertainties are statistical and systematic, respectively.

PRL 116, 052001 (2016)

PHYSICAL REVIEW LETTERS

Measurements of Absolute Hadronic Branching Fractions of the Λ_c^+ Baryon

M. Ablikim, M. N. Achasov, 9.c X. C. Ai, O. Albayrak, M. Albrecht, D. J. Ambrose, 44 A. Amoroso, 49a,49c F. F. An, Q. An, ^{46,a} J. Z. Bai, ¹ R. Baldini Ferroli, ^{20a} Y. Ban, ³¹ D. W. Bennett, ¹⁹ J. V. Bennett, ⁵ M. Bertani, ^{20a} D. Bettoni, ²¹ J. M. Bian, ⁴³ F. Bianchi, ^{49a,49c} E. Boger, ^{23,c} I. Boyko, ²³ R. A. Briere, ⁵ H. Cai, ⁵¹ X. Cai, ^{1,a} O. Cakir, ^{40a} A. Calcaterra, ^{20c} G. F. Cao, ¹ S. A. Cetin, ^{40b} J. F. Chang, ^{1,a} G. Chelkov, ^{23,c,d} G. Chen, ¹ H. S. Chen, ¹ H. Y. Chen, ² J. C. Chen, ¹ M. L. Chen, ¹ S. J. Chen, ²⁹ X. Chen, ^{1,a} X. R. Chen, ²⁶ Y. B. Chen, ^{1,a} H. P. Cheng, ¹⁷ X. K. Chu, ³¹ G. Cibinetto, ^{21a} H. L. Dai, ^{1,a} J. P. Dai, ² A. Dbeyssi, ¹⁴ D. Dedovich, ²³ Z. Y. Deng, ¹ A. Denig, ²² I. Denysenko, ²³ M. Destefanis, ^{49a,49c} F. De Mori, ^{49a,49c} Y. Ding, C. Dong, ³⁰ J. Dong, ^{1,a} L. Y. Dong, ¹ M. Y. Dong, ^{1,a} Z. L. Dou, ²⁹ S. X. Du, ⁵³ P. F. Duan, ¹ E. E. Eren, ^{40b} J. Z. Fan, ³⁹ J. Fang, ¹ S. S. Fang, ¹ X. Fang, ^{46,a} Y. Fang, ¹ R. Farinelli, ^{21a,21b} L. Fava, ^{49b,49c} O. Fedorov, ²³ F. Feldbauer, ²² G. Felici, ^{20a} C. Q. Feng, ^{46,b} C. Q. Feng, ^{46,b} C. Q. Feng, ^{46,c} E. Fioravanti, ^{21a} M. Fritsch, ^{14,22} C. D. Fu, ¹ Q. Gao, ¹ X. L. Gao, ^{46,a} X. Y. Gao, ² Y. Gao, ³⁹ Z. Gao, ^{46,a} I. Garzia, ²¹ K. Goetzen, 10 L. Gong, 30 W. X. Gong, 1,a W. Gradl, 22 M. Greco, 49a,49c M. H. Gu, 1,a Y. T. Gu, 12 Y. H. Guan, 1 A. Q. Guo L. B. Guo, ²⁸ Y. Guo, ¹ Y. P. Guo, ²² Z. Haddadi, ²⁵ A. Hafner, ²² S. Han, ⁵¹ X. Q. Hao, ¹⁵ F. A. Harris, ⁴² K. L. He, ¹ T. Held, ⁴ Y. K. Heng, ^{1,a} Z. L. Hou, ¹ C. Hu, ²⁸ H. M. Hu, ¹ J. F. Hu, ^{49a,49c} T. Hu, ^{1,a} Y. Hu, ¹ G. S. Huang, ^{46,a} J. S. Huang, ¹⁵ X. T. Huang, Y. Huang, ²⁹ T. Hussain, ⁴⁸ Q. Ji, ¹ Q. P. Ji, ³⁰ X. B. Ji, ¹ X. L. Ji, ¹ a. L. W. Jiang, ⁵¹ X. S. Jiang, ^{1a} X. Y. Jiang, ³⁰ J. B. Jiao, Z. Jiao, ¹⁷ D. P. Jin, ^{1,a} S. Jin, ¹ T. Johansson, ⁵⁰ A. Julin, ⁴³ N. Kalantar-Nayestanaki, ²⁵ X. L. Kang, ¹ X. S. Kang, ³⁰ M. Kavatsyuk, ²⁵ B. C. Ke, ⁵ P. Kiese, ²² R. Kliemt, ¹⁴ B. Kloss, ²² O. B. Kolcu, ^{40b,h} B. Kopf, ⁴ M. Kornicer, ⁴² W. Kuehn, ⁷ A. Kupsc, ⁵⁰ J. S. Lange, ^{24,a} M. Lara, ¹⁹ P. Larin, ¹⁴ C. Leng, ^{49c} C. Li, ⁵⁰ Cheng Li, ^{46,a} D. M. Li, ⁵³ F. Li, ^{1,a} F. Y. Li, ³¹ G. Li, ³¹ G. Li, ³² H. Li, ³³ F. Li, ^{46,a} D. M. Li, ⁵⁵ F. Li, ^{46,a} D. M. Li, ⁵⁶ T. Li, ^{46,a} D. M. Li, ⁵⁷ T. Li, ^{47,a} F. Y. Li, ^{47,a} D. M. Li, ⁵⁸ T. Li, ^{48,a} D. M. Li, ⁵⁹ T. Li, ⁵⁰ T. H. B. Li, J. C. Li, Jin Li, K. Li, K. Li, Li, P. R. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, Li, X. M. Li, ¹² X. N. Li, ^{1,a} X. Q. Li, ³⁰ Z. B. Li, ³⁸ H. Liang, ^{46,a} Y. F. Liang, ³⁶ Y. T. Liang, ²⁴ G. R. Liao, ¹¹ D. X. Lin, ¹⁴ B. J. Liu, J. B. Liu, ^{46,a} J. P. Liu, ⁵¹ J. Y. Liu, ¹ K. Liu, ³⁹ K. Y. Liu, ²⁷ L. D. Liu, ³¹ P. L. Liu, ^{1,a} Q. Liu, ⁴¹ S. B. Liu, ^{46,a} X. Liu, ²⁶ Y. B. Liu, ³¹ Z. A. Liu, ^{1,a} Zhiqing Liu, ²² H. Loehner, ²⁵ X. C. Lou, ^{1,a,g} H. J. Lu, ¹⁷ J. G. Lu, ^{1,a} Y. Lu, ¹ Y. P. Lu, ^{1,a} C. L. Luo, ²⁸ M. X. Luo, T. Luo, ⁴² X. L. Luo, ^{1,a} X. R. Lyu, ^{41,j} F. C. Ma, ²⁷ H. L. Ma, ¹ L. L. Ma, ³³ Q. M. Ma, ¹ T. Ma, ¹ X. N. Ma, ³⁰ X. Y. Ma, ¹ Y. M. Ma, 33 F. E. Maas, 14 M. Maggiora, 49a, 49c Y. J. Mao, 31 Z. P. Mao, 1 S. Marcello, 49a, 49c J. G. Messchendorp, 25 J. Min, 1 R. E. Mitchell, X. H. Mo, A. Y. J. Mo, C. Morales Morales, N. Yu. Muchnoi, L. Muramatsu, X. Y. Nefedov, F. Nerling, ¹⁴ I. B. Nikolaev, ^{9,e} Z. Ning, ^{1,a} S. Nisar, ⁸ S. L. Niu, ^{1,a} X. Y. Niu, ¹ S. L. Olsen, ³² Q. Ouyang, ^{1,a} S. Pacetti, ²⁰ Y. Pan, 46,a P. Patteri, 20a M. Pelizaeus, H. P. Peng, 46,a K. Peters, 10 J. Pettersson, 50 J. L. Ping, 28 R. G. Ping, R. Poling, 4 V. Prasad, H. R. Qi, M. Qi, S. Qian, C. F. Qiao, L. Q. Qin, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, 48 C. F. Redmer, 22 M. Ripka, 22 G. Rong, 12 Ch. Rosner, 14 X. D. Ruan, 12 V. Santoro, 21a A. Sarantsev, 2 M. Savrié, ^{21b} K. Schoenning, ⁵⁰ S. Schumann, ²² W. Shan, ³¹ M. Shao, ^{46,a} C. P. Shen, ² P. X. Shen, ³⁰ X. Y. Shen, ¹ H. Y. Sheng, W. M. Song, ¹ X. Y. Song, ¹ S. Sosio, ^{49a,49c} S. Spataro, ^{49a,49c} G. X. Sun, ¹ J. F. Sun, ¹⁵ S. S. Sun, ¹ Y. J. Sun, ^{46,a} Y. Z. Sun Z. J. Sun, ^{1,a} Z. T. Sun, ¹⁹ C. J. Tang, ³⁶ X. Tang, ¹ I. Tapan, ^{40c} E. H. Thorndike, ⁴⁴ M. Tiemens, ²⁵ M. Ullrich, ²⁴ I. Uman, ^{40c} G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, S. G. Wang, W. Wang, W. Wang, W. Wang, 46, X. F. Wang, 9 Y. D. Wang, 4 Y. F. Wang, 1 Y. Q. Wang, Z. Wang, ^{1,a} Z. G. Wang, ^{1,a} Z. H. Wang, ^{46,a} Z. Y. Wang, ¹ T. Weber, ²² D. H. Wei, ¹¹ J. B. Wei, ³¹ P. Weidenkaff, ²² S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, Z. Wu, L. Xia, L. Zia, L. G. Xia, Y. Xia, D. Xiao, H. Xiao, Z. J. Xiao, L. G. Xia, S. Y. Xia, L. Xia, L. Xia, Z. Y. Xiao, Xiao, J. Xiao, Y. G. Xie, ^{1,a} Q. L. Xiu, ^{1,a} G. F. Xu, ¹ L. Xu, ¹ Q. J. Xu, ¹³ Q. N. Xu, ⁴¹ X. P. Xu, ³⁷ L. Yan, ^{49a,49c} W. B. Yan, ^{46,a} W. C. Yan, ⁴⁶ Y. H. Yan, ¹⁸ H. J. Yang, ³⁴ H. X. Yang, ¹ L. Yang, ⁵¹ Y. X. Yang, ¹¹ M. Ye, ^{1,a} M. H. Ye, ⁷ J. H. Yin, ¹ B. X. Yu, ^{1,a} C. X. Yu, ³ J. S. Yu, ²⁶ C. Z. Yuan, ¹ W. L. Yuan, ²⁹ Y. Yuan, ¹ A. Yuncu, ^{40b,b} A. A. Zafar, ⁴⁸ A. Zallo, ^{20a} Y. Zeng, ¹⁸ Z. Zeng, ^{46,a} B. X. Zhang, B. Y. Zhang, A. C. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, ^{1,a} Y. N. Zhang, ⁴¹ Y. T. Zhang, ^{46,a} Yu Zhang, ⁴¹ Z. H. Zhang, ⁶ J. W. Zhao, ^{1,a} J. Y. Zhao, ¹ J. Z. Zhao, ^{1,a} Lei Zhao, ^{46,a} Ling Zhao, ¹ M. G. Zhao, ¹ J. Zhao, ¹ M. G. Zhao,

(BESIII Collaboration)

T. C. Zhao, Y. B. Zhao, L. G. Zhao, A. Zhemchugov, B. Zheng, T. C. Zhao, T. C. Zhao, T. C. Zhao, T. C. Zhao, Y. B. Zheng, A. Zhemchugov, E. Zheng, A. Zhemchugov, E. Zheng, A. Zhemchugov, E. Zheng, T. C. Zhao, T. Zhao, T B. Zhong, ²⁸ L. Zhou, ^{1,a} X. Zhou, ⁵¹ X. K. Zhou, ^{46,a} X. R. Zhou, ^{46,a} X. Y. Zhou, ¹ X. L. Zhu, ³⁹ Y. C. Zhu, ^{46,a} Y. S. Zhu, ¹ Z. A. Zhu, ¹ J. Zhuang, ^{1,a} L. Zc

PRL **116**, 052001 (2016)

PHYSICAL REVIEW LETTERS

week ending 5 FEBRUARY 2016

(Received 26 November 2015; published 5 February 2016)

We report the first measurement of absolute hadronic branching fractions of Λ_c^+ baryon at the $\Lambda_c^+\bar{\Lambda}_c^$ production threshold, in the 30 years since the Λ_c^+ discovery. In total, 12 Cabibbo-favored Λ_c^+ hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb⁻¹ of e^+e^- collisions at $\sqrt{s} = 4.599$ GeV recorded with the BESIII detector. A global least-squares fitter is utilized to improve the measured precision. Among the measurements for twelve Λ_c^+ decay modes, the branching fraction for $\Lambda_c^+ \to p K^- \pi^+$ is determined to be $(5.84 \pm 0.27 \pm 0.23)\%$, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other 11 Cabibbo-favored hadronic decay modes are significantly improved.

After the breakthrough

Reference/normalization mode

$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$$

■ ARGUS + CLEO : $(5.0 \pm 1.3)\%$

PDG 2014

obsolete

■ Belle: $(6.84 \pm 0.24^{+0.21}_{-0.27})\%$

Belle, PRL 113 (2014), 042002

■ BESIII: $(5.84 \pm 0.27 \pm 0.23)\%$

BESIII, PRL 116 (2016) , 052001

PDG 2016: $(6.35 \pm 0.33)\%$

PDG 2023 update

$$(6.26 \pm 0.29)\%$$

1. PDG 2023 updated

 $(1.43 \pm 0.32) \%$

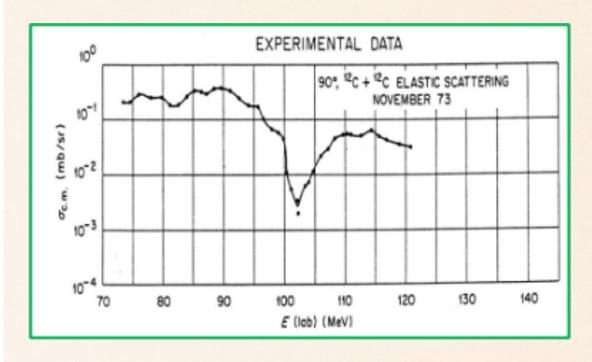
2. Belle 2019

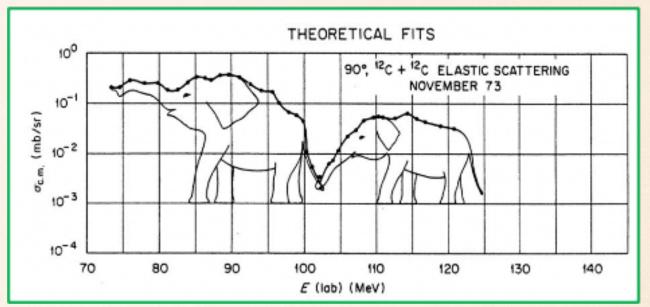
 $(1.80 \pm 0.50 \pm 0.14)\%$

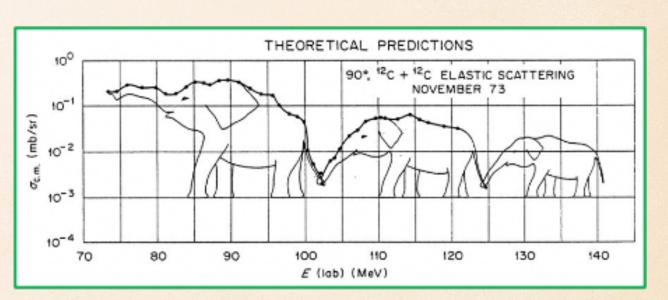
	Scale Factor/		
Fraction (Γ_i / Γ)		P(MeV/c)	
$0.0143\ {\pm}0.0032$	5=1.1	875	
ave been measured. The following are brand	thing $ratios$ relative to	$\mathcal{\Xi}^-\pi^+$. $ullet$ expand all dat	ablocks
$(\Gamma \pi^+)/\Gamma(\Xi_c^0 o \Xi^- \pi^+)$		Γ_2/Γ_{13}	+
$(arphi_c^{0} ightarrow arphi^- \pi^+)$		Γ_3/Γ_{13}	+
)		Γ_4/Γ_{13}	+
π^+)		Γ_5/Γ_{13}	+
$\Xi^-\pi^+$)		Γ_6/Γ_{13}	+
+)		Γ_9/Γ_{13}	+
+)		Γ_{10}/Γ_{13}	+
$\mathcal{Z}^-\pi^+$)		Γ_{11}/Γ_{13}	+
$ ightarrow {\cal \Xi}^-\pi^+$)		Γ_{12}/Γ_{13}	+
		Γ_{13}/Γ	+
	0.0143 ± 0.0032 ave been measured. The following are branch bove value: $(E^0_c + E^0_c) + (E^0_c + E$	Fraction (Γ_i/Γ) Factor/Conf. Level 0.0143 ± 0.0032 S=1.1 ave been measured. The following are branching $ratios$ relative to above value: $(\Xi_c^0 \to \Xi_c^- \pi^+)$ $(\Xi_c^0 \to \Xi_c^- \pi^+)$	Fraction (Γ_i/Γ) Factor/ Conf. Level $P(MeV/c)$ 0.0143 ± 0.0032 Factor/ Conf. Level $P(MeV/c)$ 0.0143 ± 0.0032 Factor/ Conf. Level $P(MeV/c)$ 0.0143 ± 0.0032 Factor/ Conf. Level $P(MeV/c)$ Factor/ Conf. Le

PHYSICAL REVIEW LETTERS **122**, 082001 (2019)

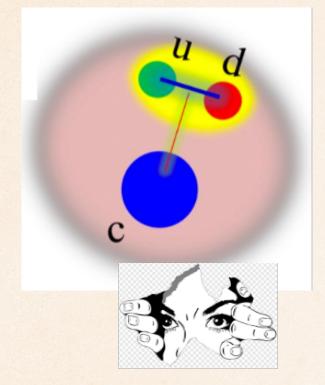
First Measurements of Absolute Branching Fractions of the Ξ_c^0 Baryon at Bello

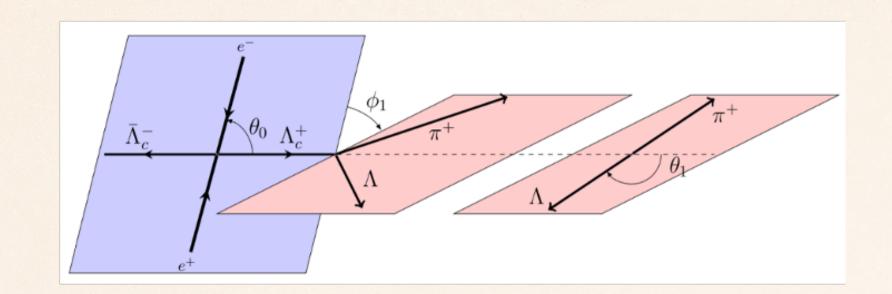

Y. B. Li, 69 C. P. Shen, 2,10 C. Z. Yuan, 26 I. Adachi, 17,13 H. Aihara, 84 S. Al Said, 79,35 D. M. Asner, 3 T. Aushev, 54 R. Ayad, 79 I. Badhrees, 79,34 Y. Ban, 69 V. Bansal, 67 C. Beleño, 12 M. Berger, 76 V. Bhardwaj, 21 B. Bhuyan, 22 T. Bilka, 5 J. Biswal, 31 A. Bondar, 465 A. Bozek, 62 M. Bračko, 48,31 L. Cao, 32 D. Červenkov, 5 A. Chen, 59 B. G. Cheon, 15 K. Chilikin, 43 K. Cho, 73 S.-K. Choi, 14 Y. Choi, 77 D. Cinabro, 88 S. Cunliffe, 8 S. Di Carlo, 41 Z. Doležal, 5 T. V. Dong, 17,13 Z. Drásal, 5 S. Eidelman, 465,43 J. E. Fast, 67 B. G. Fulsom, 67 R. Garg, 68 V. Gaur, 87 N. Gabyshev, 465 A. Garmash, 465 A. Giri, 23 P. Goldenzweig, 32 D. Greenwald, 81 B. Grube, 81 K. Hayasaka, 64 H. Hayashii, 58 C.-L. Hsu, 78 T. Ijiijina, 56,55 K. Inami, 55 G. Inguglia, 8 A. Ishikawa, 82 R. Itoh, 17,13 M. Iwasaki, 64 Y. Iwasaki, 17 W. W. Jacobs, 25 S. Jia, 2 Y. Jin, 84 D. Joffe, 33 K. K. Joo, 6 G. Karyan, 8 T. Kawasaki, 17 D. Kotchetkov, 16 P. Križan, 44,31 R. Kroeger, 51 P. Krokovny, 4,65 T. Kumita, 86 A. Kuzmin, 4,65 Y.-J. Kwon, 90 J. Y. Lee, 73 S. C. Lee, 40 L. K. Li, 26 L. Li Gioi, 49 J. Libby, 24 D. Liventsev, 87,17 M. Lubej, 31 J. MacNaughton, 52 M. Masuda, 83 T. Matsuda, 52 M. Merola, 28,57 K. Miyabayashi, 58 H. Miyata, 64 R. Mizuk, 43,53,54 G. B. Mohanty, 80 R. Mussa, 29 E. Nakano, 66 M. Nakao, 17,13 K. J. Nath, 22 M. Nayak, 88,17 M. Niiyama, 39 S. Nishida, 17,13 H. Ono, 63,64 Y. Onuki, 84 P. Pakhlov, 43,53 G. Pakhlova, 43,54 B. Pal, 3 S. Pardi, 28 S.-H. Park, 90 S. Paul, 81 T. K. Pedlar, 46 R. Pestotink, 31 L. E. Piilonen, 87 V. Popov, 43,54 E. Prencipe, 19 G. Russo, 28 Y. Sakai, 17,13 M. Salehi, 47,45 S. Sandilya, 7 L. Santelj, 17 T. Sanuki, 82 V. Savinov, 70 O. Schneider, 2 G. Schnell, 120 J. Schueler, 16 C. Schwanda, 27 A. J. Schwartz, 7 Y. Seino, 64 K. Senyo, 89 M. E. Sevior, 50 T.-A. Shibata, 85 J.-G. Shiu, 61 B. Shwartz, 46,5 E. Solovieva, 43,54 M. Starič, 31 M. Sumihama, 11 T. Sumiyoshi, 80 W. Sutcliffe, 32 M. Takizawa, 74,18,71 K. Tanida, 30 Y. Tao, 9 F. Tenchini, 8 K. Trabelsi, 17,13 M. Uchida, 85 T. Uglo


(Belle Collaboration)


All 30 available experimental results till 2023

Observable	PDG [42]	BESIII	Belle	Average
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)$	1.29 ± 0.05			1.29 ± 0.05
$10^2 \mathcal{B}(\Lambda_c^+ o \Sigma^0 \pi^+)$	1.27 ± 0.06			1.27 ± 0.06
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.25 ± 0.09			1.25 ± 0.09
$10^2 \mathcal{B}(\Lambda_c^+ o \Sigma^+ \eta)$	0.44 ± 0.20		0.314 ± 0.044 [49]	$0.32 \pm 0.04 \; [42, 49]$
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	1.5 ± 0.6		0.416 ± 0.086 [49]	$0.44 \pm 0.15 \; [42, 49]$
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.55 ± 0.07			0.55 ± 0.07
$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	6.0 ± 0.5	$6.21 \pm 0.61^*$ [50]	6.57 ± 0.40 [51]	$6.35 \pm 0.31 \; [42, 51]$
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	4.9 ± 0.6	$4.7 \pm 0.95^{*}$ [52]	3.58 ± 0.28 [51]	$3.82 \pm 0.51 \;\; [42, 51]$
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$	4.7 ± 1.4	$4.8 \pm 1.5^{*}$ [52]		4.7 ± 1.4
$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	6.6 ± 1.3			6.6 ± 1.3
$10^4 \mathcal{B}(\Lambda_c^+ o p\pi^0)$	< 0.8	$1.56^{+0.72}_{-0.58} \pm 0.20$ [47]		$1.56^{+0.75}_{-0.61}$ [47]
$10^2 \mathcal{B}(\Lambda_c^+ o pK_S)$	1.59 ± 0.07			1.59 ± 0.07
$10^3 \mathcal{B}(\Lambda_c^+ \to p\eta)$	1.41 ± 0.11	1.63 ± 0.33 [47], 1.57 ± 0.12 [5	3]	$1.49 \pm 0.08 \ [42, 47, 53]$
((1 / /	4.9 ± 0.9			4.9 ± 0.9
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.43 ± 0.32		$1.80 \pm 0.52^*$ [46]	$1.80 \pm 0.52 \; [46]$
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	2.75 ± 0.57			2.75 ± 0.57
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Lambda K_S^0)}{\mathcal{B}(\Xi^0 \to \Xi^- \pi^+)}$	22.5 ± 1.3		$22.9 \pm 1.4^*$ [48]	$22.9 \pm 1.4 \; [48]$
$10^2 \frac{\mathcal{B}(\Xi_c^6 \to \Sigma^0 K_S^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	3.8 ± 0.7			3.8 ± 0.7
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	12.3 ± 1.2			12.3 ± 1.2
$10^2\mathcal{B}(\Xi_c^+ \to \Xi^0\pi^+)$	1.6 ± 0.8			1.6 ± 0.8
$\alpha(\Lambda_c^+ \to \Lambda^0 \pi^+)$	-0.84 ± 0.09		-0.755 ± 0.006 [51]	$-0.76 \pm 0.01 [42, 51]$
$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	-0.73 ± 0.18		-0.463 ± 0.018 [51]	$-0.47 \pm 0.03 [42, 51]$
$\alpha(\Lambda_c^+ \to pK_S)$	0.18 ± 0.45			0.18 ± 0.45
$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.55 ± 0.11		-0.48 ± 0.03 [49]	$-0.49 \pm 0.03 \ [42, 49]$
$\alpha(\Xi_c^0 \to \Xi^- \pi^+)$	-0.64 ± 0.05			-0.64 ± 0.05
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta)$			-0.99 ± 0.06 [49]	-0.99 ± 0.06 [49]
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta')$			-0.46 ± 0.07 [49]	-0.46 ± 0.07 [49]
$\alpha(\Lambda_c^+ \to \Lambda^0 K^+)$			-0.585 ± 0.052 [51]	-0.585 ± 0.052 [51]
$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)$			-0.55 ± 0.20 [51]	-0.55 ± 0.20 [51]
$\alpha(\Lambda_c^+ \to \Xi^0 K^+)$		0.01 ± 0.16 [33]		0.01 ± 0.16 [33]


time to interpret data

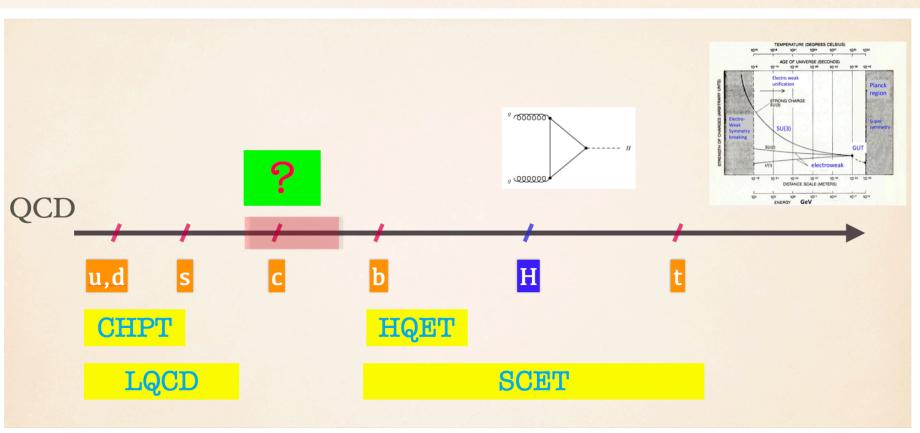


To explore physics around charm scale

$$M(\mathcal{B}_i \to \mathcal{B}_f + P) = i\bar{u}_f(A - B\gamma_5)u_i,$$

$$\Gamma = \frac{p_c}{8\pi} \frac{(m_i + m_f)^2 - m_P^2}{m_i^2} \left(|A|^2 + \kappa^2 |B|^2 \right),$$

$$\alpha = \frac{2\kappa |A^*B| \cos(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2}, \quad \beta = \frac{2\kappa |A^*B| \sin(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2},$$


$$\gamma = \frac{|A|^2 - \kappa^2 |B|^2}{|A|^2 + \kappa^2 |B|^2},$$

Decay
Asymmetries
(longitudinal, transvere)

more observables, including CPV
— talk by C.-W. Liu

The puzzle(s) in $\Lambda_c^+ \to \Xi^0 K^+$ (1)

1. Theory in 1990s, small BF & zero α , due to smallness of S-wave amplitude

PHYSICAL REVIEW D

VOLUME 46, NUMBER 1

1 JULY 1992

Cabibbo-favored nonleptonic decays of charmed baryons

Q. P. Xu and A. N. Kamal

Theoretical Physics Institute and Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
(Received 5 February 1992)

PHYSICAL REVIEW D

VOLUME 48, NUMBER 9

1 NOVEMBER 1993

Cabibbo-allowed nonleptonic weak decays of charmed baryons

Hai-Yang Cheng*

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794

B. Tse

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China (Received 23 April 1993)

PHYSICAL REVIEW D

VOLUME 50, NUMBER 1

1 JULY 1994

Quark and pole models of nonleptonic decays of charmed baryons

P. Żenczykowski

Institute of Nuclear Physics, 31-342 Kraków, Poland
(Received 12 October 1993)

Quark and pole models of nonleptonic decays of charmed baryons are analyzed from the point of view of their symmetry properties. The symmetry structure of the parity-conserving amplitudes that corresponds to the contribution of the ground-state intermediate baryons is shown to differ from the one hitherto employed in the symmetry approach. It is pointed out that the "subtraction" of sea quark effects in hyperon decays leads to an estimate of W-exchange contributions in charmed baryon decays that is significantly smaller than naively expected on the basis of SU(4). An $SU(2)_W$ constraint questioning the reliability of the factorization technique is exhibited. Finally, a successful fit to the available data is

PACS number(s): 13.30.Eg, 14.20.Lq

Z. Phys. C - Particles and Fields 55, 659-670 (1992)

Exclusive non-leptonic charm baryon decays

J.G. Körner¹,* and M. Krämer^{1,2,*}

¹ Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, Postfach 3980, W-6500 Mainz, Federal Republic of Germany ² Deutsches Elektronen-Synchrotron DESY, W-2000 Hamburg, Federal Republic of Germany

Received 23 March 1992

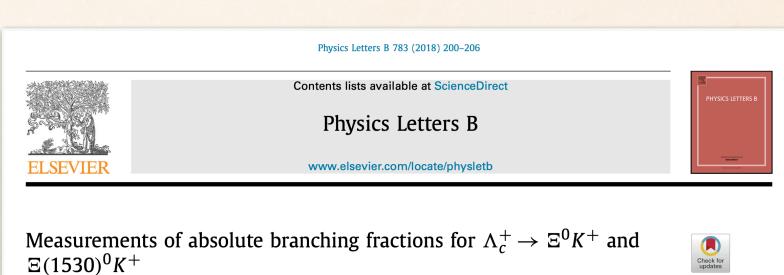
Eur. Phys. J. C 7, 217–224 (1999) DOI 10.1007/s100529801008

THE EUROPEAN
PHYSICAL JOURNAL C

© Springer-Verlag 1999

A study of weak mesonic decays of Λ_c and Ξ_C baryons on the basis of HQET results

K.K. Sharma, R.C. Verma^a

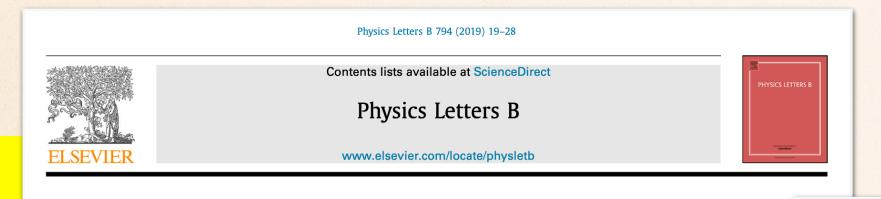

Centre for Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh – 160014, India

Received: 14 May 1998 / Revised version: 25 August 1998 / Published online: 3 December 1998

2. BF was measured, not that small

PDG

 $\Gamma($ $\Lambda_c^+ o armathcalefta^0 K^+$ $)/\Gamma_{
m total}$ VALUE (10 $^{-3}$) OUR FIT


BESIII Collaboration

The puzzle(s) in $\Lambda_c^+ \to \Xi^0 K^+$ (2)

3. large BF can be explained, α is predicted to be unity

dynamic calculation

fit

Asymmetries of anti-triplet charmed baryon decays

C.Q. Geng a,b,c,*, Chia-Wei Liu b, Tien-Hsueh Tsai b

- ^a Chongqing University of Posts & Telecommunications, Chongqing 400065
- ^b Department of Physics, National Tsing Hua University, Hsinchu 300
- ^c Physics Division, National Center for Theoretical Sciences, Hsinchu 300

Published for SISSA by 🖺 Springer

RECEIVED: December 29, 2021 REVISED: February 12, 2022 ACCEPTED: March 3, 2022 PUBLISHED: March 22, 2022

A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons

Fei Huang, a Zhi-Peng Xing b,1 and Xiao-Gang He a,b,c

Published for SISSA by 🗹 Springer

RECEIVED: October 28, 2022 REVISED: January 18, 2023 ACCEPTED: February 8, 2023 PUBLISHED: February 24, 2023

Weak decays of antitriplet charmed baryons from the perspective of flavor symmetry

Huiling Zhong, Fanrong Xu, Qiaoyi Wen and Yu Gu

Department of Physics, Jinan University, Guangzhou 510632, P.R. China

The puzzle(s) in $\Lambda_c^+ \to \Xi^0 K^+$ (3)

4. α is measured to be small

PHYSICAL REVIEW LETTERS 132, 031801 (2024)

First Measurement of the Decay Asymmetry in the Pure W-Boson-Exchange Decay $\Lambda_c^+ \to \Xi^0 K^+$

> M. Ablikim et al.* (BESIII Collaboration)

(Received 6 September 2023; accepted 30 November 2023; published 17 January 2024)

$$\alpha_{\Xi^0 K^+} = 0.01 \pm 0.16(\text{stat}) \pm 0.03(\text{syst})$$

$$\delta_p - \delta_s = -1.55 \pm 0.25 (\text{stat}) \pm 0.05 (\text{syst}) \text{ rad}$$

$$1.59 \pm 0.25(\text{stat}) \pm 0.05(\text{syst}) \text{ rad.}$$

5. small α can be accommodated recently

Complete determination of $SU(3)_F$ amplitudes and strong phase in $\Lambda_c^+ \to \Xi^0 K^+$

Chao-Qiang Geng,¹,* Xiao-Gang He,^{2,3},† Xiang-Nan Jin,¹,‡ Chia-Wei Liu,²,§ and Chang Yang²,¶

¹School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024

² Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China

³Department of Physics, National Taiwan University, Taipei, 10617 (Dated: February 29, 2024)

2310.05491

Topological Diagrams and Hadronic Weak Decays of Charmed Baryons

Huiling Zhong and Fanrong Xu* Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, P.R. China

Hai-Yang Cheng Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China (Dated: March 5, 2024)

2401.15926

6. the dynamic origin of strong phase?

TOPOLOGICAL DIAGRAMS & CHARMED BARYONS

Its triumph in meson sector

Hadronic Weak Decays of Charmed Mesons


Hai-Yang Cheng (鄭海揚) Academia Sinica, Taipei

2024 BESIII Workshop on Charm Hadron Physics

May 11, 2024

Branching fractions

Topological diagrammatic approach successfully predicted the charm CPV !!!

Th: the only predictions of O(10-3)

Exp: LHCb, PRL122, 211803 (2019)

CC: topological approach + QCDF

LLY: factorization-assisted topology (FAT)

Cheng, Chiang, 2012

Li, Lu, **FSY**, 2012

PHYSICAL REVIEW LETTERS 122, 211803 (2019)

Editors' Suggestion Featured in Physics

Observation of CP Violation in Charm Decays

R. Aaij et al." (LHCb Collaboration)

(Received 21 March 2019; revised manuscript received 2 May 2019; published 29 May 2019)

A search for charge-parity (CP) violation in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays is reported, using pp collision data corresponding to an integrated luminosity of 5.9 fb⁻¹ collected at a center-of-mass energy of 13 TeV with the LHCb detector. The flavor of the charm meson is inferred from the charge of the pion in $D^*(2010)^+ \to D^0\pi^+$ decays or from the charge of the muon in $\bar{B} \to D^0\mu^-\bar{\nu}_\mu X$ decays. The difference between the CP asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays is measured to be $\Delta A_{CP} =$ $[-18.2 \pm 3.2(\text{stat}) \pm 0.9(\text{syst})] \times 10^{-4}$ for π -tagged and $\Delta A_{CP} = [-9 \pm 8(\text{stat}) \pm 5(\text{syst})] \times 10^{-4}$ for μ tagged D^0 mesons. Combining these with previous LHCb results leads $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$, where the uncertainty includes both statistical and systematic contributions. In from zero by more than 5 standard deviations. This is the first observation of CP violation in the decay of charm hadrons.

DOI: 10.1103/PhysRevLett.122.211803

– talk by F.-S. Yu @Charm2023

Early seeking in baryon sector

Y. Kohara, 1991

PHYSICAL REVIEW D

VOLUME 44, NUMBER 9

1 NOVEMBER 1991

Quark-diagram analysis of charmed-baryon decays

Yoji Kohara Nihon University at Fujisawa, Fujisawa, Kanagawa 252, Japan (Received 29 May 1991)

The Cabibbo-allowed two-body nonleptonic decays of charmed baryons to a SU(3)-octet (or -decuplet) baryon and a pseudoscalar meson are examined on the basis of the quark-diagram scheme. Some relations among the decay amplitudes or rates of various decay modes are derived. The decays of Ξ_c^+ to a decuplet baryon are forbidden.

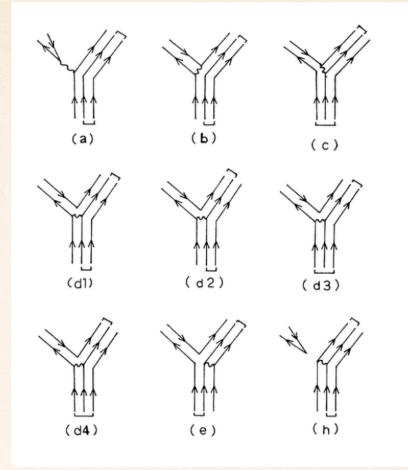
L.-L. Chau, H.-Y. Cheng, B. Tseng, 1996

PHYSICAL REVIEW D

VOLUME 54, NUMBER 3

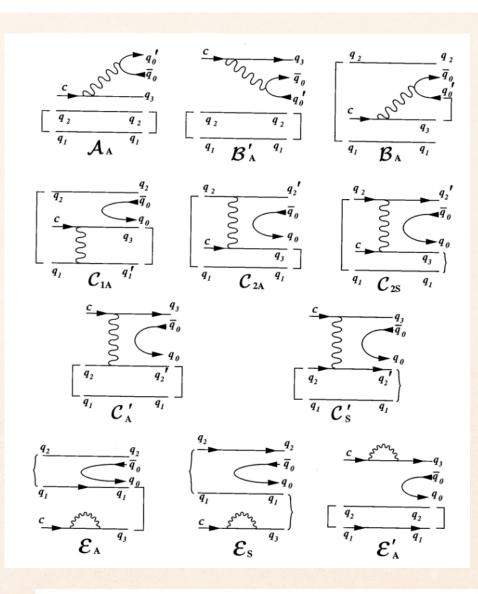
1 AUGUST 1996

Analysis of two-body decays of charmed baryons using the quark-diagram scheme


Ling-Lie Chau

Physics Department, University of California at Davis, California 95616

Hai-Yang Cheng and B. Tseng*


Institute of Physics, Academia Sinica, Taipei, Taiwan 115

(Received 25 August 1995)

$$|\tilde{\mathcal{B}}^{m,k}(8)\rangle = \alpha |\chi^m(1/2)_{A_{12}}\rangle |\psi^k(8)_{A_{12}}\rangle + \beta |\chi^m(1/2)_{A_{23}}\rangle |\psi^k(8)_{A_{23}}\rangle$$

$$\mathcal{A} = a\overline{B}^{3[ab]}B_{[ab]}M_{2}^{1} + b\overline{B}^{1[ab]}B_{[ab]}M_{2}^{3} + c\overline{B}^{b[13]}B_{[ab]}M_{2}^{a} + d_{1}\overline{B}^{a[1b]}B_{[2b]}M_{a}^{3} + d_{2}\overline{B}^{b[1a]}B_{[2b]}M_{a}^{3}$$

$$+ d_{3}\overline{B}^{a[3b]}B_{[2b]}M_{a}^{1} + d_{4}\overline{B}^{b[3a]}B_{[2b]}M_{a}^{1} + e\overline{B}^{a[13]}B_{[2b]}M_{a}^{b} + h\overline{B}^{b[13]}B_{[2b]}M_{a}^{a} ,$$

$$|\mathcal{B}^{m,k}(8)\rangle = a|\chi^m(1/2)_{A_{12}}\rangle|\psi^k(8)_{A_{12}}\rangle + b|\chi^m(1/2)_{S_{12}}\rangle|\psi^k(8)_{S_{12}}\rangle$$

Recent seeking in baryon sector

Y.-K. Hsiao's group, since 2020

Published for SISSA by 췯 Springer

RECEIVED: November 30, 2018 Revised: November 28, 2019 ACCEPTED: February 12, 2020 Published: February 26, 2020

A diagrammatic analysis of two-body charmed baryon decays with flavor symmetry

H.J. Zhao, Yan-Li Wang, Y.K. Hsiao and Yao Yub

Published for SISSA by **2** Springer

Received: November 12, 2021 Revised: June 8, 2022 ACCEPTED: August 15, 2022 Published: September 5, 2022

Equivalent $SU(3)_f$ approaches for two-body anti-triplet charmed baryon decays

Y.K. Hsiao, Y.L. Wang and H.J. Zhao

https://doi.org/10.1140/epjc/s10052-020-08659-4

THE EUROPEAN PHYSICAL JOURNAL C Check for updates

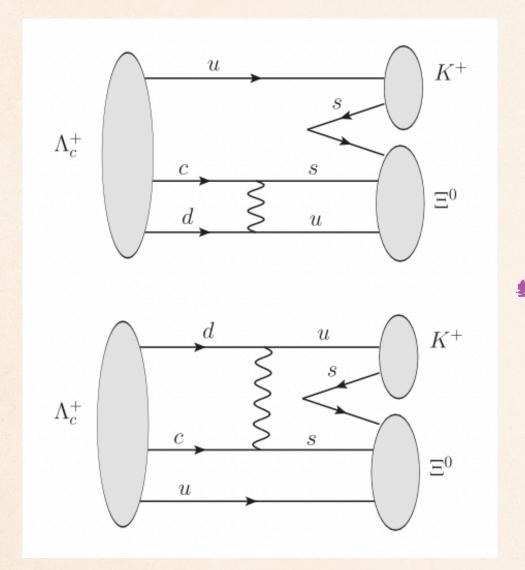
Regular Article - Theoretical Physics

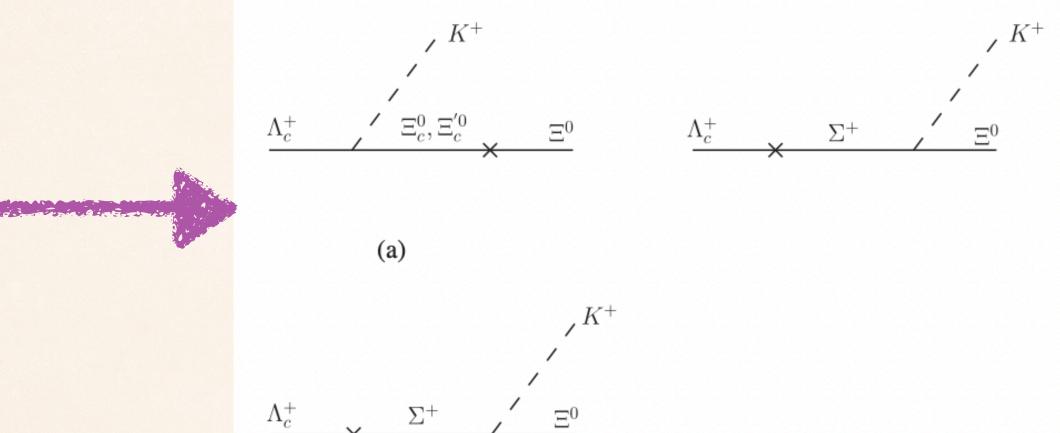
Two-body charmed baryon decays involving decuplet baryon in the quark-diagram scheme

Y. K. Hsiao^a, Qian Yi, Shu-Ting Cai, H. J. Zhao School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China

* X.-G. He, Y.-J. Shi and W. Wang, 2020

Eur. Phys. J. C (2020) 80:359 https://doi.org/10.1140/epjc/s10052-020-7862-5 THE EUROPEAN PHYSICAL JOURNAL C


Regular Article - Theoretical Physics


Unification of flavor SU(3) analyses of heavy Hadron weak decays

Xiao-Gang He^{1,2,3,4,a}, Yu-Ji Shi^{1,b}, Wei Wang^{1,c}

- ¹ INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- ² T.-D. Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- ³ Department of Physics, National Taiwan University, Taipei 106, Taiwan
- ⁴ National Center for Theoretical Sciences, Hsinchu 300, Taiwan

A role as an assisted tool to dynamic calculation

$$\Gamma = \frac{p_c}{8\pi} \left[\frac{(m_i + m_f)^2 - m_P^2}{m_i^2} |A|^2 + \frac{(m_i - m_f)^2 - m_P^2}{m_i^2} |B|^2 \right] \quad \alpha = \frac{2\kappa \text{Re}(A^*B)}{|A|^2 + \kappa^2 |B|^2},$$

$$A = A^{\text{fac}} + A^{\text{nf}}, \qquad B = B^{\text{fac}} + B^{\text{nf}}.$$

PHYSICAL REVIEW D **97**, 074028 (2018)

Singly Cabibbo-suppressed hadronic decays of Λ_c^+

Hai-Yang Cheng,¹ Xian-Wei Kang,^{2,1} and Fanrong Xu^{3,4,*}

¹Institute of Physics, Academia Sinica, Taipei, Taiwan 115

²College of Nuclear Science and Technology, Beijing Normal University,
Beijing 10875

³Siyuan Laboratory, Department of Physics, Jinan University,
Guangzhou 510632

⁴Department of Physics, Jinan University, Guangzhou 510632

PHYSICAL REVIEW D **101,** 014011 (2020)

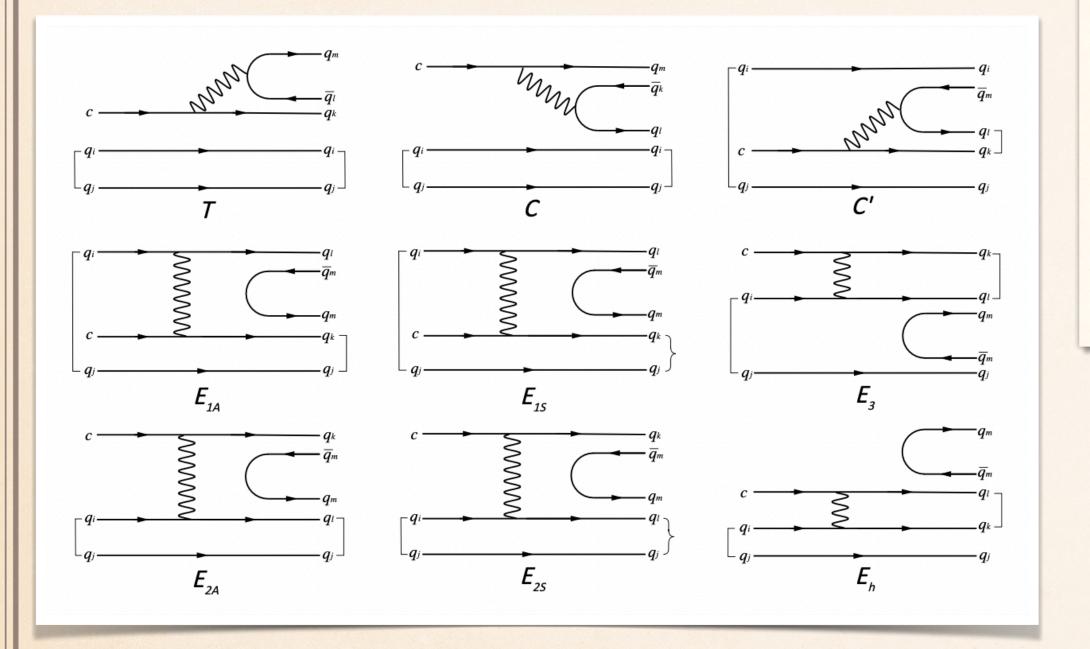
Two-body hadronic weak decays of antitriplet charmed baryons

Jinqi Zou[®], Fanrong Xu[®], and Guanbao Meng
Department of Physics, Jinan University, Guangzhou 510632, People's Republic of China

Hai-Yang Cheng[©] Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China

PHYSICAL REVIEW D 101, 094033 (2020)

Hadronic weak decays of the charmed baryon Ω_c


Shiyong Hu, Guanbao Meng, and Fanrong Xu^{®*}

Department of Physics, Jinan University, Guangzhou 510632, People's Republic of China

(Received 19 March 2020; accepted 18 May 2020; published 27 May 2020)

what if the amplitudes are complex?

Completeness vs. Redundancy

$$\mathcal{A}_{\text{TDA}} = T(\mathcal{B}_{c})^{ij} H_{l}^{km} M_{m}^{l} \left[b_{1} (\mathcal{B}_{8})_{ijk} + b_{2} (\mathcal{B}_{8})_{ikj} + b_{3} (\mathcal{B}_{8})_{jki} \right]$$

$$+ C(\mathcal{B}_{c})^{ij} H_{k}^{ml} M_{m}^{k} \left[b_{4} (\mathcal{B}_{8})_{ijl} + b_{5} (\mathcal{B}_{8})_{ilj} + b_{6} (\mathcal{B}_{8})_{jli} \right]$$

$$+ C'(\mathcal{B}_{c})^{ij} H_{m}^{kl} M_{m}^{m} \left[b_{7} (\mathcal{B}_{8})_{klj} + b_{8} (\mathcal{B}_{8})_{kjl} + b_{9} (\mathcal{B}_{8})_{ljk} \right]$$

$$+ E_{1}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{l}^{m} \left[b_{10} (\mathcal{B}_{8})_{jkm} + b_{11} (\mathcal{B}_{8})_{jmk} + b_{12} (\mathcal{B}_{8})_{kmj} \right]$$

$$+ E_{2}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{k}^{m} \left[b_{13} (\mathcal{B}_{8})_{jlm} + b_{14} (\mathcal{B}_{8})_{jml} + b_{15} (\mathcal{B}_{8})_{lmj} \right]$$

$$+ E_{3}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{j}^{m} \left[b_{16} (\mathcal{B}_{8})_{klm} + b_{17} (\mathcal{B}_{8})_{kml} + b_{18} (\mathcal{B}_{8})_{lmk} \right]$$

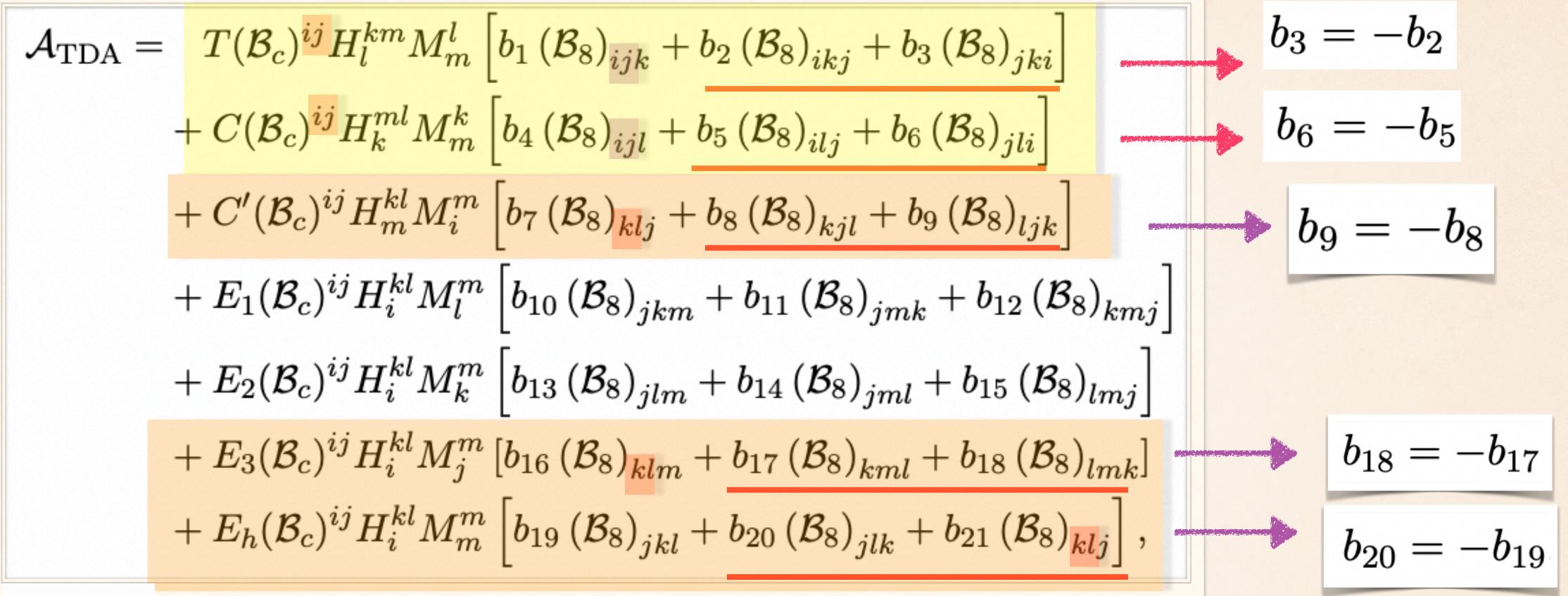
$$+ E_{h}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{m}^{m} \left[b_{19} (\mathcal{B}_{8})_{jkl} + b_{20} (\mathcal{B}_{8})_{jlk} + b_{21} (\mathcal{B}_{8})_{klj} \right],$$

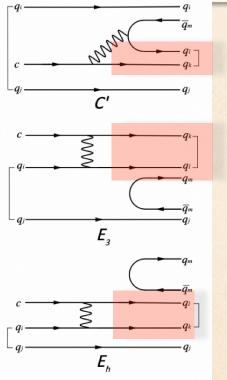
$$(\mathcal{B}_8)^i_j = \begin{pmatrix} \Sigma^- & \frac{1}{\sqrt{6}}\Lambda^0 - \frac{1}{\sqrt{2}}\Sigma^0 & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda^0 \end{pmatrix}$$

$$(\mathcal{B}_c)^{ij} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}$$

$$M^i_j = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} + \frac{\eta_1}{\sqrt{3}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} + \frac{\eta_1}{\sqrt{3}} & K^0 \\ K^- & \overline{K}^0 & -\frac{2\eta_8}{\sqrt{6}} + \frac{\eta_1}{\sqrt{3}} \end{pmatrix}$$

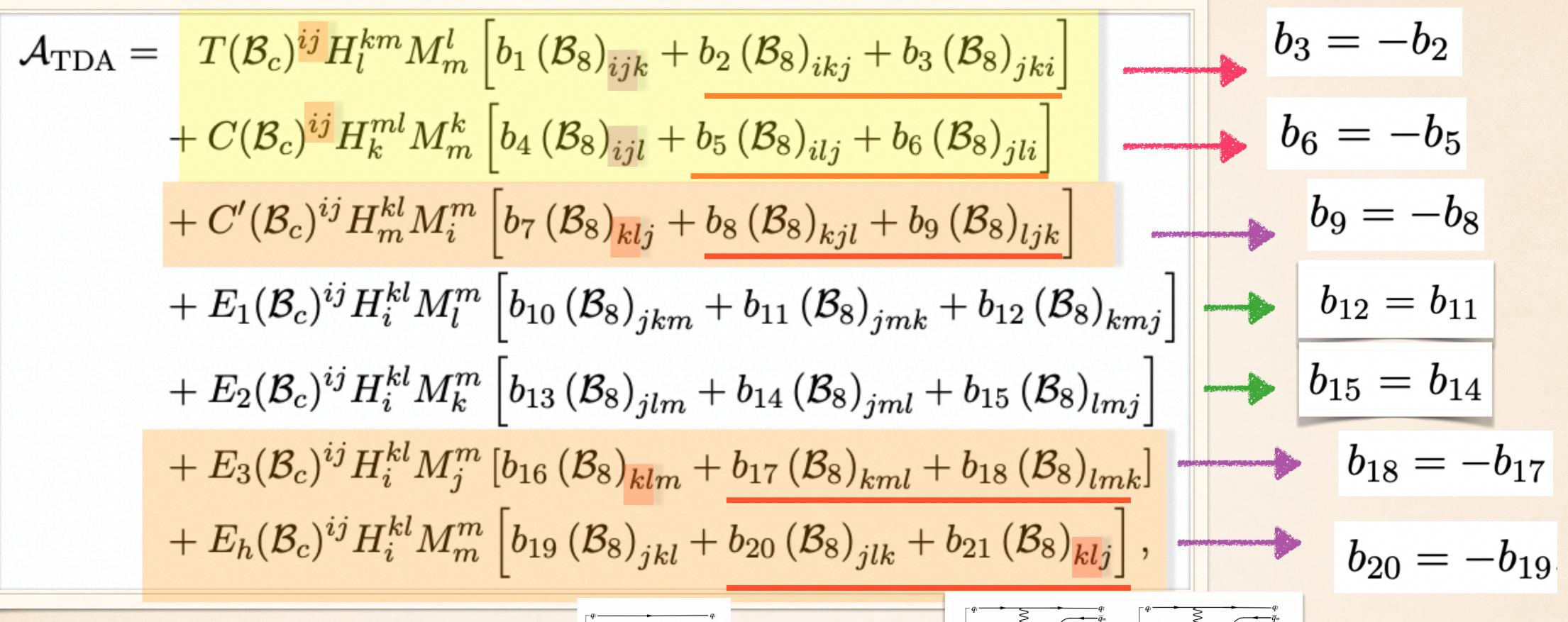
$$H_2^{31} = V_{cs}^* V_{ud}, \quad H_3^{31} = V_{cs}^* V_{us}, \quad H_2^{21} = V_{cd}^* V_{ud}, \quad H_3^{21} = V_{cd}^* V_{us}.$$

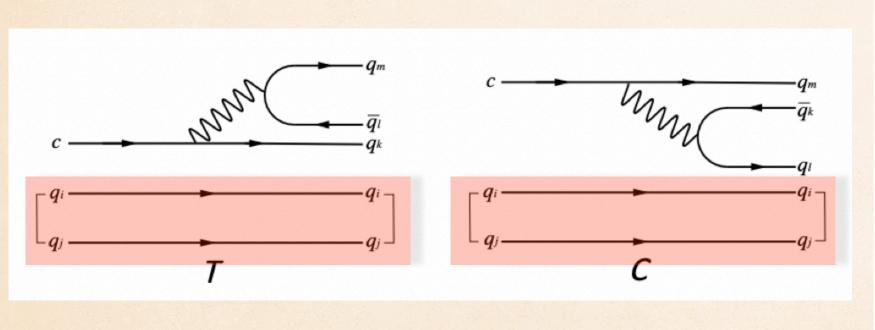

17 =

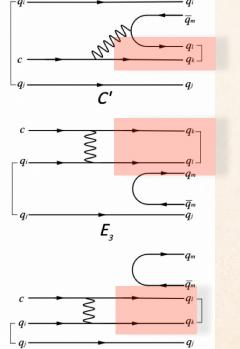

$$\mathcal{A}_{\text{TDA}} = \frac{T(\mathcal{B}_{c})^{ij} H_{l}^{km} M_{m}^{l} \left[b_{1} \left(\mathcal{B}_{8} \right)_{ijk} + b_{2} \left(\mathcal{B}_{8} \right)_{ikj} + b_{3} \left(\mathcal{B}_{8} \right)_{jki} \right]}{+ C(\mathcal{B}_{c})^{ij} H_{k}^{ml} M_{m}^{k} \left[b_{4} \left(\mathcal{B}_{8} \right)_{ijl} + b_{5} \left(\mathcal{B}_{8} \right)_{ilj} + b_{6} \left(\mathcal{B}_{8} \right)_{jli} \right]} + C'(\mathcal{B}_{c})^{ij} H_{m}^{kl} M_{i}^{m} \left[b_{7} \left(\mathcal{B}_{8} \right)_{klj} + b_{8} \left(\mathcal{B}_{8} \right)_{kjl} + b_{9} \left(\mathcal{B}_{8} \right)_{jkl} \right]} + E_{1}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{l}^{m} \left[b_{10} \left(\mathcal{B}_{8} \right)_{jkm} + b_{11} \left(\mathcal{B}_{8} \right)_{jmk} + b_{12} \left(\mathcal{B}_{8} \right)_{kmj} \right] + E_{2}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{k}^{m} \left[b_{13} \left(\mathcal{B}_{8} \right)_{jlm} + b_{14} \left(\mathcal{B}_{8} \right)_{jml} + b_{15} \left(\mathcal{B}_{8} \right)_{lmj} \right] + E_{3}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{m}^{m} \left[b_{16} \left(\mathcal{B}_{8} \right)_{klm} + b_{17} \left(\mathcal{B}_{8} \right)_{kml} + b_{18} \left(\mathcal{B}_{8} \right)_{lmk} \right] + E_{h}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{m}^{m} \left[b_{19} \left(\mathcal{B}_{8} \right)_{jkl} + b_{20} \left(\mathcal{B}_{8} \right)_{jlk} + b_{21} \left(\mathcal{B}_{8} \right)_{klj} \right],$$

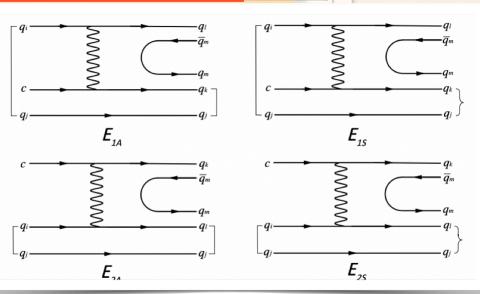
$$(\mathcal{B}_8)_{ijk} = \epsilon_{ijl}(\mathcal{B}_8^T)_k^l$$

 $b_3 = -b_2$


 $b_6 = -b_5$

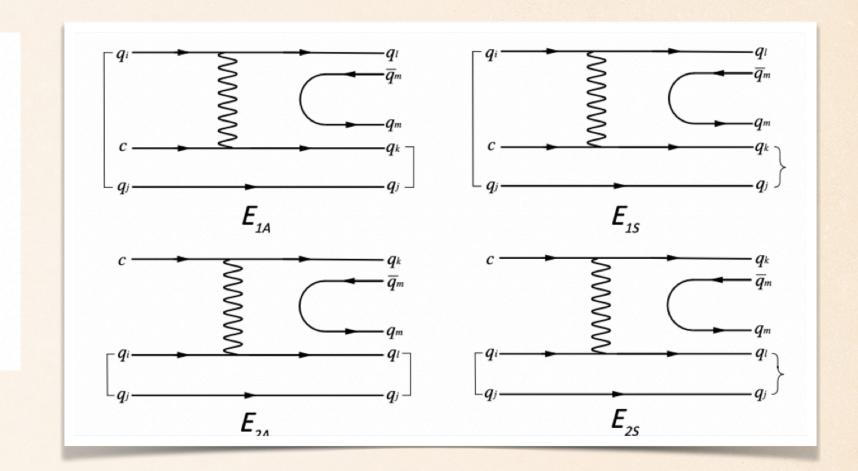


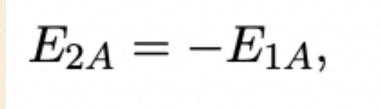



Korner-Pati-Woo theorem:

[l,k] index should be asymmetric

$$|\mathcal{B}^{m,k}(8)\rangle = a|\chi^m(1/2)_{A_{12}}\rangle|\psi^k(8)_{A_{12}}\rangle + b|\chi^m(1/2)_{S_{12}}\rangle|\psi^k(8)_{S_{12}}\rangle$$


A further simplification


$$\mathcal{A}_{\text{TDA}} = T(\mathcal{B}_{c})^{ij} H_{l}^{km} (\mathcal{B}_{8})_{ijk} M_{m}^{l} + C(\mathcal{B}_{c})^{ij} H_{k}^{ml} (\mathcal{B}_{8})_{ijl} M_{m}^{k} + C'(\mathcal{B}_{c})^{ij} H_{m}^{kl} (\mathcal{B}_{8})_{klj} M_{i}^{m}$$

$$+ E_{1A}(\mathcal{B}_{c})^{ij} H_{i}^{kl} (\mathcal{B}_{8})_{jkm} M_{l}^{m} + E_{1S}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{l}^{m} \left[(\mathcal{B}_{8})_{jmk} + (\mathcal{B}_{8})_{kmj} \right]$$

$$+ E_{2A}(\mathcal{B}_{c})^{ij} H_{i}^{kl} (\mathcal{B}_{8})_{jlm} M_{k}^{m} + E_{2S}(\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{k}^{m} \left[(\mathcal{B}_{8})_{jml} + (\mathcal{B}_{8})_{lmj} \right]$$

$$+ E_{3}(\mathcal{B}_{c})^{ij} H_{i}^{kl} (\mathcal{B}_{8})_{klm} M_{j}^{m} + E_{h}(\mathcal{B}_{c})^{ij} H_{i}^{kl} (\mathcal{B}_{8})_{klj} M_{m}^{m},$$

$$E_{2S} = -E_{1S}.$$

 $E_{2A} = -E_{1A}$, $E_{2S} = -E_{1S}$. Korner-Pati-Woo theorem:

diagrams: 7

$$\tilde{T} = T - E_{1S}, \quad \tilde{C} = C + E_{1S}, \quad \tilde{C}' = C' - 2E_{1S},$$
 $\tilde{E}_1 = E_{1A} + E_{1S} - E_3, \quad \tilde{E}_h = E_h + 2E_{1S}.$

diagrams: 5; parameters: 19

$$| ilde{T}|_S e^{i\delta_S^{ ilde{T}}}, \ | ilde{C}|_S e^{i\delta_S^{ ilde{C}}}, \ \cdots$$

 $| ilde{T}|_S e^{i\delta_S^{ ilde{T}}}, \ | ilde{C}|_S e^{i\delta_S^{ ilde{C}}}, \ \cdots \ | ilde{T}|_P e^{i\delta_P^{ ilde{T}}}, \ \cdots, \ | ilde{E}_h|_P e^{i\delta_P^{ ilde{E}_h}}$

Amplitudes and their relations

O1 1		
Channel	TDA	TDA
$\Lambda_c^+ o \Lambda \pi^+$	$\frac{1}{\sqrt{6}}(-4T+C'+E_{1A}+3E_{1S}-E_3)$	$\frac{1}{\sqrt{6}}(-4\tilde{T}+\tilde{C}'+\tilde{E_1})$
$\Lambda_c^+ o \Sigma^0 \pi^+$	$\frac{1}{\sqrt{2}}(-C'-E_{1A}+E_{1S}+E_3)$	$rac{1}{\sqrt{2}}(- ilde{C}'- ilde{E_1})$
$\Lambda_c^+ o \Sigma^+ \pi^0$	$\frac{1}{\sqrt{2}}(C'+E_{1A}-E_{1S}-E_3)$	$rac{1}{\sqrt{2}}(ilde{C'}+ ilde{E_1})$
$\Lambda_c^+ o \Sigma^+ \eta_8$	$\frac{1}{\sqrt{6}}(-C'+E_{1A}+3E_{1S}-E_3)$	$rac{1}{\sqrt{6}}(- ilde{C}'+ ilde{E_1})$
$\Lambda_c^+ o \Sigma^+ \eta_1$	$\frac{1}{\sqrt{3}}(-C'+E_{1A}-3E_{1S}-E_3-3E_h)$	$\frac{1}{\sqrt{3}}(-\tilde{C}'+\tilde{E_1}-3\tilde{E_h})$
$\Lambda_c^+ o \Xi^0 K^+$	$E_{1A} + E_{1S} - E_3$	$ ilde{ ilde{E_1}}$
$\Lambda_c^+ o p \bar K^0$	$2C + 2E_{1S}$	$2\tilde{C}$
$\Xi_c^0 o \Lambda ar K^0$	$\frac{1}{\sqrt{6}}(2C-C'-E_{1A}+3E_{1S}+E_3)$	$rac{1}{\sqrt{6}}(2 ilde{C}- ilde{C}'- ilde{E_1})$
	$\frac{1}{\sqrt{2}}(2C+C'+E_{1A}+E_{1S}-E_3)$	$rac{1}{\sqrt{2}}(2 ilde{C}+ ilde{C}'+ ilde{E_1})$
	$-E_{1A} - E_{1S} + E_3$	$- ilde{E_1}$
$\Xi_c^0 o \Xi^0 \eta_8$	$\frac{1}{\sqrt{6}}(C'+2E_{1A}-2E_3)$	$rac{1}{\sqrt{6}}(ilde{C}'+2 ilde{E_1})$
$\Xi_c^0 o \Xi^0 \eta_1$	$\frac{1}{\sqrt{3}}(C'+3E_{1S}-E_{1A}+E_3+3E_h)$	$rac{1}{\sqrt{3}}(ilde{C'}- ilde{E_1}+3 ilde{E_h})$
$\Xi_c^0\to\Xi^-\pi^+$	$2T - 2E_{1S}$	$2 ilde{T}$
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	-2C-C'	$-2 ilde{C}- ilde{C}'$
$\Xi_c^+ \to \Xi^0 \pi^+$	-2T+C'	$\frac{-2\tilde{T}+\tilde{C}'}{\tilde{c}-\tilde{c}-\tilde{c}-\tilde{c}-\tilde{c}-\tilde{c}-\tilde{c}-c$
$\begin{array}{c} \Lambda_c^+ \to \Sigma^+ \eta_8 \\ \Lambda_c^+ \to \Sigma^+ \eta_1 \\ \hline \Lambda_c^+ \to \Xi^0 K^+ \\ \hline \Lambda_c^+ \to p \bar{K}^0 \\ \Xi_c^0 \to \Lambda \bar{K}^0 \\ \Xi_c^0 \to \Sigma^0 \bar{K}^0 \\ \Xi_c^0 \to \Sigma^0 \pi^0 \\ \Xi_c^0 \to \Xi^0 \eta_8 \\ \Xi_c^0 \to \Xi^0 \eta_1 \\ \Xi_c^0 \to \Xi^+ \bar{K}^0 \\ \Xi_c^0 \to \Xi^+ \bar{K}^0 \end{array}$	$\frac{1}{\sqrt{6}}(-C' + E_{1A} + 3E_{1S} - E_3)$ $\frac{1}{\sqrt{3}}(-C' + E_{1A} - 3E_{1S} - E_3 - 3E_h)$ $E_{1A} + E_{1S} - E_3$ $2C + 2E_{1S}$ $\frac{1}{\sqrt{6}}(2C - C' - E_{1A} + 3E_{1S} + E_3)$ $\frac{1}{\sqrt{2}}(2C + C' + E_{1A} + E_{1S} - E_3)$ $-E_{1A} - E_{1S} + E_3$ $\frac{1}{\sqrt{2}}(-C' + 2E_{1S})$ $\frac{1}{\sqrt{6}}(C' + 2E_{1A} - 2E_3)$ $\frac{1}{\sqrt{3}}(C' + 3E_{1S} - E_{1A} + E_3 + 3E_h)$ $2T - 2E_{1S}$ $-2C - C'$	$ \frac{\frac{1}{\sqrt{6}}(-\tilde{C}' + \tilde{E}_{1})}{\frac{1}{\sqrt{3}}(-\tilde{C}' + \tilde{E}_{1} - 3\tilde{E}_{h})} $ $ \frac{1}{\sqrt{6}}(2\tilde{C} + \tilde{C}' - \tilde{E}_{1}) $ $ \frac{1}{\sqrt{6}}(2\tilde{C} - \tilde{C}' - \tilde{E}_{1}) $ $ -\tilde{E}_{1} $ $ \frac{1}{\sqrt{2}}(-\tilde{C}') $ $ \frac{1}{\sqrt{6}}(\tilde{C}' + 2\tilde{E}_{1}) $ $ \frac{1}{\sqrt{3}}(\tilde{C}' - \tilde{E}_{1} + 3\tilde{E}_{h}) $ $ 2\tilde{T} $ $ -2\tilde{C} - \tilde{C}' $

1.
$$\tilde{T}$$
: $\Xi_c^0 \to \Xi^- \pi^+, \Sigma^- \pi^+, \Xi^- K^+, \Sigma^- K^+; \Xi_c^+ \to \Xi^0 K^+.$

2.
$$\tilde{C}$$
: $\Lambda_c^+ \to p\overline{K}^0$; $\Xi_c^0 \to \Xi^0 K^0$; $\Xi_c^+ \to \Sigma^+ K^0$.

3.
$$\tilde{C}': \Lambda_c^+ \to \Sigma^+ K^0, \Sigma^0 K^+; \Xi_c^+ \to p \overline{K}^0.$$

4.
$$\tilde{E}_1: \Lambda_c^+ \to \Xi^0 K^+; \ \Xi_c^0 \to \Sigma^+ K^-, \Sigma^+ \pi^-, pK^-, p\pi^-, n\pi^0; \ \Xi_c^+ \to p\pi^0, n\pi^+.$$

$$\frac{\tau_{\Lambda_c^+}}{\tau_{\Xi_c^0}} \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = 3\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+) + \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+) - \frac{1}{\sin^2 \theta_C} \mathcal{B}(\Lambda_c^+ \to n \pi^+),$$

$$\frac{\tau_{\Xi_c^0}}{\tau_{\Lambda_c^+}} \mathcal{B}(\Lambda_c^+ \to p \overline{K}^0) = 3\mathcal{B}(\Xi_c^0 \to \Lambda \overline{K}^0) + \mathcal{B}(\Xi_c^0 \to \Sigma^0 \overline{K}^0) - \frac{1}{\sin^2 \theta_C} \mathcal{B}(\Xi_c^0 \to \Xi^0 K^0),$$

$$A(\mathcal{B}_c o \mathcal{B}K_S^0) = -\frac{1}{\sqrt{2}}[A(\mathcal{B}_c o \mathcal{B}\overline{K}^0) - A(\mathcal{B}_c o \mathcal{B}K^0)],$$

 $A(\mathcal{B}_c o \mathcal{B}K_L^0) = \frac{1}{\sqrt{2}}[A(\mathcal{B}_c o \mathcal{B}\overline{K}^0) + A(\mathcal{B}_c o \mathcal{B}K^0)].$

22

Fitted parameters

Observable	PDG [42]	BESIII	Belle	Average
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)$	1.29 ± 0.05			1.29 ± 0.05
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.27 ± 0.06			1.27 ± 0.06
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.25 ± 0.09			1.25 ± 0.09
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.44 ± 0.20		0.314 ± 0.044 [49]	$0.32 \pm 0.04 \; [42, 49]$
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	1.5 ± 0.6		0.416 ± 0.086 [49]	$0.44 \pm 0.15 \; [42, 49]$
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.55 ± 0.07			0.55 ± 0.07
$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	6.0 ± 0.5	$6.21 \pm 0.61^*$ [50]	6.57 ± 0.40 [51]	$6.35 \pm 0.31 \; [42, 51]$
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	4.9 ± 0.6	$4.7 \pm 0.95^*$ [52]	3.58 ± 0.28 [51]	$3.82 \pm 0.51 \ [42, 51]$
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$	4.7 ± 1.4	$4.8 \pm 1.5^{*}$ [52]		4.7 ± 1.4
$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	6.6 ± 1.3			6.6 ± 1.3
$10^4 \mathcal{B}(\Lambda_c^+ o p\pi^0)$	< 0.8	$1.56^{+0.72}_{-0.58} \pm 0.20$ [47]		$1.56^{+0.75}_{-0.61}$ [47]
$10^2 \mathcal{B}(\Lambda_c^+ o pK_S)$	1.59 ± 0.07			1.59 ± 0.07
	1.41 ± 0.11	1.63 ± 0.33 [47], 1.57 ± 0.12 [8]	53]	1.49 ± 0.08 [42, 47, 5]
$10^4 \mathcal{B}(\Lambda_c^+ o p \eta')$	4.9 ± 0.9			4.9 ± 0.9
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.43 ± 0.32		$1.80 \pm 0.52^*$ [46]	1.80 ± 0.52 [46]
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	2.75 ± 0.57			2.75 ± 0.57
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Lambda K_S^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	22.5 ± 1.3		$22.9 \pm 1.4^{*}$ [48]	$22.9 \pm 1.4 [48]$
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	3.8 ± 0.7			3.8 ± 0.7
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	12.3 ± 1.2			12.3 ± 1.2
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	1.6 ± 0.8			1.6 ± 0.8
$\alpha(\Lambda_c^+ \to \Lambda^0 \pi^+)$	-0.84 ± 0.09		-0.755 ± 0.006 [51]	-0.76 ± 0.01 [42, 51]
$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	-0.73 ± 0.18		-0.463 ± 0.018 [51]	-0.47 ± 0.03 [42, 51]
$\alpha(\Lambda_c^+ \to pK_S)$	0.18 ± 0.45			0.18 ± 0.45
$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.55 ± 0.11		-0.48 ± 0.03 [49]	-0.49 ± 0.03 [42, 49]
$\alpha(\Xi_c^0 \to \Xi^- \pi^+)$	-0.64 ± 0.05			-0.64 ± 0.05
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta)$			-0.99 ± 0.06 [49]	-0.99 ± 0.06 [49]
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta')$			-0.46 ± 0.07 [49]	-0.46 ± 0.07 [49]
$\alpha(\Lambda_c^+ \to \Lambda^0 K^+)$			-0.585 ± 0.052 [51]	-0.585 ± 0.052 [51]
$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)$			-0.55 ± 0.20 [51]	-0.55 ± 0.20 [51]
$\alpha(\Lambda_c^+ \to \Xi^0 K^+)$		0.01 ± 0.16 [33]		0.01 ± 0.16 [33]

	$ X_i _S$	$ X_i _P$	$\delta_{\scriptscriptstyle S}^{X_i}$	$\delta_{r}^{X_{i}}$
		$_F \mathrm{GeV}^2)$	(in ra	dian)
		16.56 ± 0.69	_	2.76 ± 0.32
$ ilde{C}$	1.04 ± 1.08	13.82 ± 0.58	-1.97 ± 0.79	-0.37 ± 0.44
$ ilde{C}'$	2.59 ± 0.95	24.97 ± 1.67	0.29 ± 0.19	2.86 ± 0.36
$ ilde{E_1}$	4.10 ± 0.20	2.56 ± 2.21	1.18 ± 0.38	-0.96 ± 0.43
$\tilde{E_h}$	1.54 ± 1.22	19.16 ± 3.00	-1.35 ± 0.60	0.37 ± 0.41

$$\chi^2 = \left[\mathcal{O}_{\mathrm{theor}}(c_i) - \mathcal{O}_{\mathrm{expt}}\right]^{\mathrm{T}} \Sigma^{-1} \left[\mathcal{O}_{\mathrm{theor}}(c_i) - \mathcal{O}_{\mathrm{expt}}\right]$$

Part of predictions

Channel	$10^2 \mathcal{B}$	α	A	B	$\delta_P - \delta_S$	$10^2 \mathcal{B}_{\mathrm{exp}}$	$lpha_{ m exp}$
$\Lambda_c^+ \to \Lambda^0 \pi^+$	1.31 ± 0.05	-0.76 ± 0.01	2.76 ± 0.24	16.97 ± 0.38	0.21 ± 0.30	1.29 ± 0.05	-0.76 ± 0.01 [19, 26]
$\Lambda_c^+ \to \Sigma^0 \pi^+$	1.26 ± 0.05	-0.48 ± 0.02	4.09 ± 0.86	15.42 ± 2.32	-1.07 ± 0.04	1.27 ± 0.06	-0.47 ± 0.03 [19, 26]
$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.27 ± 0.05	-0.48 ± 0.02	4.09 ± 0.86	15.42 ± 2.32	-1.07 ± 0.04	1.25 ± 0.09	-0.49 ± 0.03 [19, 25]
$\Lambda_c^+ \to \Sigma^+ \eta$	0.33 ± 0.04	-0.93 ± 0.05	2.30 ± 0.35	9.50 ± 1.16	0.34 ± 0.16	$0.32 \pm 0.04 \ [19, 25]$	-0.99 ± 0.06 [25]
$\Lambda_c^+ \to \Sigma^+ \eta'$	0.39 ± 0.12	-0.45 ± 0.07	3.83 ± 1.44	23.00 ± 3.85	2.03 ± 0.08	$0.44 \pm 0.15 \ [19, 25]$	-0.46 ± 0.07 [25]
$\Lambda_c^+ \to \Xi^0 K^+$	0.41 ± 0.03	-0.16 ± 0.13	3.89 ± 0.19	2.49 ± 2.13	-2.14 ± 0.63	0.55 ± 0.07	0.01 ± 0.16 [7]
$\Lambda_c^+ \to \Lambda^0 K^+$	0.0639 ± 0.0030	-0.56 ± 0.05	1.09 ± 0.18	3.30 ± 0.59	-0.97 ± 0.06	0.0635 ± 0.0031 [19, 26]	-0.585 ± 0.052 [26]
$\Lambda_c^+ \to \Sigma^0 K^+$	0.0377 ± 0.0032	-0.54 ± 0.08	0.40 ± 0.15	3.86 ± 0.26	-0.59 ± 0.43	0.0382 ± 0.0051 [19, 26]	-0.55 ± 0.20 [26]
$\Lambda_c^+ \to \Sigma^+ K_S$	0.038 ± 0.003	-0.54 ± 0.08	0.57 ± 0.21	5.46 ± 0.37	-0.59 ± 0.43	0.047 ± 0.014	
$\Lambda_c^+ \to n \pi^+$	0.063 ± 0.009	-0.78 ± 0.13	1.00 ± 0.14	2.44 ± 0.39	0.67 ± 0.21	0.066 ± 0.013	
$\Lambda_c^+ o p \pi^0$	0.0174 ± 0.0034	-0.12 ± 0.75	0.63 ± 0.14	0.96 ± 0.68	-1.70 ± 0.87	$0.0156^{+0.0075}_{-0.0061}$ [20]	
$\Lambda_c^+ o p K_S$	1.55 ± 0.07	0.00 ± 0.30	2.08 ± 2.10	26.21 ± 1.18	-1.56 ± 0.77	1.59 ± 0.07	0.18 ± 0.45
$\Lambda_c^+ o p\eta$	0.151 ± 0.007	0.08 ± 0.37	1.04 ± 0.54	5.42 ± 0.70	-1.67 ± 1.28	0.149 ± 0.008 [19, 20, 27]	
$\Lambda_c^+ o p \eta'$	0.052 ± 0.009	-0.54 ± 0.19	0.76 ± 0.30	4.73 ± 0.73	2.28 ± 0.14	0.049 ± 0.009	
$\Xi_c^0 \to \Xi^- \pi^+$	2.83 ± 0.10	-0.72 ± 0.03	4.53 ± 0.81	31.46 ± 1.34	-0.39 ± 0.32	1.80 ± 0.52 [21]	-0.64 ± 0.05
$\Xi_c^+ \to \Xi^0 \pi^+$	0.9 ± 0.2	-0.93 ± 0.07	2.27 ± 0.30	8.18 ± 1.17	-0.36 ± 0.23	1.6 ± 0.8	
Channel	$10^2 \mathcal{R}_X$	α	A	B	$\delta_P - \delta_S$	$10^2(\mathcal{R}_X)_{\mathrm{exp}}$	$lpha_{ m exp}$
$\Xi_c^0 \to \Xi^- K^+$	4.10 ± 0.05	-0.76 ± 0.03	1.04 ± 0.19	7.25 ± 0.31	-0.39 ± 0.32	2.75 ± 0.57	
$\Xi_c^0 \to \Lambda K_S^0$	24.1 ± 1.0	-0.24 ± 0.18	3.18 ± 1.25	19.54 ± 1.76	-1.24 ± 0.29	22.9 ± 1.4 [22]	
$\Xi_c^0 \to \Sigma^0 K_S^0$	3.9 ± 0.7	-0.11 ± 0.67	2.74 ± 0.59	4.17 ± 2.93	-1.70 ± 0.87	3.8 ± 0.7 [22]	
$\Xi_c^0 \to \Sigma^+ K^-$	13.0 ± 1.1	-0.21 ± 0.17	3.89 ± 0.19	2.49 ± 2.13	-2.14 ± 0.63	12.3 ± 1.2 [22]	

if phase shift vanishes, global fit $\rightarrow \alpha \sim 1$; non-unity $\alpha \rightarrow$ non-vanishing phase shift

24

Part of predictions

Channel	$10^3 \mathcal{B}$	α	β	γ	A	B	$\delta_P - \delta_S$
$\Lambda_c^+ o p K_L$	15.37 ± 0.62	-0.03 ± 0.22	0.37 ± 0.33	-0.93 ± 0.13	1.38 ± 1.27	18.48 ± 0.71	1.65 ± 0.62
$n_c \rightarrow p n_L$	15.49 ± 0.65	-0.02 ± 0.22	0.41 ± 0.41	-0.91 ± 0.18	1.54 ± 1.60	18.47 ± 0.97	1.62 ± 0.55
$\Xi_c^+ \to \Sigma^+ K_S$	2.08 ± 2.12	0.94 ± 0.22	-0.17 ± 0.80	0.28 ± 1.15	1.39 ± 0.92	3.19 ± 1.80	-0.18 ± 0.84
$\Box_c \rightarrow \Box \ \mathbf{K} \mathbf{S}$	4.77 ± 3.82	0.88 ± 0.14	-0.42 ± 0.45	-0.24 ± 0.55	1.62 ± 0.90	6.35 ± 2.81	-0.44 ± 0.47
$\Xi_c^+ o p K_{S/L}$	2.00 ± 0.20	-0.38 ± 0.07	0.25 ± 0.25	-0.89 ± 0.09	0.40 ± 0.15	3.86 ± 0.26	2.56 ± 0.44
$\Box_c \rightarrow p \kappa_{S/L}$	2.10 ± 0.19	-0.38 ± 0.07	0.07 ± 0.39	-0.92 ± 0.05	0.34 ± 0.11	4.00 ± 0.21	2.95 ± 0.98
$\Xi_c^+ \to \Sigma^+ \pi^0$	2.16 ± 0.20	-0.07 ± 0.30	0.93 ± 0.14	-0.35 ± 0.37	0.96 ± 0.29	3.96 ± 0.51	1.64 ± 0.32
$\square_c \rightarrow \square \ \pi$	2.32 ± 0.27	0.12 ± 0.20	0.94 ± 0.16	-0.33 ± 0.48	1.01 ± 0.37	4.07 ± 0.73	1.44 ± 0.21
$\Xi_c^+ \to \Sigma^+ \eta$	0.75 ± 0.26	-0.02 ± 0.57	-0.64 ± 0.43	-0.77 ± 0.35	0.36 ± 0.24	3.09 ± 0.76	-1.60 ± 0.89
$\Xi_c \to Z \eta$	1.09 ± 0.47	-0.01 ± 0.56	-0.23 ± 0.64	-0.97 ± 0.15	0.15 ± 0.39	3.95 ± 0.96	-1.60 ± 2.40
$\Xi_c^+ o \Sigma^+ \eta'$	1.19 ± 0.21	-0.31 ± 0.11	0.92 ± 0.10	-0.24 ± 0.47	0.99 ± 0.35	5.27 ± 0.94	1.90 ± 0.10
$\Box_c \rightarrow \Box \eta$	1.31 ± 0.29	-0.32 ± 0.13	0.81 ± 0.37	-0.49 ± 0.61	0.85 ± 0.52	6.07 ± 1.41	1.95 ± 0.21
$\Xi_c^+ \to \Sigma^0 \pi^+$	3.12 ± 0.13	-0.59 ± 0.04	0.72 ± 0.13	-0.36 ± 0.28	1.13 ± 0.24	4.80 ± 0.56	2.26 ± 0.08
$\Box_c \rightarrow \angle A$	2.89 ± 0.21	-0.56 ± 0.04	0.69 ± 0.28	-0.46 ± 0.40	1.01 ± 0.36	4.78 ± 0.75	2.26 ± 0.22
$\Xi_c^+ \to \Xi^0 K^+$	1.00 ± 0.16	-0.73 ± 0.12	-0.57 ± 0.17	0.38 ± 0.22	1.01 ± 0.14	2.43 ± 0.39	-2.47 ± 0.21
$\square_c \rightarrow \square K$	1.51 ± 0.62	-0.62 ± 0.31	-0.29 ± 1.10	0.73 ± 0.23	1.38 ± 0.32	1.98 ± 0.86	-2.70 ± 1.62
$\Xi_c^0 o \Sigma^0 K_L$	1.24 ± 0.19	-0.20 ± 0.61	-0.63 ± 0.41	0.75 ± 0.43	2.02 ± 0.33	2.35 ± 1.97	-1.88 ± 1.02
$\square_c \rightarrow \square \ K_L$	1.87 ± 0.44	-0.74 ± 1.01	-0.49 ± 1.04	0.47 ± 0.54	2.31 ± 0.44	4.29 ± 2.27	-2.56 ± 1.61
$\Xi_c^0 o \Xi^0 \pi^0$	7.45 ± 0.64	-0.51 ± 0.08	0.34 ± 0.33	-0.79 ± 0.15	1.74 ± 0.64	16.78 ± 1.11	2.56 ± 0.44
	7.72 ± 0.65	-0.51 ± 0.09	0.10 ± 0.53	-0.85 ± 0.10	1.49 ± 0.47	17.37 ± 0.93	2.95 ± 0.98
$\Xi_c^0 o \Xi^0 \eta$	2.87 ± 0.66	0.08 ± 0.20	0.86 ± 0.18	0.50 ± 0.30	3.12 ± 0.45	6.61 ± 2.16	1.48 ± 0.24
$\Box_c \rightarrow \Box \eta$	2.28 ± 0.53	0.24 ± 0.24	0.86 ± 0.24	0.45 ± 0.44	2.73 ± 0.55	6.20 ± 2.51	1.30 ± 0.28
$\Xi_c^0 o \Xi^0 \eta'$	5.31 ± 1.33	-0.59 ± 0.08	0.79 ± 0.07	0.18 ± 0.41	4.87 ± 1.38	23.13 ± 3.82	2.22 ± 0.08
$\Xi_c \to \Xi^* \eta$	5.66 ± 1.62	-0.59 ± 0.09	0.79 ± 0.20	-0.16 ± 0.71	4.24 ± 2.23	28.35 ± 6.88	2.21 ± 0.19

SOME REMARKS

I.
$$\Lambda_c^+ \to \Xi^0 K^+$$

(1) BF & longitudinal decay asymmetry

BESIII I.
$$\begin{cases} |A| = 1.6^{+1.9}_{-1.6} \pm 0.4, \\ |B| = 18.3 \pm 2.8 \pm 0.7, \end{cases}$$
 II.
$$\begin{cases} |A| = 4.3^{+0.7}_{-0.2} \pm 0.4, \\ |B| = 6.7^{+8.3}_{-6.7} \pm 1.6, \end{cases}$$

II.
$$\begin{cases} |A| = 4.3^{+0.7}_{-0.2} \pm 0.4, \\ |B| = 6.7^{+8.3}_{-6.7} \pm 1.6, \end{cases}$$

$$\Gamma = \frac{p_c}{8\pi} \frac{(m_i + m_f)^2 - m_P^2}{m_i^2} \left(|A|^2 + \kappa^2 |B|^2 \right)$$

$$\alpha = \frac{2\kappa |A^*B|\cos(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2}$$

$$\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) = (0.55 \pm 0.07)\%$$

$$\alpha_{\Xi^0K^+} = 0.01 \pm 0.16$$

$$\delta_P - \delta_S = -1.55 \pm 0.25 \pm 0.05$$
 or $1.59 \pm 0.25 \pm 0.05$ rad.

Our fit

$$|A| = 3.89 \pm 0.19, |B| = 2.43 \pm 2.12$$

$$\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) = (0.41 \pm 0.03)\%$$

$$\alpha_{\Xi^0K^+} = -0.16 \pm 0.13$$

I.
$$\Lambda_c^+ \to \Xi^0 K^+$$

(2) phase shift & transverse decay asymmetry

$$\beta = \frac{2\kappa |A^*B| \sin(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2}$$

BESIII
$$\beta_{\Xi^0K^+} = -0.64 \pm 0.69$$

$$\delta_P - \delta_S = -1.55 \pm 0.25 \pm 0.05$$
 or $1.59 \pm 0.25 \pm 0.05$ rad.

$$\delta_P - \delta_S = \arctan(\beta/\alpha)$$

$$\beta_{\Xi^0 K^+} = -0.24 \pm 0.28$$

$$\delta_P - \delta_S = -2.15 \pm 0.65 \text{ rad}$$

$$(\delta_S^{X_i}, \delta_P^{X_i}) \rightarrow (-\delta_S^{X_i}, -\delta_P^{X_i})$$

$$\delta_P - \delta_S = 2 \arctan \frac{\beta}{\sqrt{\alpha^2 + \beta^2} + \alpha}$$

phase-shift sign ambiguity needs to be discerned by upcoming β measurement

2. $\Xi_c^0 \to \Xi^- \pi^+$

Observable	PDG [42]	Belle	Average
$10^{2}\mathcal{B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+})$	1.43 ± 0.32	$1.80 \pm 0.52^*$ [46]	1.80 ± 0.52 [46]

Our fit

Channel	$10^2 \mathcal{B}$	α	A	B	$\delta_P - \delta_S$
$\Xi_c^0 \to \Xi^- \pi^+$	2.83 ± 0.10	-0.72 ± 0.03	4.51 ± 0.79	31.47 ± 1.31	2.76 ± 0.32

Other support:

$$\frac{\tau_{\Lambda_c^+}}{\tau_{\Xi_c^0}} \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = 3\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+) + \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+) - \frac{1}{\sin^2 \theta_C} \mathcal{B}(\Lambda_c^+ \to n \pi^+)$$

$$\tau(\Lambda_c^+) = (202.9 \pm 1.1) \text{ fs},$$

$$\tau(\Xi_c^0) = (150.5 \pm 1.9) \text{ fs.}$$

$$1.31 \pm 0.05$$

$$1.26 \pm 0.05$$

$$1.29 \pm 0.05$$

$$1.27 \pm 0.06$$

$$0.063 \pm 0.009$$

$$0.066 \pm 0.013$$

fitted results measured values

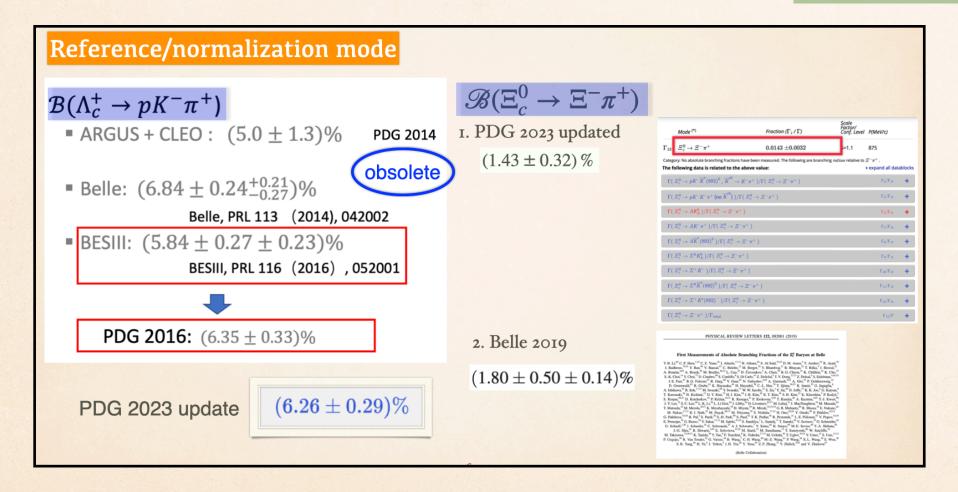
 $\Gamma(~\Xi_c^0 o \Xi^-\mu^+
u_\mu~)/\Gamma(~\Xi_c^0 o \Xi^-\pi^+~)$

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (2.85 \pm 0.30)\%$$

 $\Gamma(~\Xi_c^{\,0} o p {\it K}^-\overline{\it K}^*(892)^0$, $\overline{\it K}^{*0} o {\it K}^-\pi^+$)/ $\Gamma(~\Xi_c^{\,0} o \Xi^-\pi^+$) $\Gamma(~\Xi_c^0 o p K^-K^-\pi^+$ (no \overline{K}^{*0}) $)/\Gamma(~\Xi_c^0 o \Xi^-\pi^+~)$ $\Gamma(~\Xi_c^0 o \Lambda K_S^0~)/\Gamma(~\Xi_c^0 o \Xi^-\pi^+~)$ $\Gamma(~\Xi_c^0 o arLambda \mathit{K}^-\pi^+~)/\Gamma(~\Xi_c^0 o arElse ^-\pi^+~)$ $\Gamma(~\Xi_c^{\,0}
ightarrow arLambda \overline{K}^*(892)^0~)/\Gamma(~\Xi_c^{\,0}
ightarrow \Xi^-\pi^+~)$ $\Gamma(~\Xi_c^0 o \varSigma^0 K_S^0~)/\Gamma(~\Xi_c^0 o \varXi^-\pi^+~)$ $\Gamma(~\Xi_c^0 o \varSigma^+K^-~)/\Gamma(~\Xi_c^0 o \varXi^-\pi^+~)$ $\Gamma(~\Xi_c^0 o arSigma^0 \overline{K}^* (892)^0~) / \Gamma(~\Xi_c^0 o arSigma^- \pi^+~)$ $\Gamma(~\Xi_c^0 o \varSigma^+K^*(892)^-~)/\Gamma(~\Xi_c^0 o \varXi^-\pi^+~)$ $\Gamma(~\Xi_c^0 o \Xi^-\pi^+~)/\Gamma_{
m total}$ $\Gamma(~\Xi_c^0 oarXi_c^-\pi^+~)/\Gamma(~\Xi_c^0 oarXi_c^-\pi^+\pi^+\pi^-~)$ $\Gamma(~\Xi_c^0 o arOmega^-K^+~)/\Gamma(~\Xi_c^0 o arOmega^-\pi^+~)$ $\Gamma(~\Xi_c^0 o \Xi^0 \phi$, $\phi o K^+K^)/\Gamma(~\Xi_c^0 o \Xi^-\pi^+$) $\Gamma(~\Xi_c^0 o\Xi^0 K^+K^-$ nonresonant $)/\Gamma(~\Xi_c^0 o\Xi^-\pi^+~)$ $\Gamma(~\Xi_c^0 o \Xi^- e^+
u_e~)/\Gamma(~\Xi_c^0 o \Xi^-\pi^+~)$

3. $\Xi_c^0 \to \Xi^- K^+$

Channel	$10^2 \mathcal{R}_X$	α $ A $	B	$\delta_P - \delta_S$	$10^2(\mathcal{R}_X)_{\mathrm{exp}}$
$\Xi_c^0 o \Xi^- K^+$	4.10 ± 0.05	$-0.76 \pm 0.03 \ 1.04 \pm 0.18$	7.25 ± 0.30	2.76 ± 0.32	2.75 ± 0.57


Channel TDA	$\widetilde{ ext{TDA}}$
$\Xi_c^0 \to \Xi^- \pi^+ \ 2T - 2E_{1S}$	$2 ilde{T}$
$\Xi_c^0 \to \Xi^- K^+ \ 2T - 2E_{1S}$	$2 ilde{T}$

$$\mathcal{R}_{\Xi^-K^+} = \sin^2\theta_C$$

0.045

measurement of $\Xi_c^0 \to \Xi^- \pi^+$ needs to be improved!

Mode ^(*)	Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level P(MeV/c)
Γ_{13} ${eta_c^0} ightarrow {eta^-} \pi^+$	$0.0143 \pm\! 0.0032$	S=1.1 875
Category: No absolute branching fraction The following data is related to the	ns have been measured. The following are brand te above value:	ching $ratios$ relative to $\mathcal{Z}^-\pi^+$. $lacksquare$ expand all datablocks
$igg[\Gamma(~\Xi_c^{~0} ightarrow p K^- \overline{K}^* (892)^0$, \overline{K}^{*0} –	$ ightarrow K^-\pi^+~)/\Gamma(~\Xi_c^0 ightarrow \Xi^-\pi^+~)$	Γ_2/Γ_{13} +
$\Gamma(~\Xi_c^0 o p extit{K}^- extit{K}^-\pi^+$ (no $\overline{ extit{K}}^{*0}$) $)$	$/\Gamma(~\Xi_c^0 o \Xi^-\pi^+~)$	Γ_3/Γ_{13} +
$\Gamma(~\Xi_c^0 o \Lambda K_S^0~)/\Gamma(~\Xi_c^0 o \Xi^{-1})$	π^+)	Γ_4/Γ_{13} +
$\Gamma(~\Xi_c^0 o arLambda \mathit{K}^-\pi^+~)/\Gamma(~\Xi_c^0 o arLambda$	$\Xi^-\pi^+$)	Γ_5/Γ_{13} $lacktriangle$
$\Gamma(\ \Xi_c^0 ightarrow arLambda \overline{K}^*(892)^0\)/\Gamma(\ \Xi_c^0\ -$	$ ightarrow arpi^-\pi^+$)	Γ_6/Γ_{13} +
$\Gamma(~\Xi_c^0 ightarrow ~\Sigma^0 K_S^0~)/\Gamma(~\Xi_c^0 ightarrow \Xi^0$	$-\pi^+$)	Γ_9/Γ_{13} +
$\Gamma(arXi_c^0 ightarrow arSigma^+ K^-)/\Gamma(arXi_c^0 ightarrow arSigma$	$^{-}\pi^{+}$)	Γ_{10}/Γ_{13} $lacktriangle$
$igg[\Gamma(~\Xi_c^{0} ightarrow arSigma^0 \overline{K}^* (892)^0 ~) / \Gamma(~\Xi_c^{0}$	$ ightarrow {\cal E}^-\pi^+$)	Γ_{11}/Γ_{13} $lacktriangle$
$\Gamma(~\Xi_c^0 o arSigma^+ K^* (892)^-~)/\Gamma(~\Xi_c^0)$	$_{c}^{0} ightarrow\mathcal{\Xi}^{-}\pi^{+}$)	Γ_{12}/Γ_{13} $lacktriangle$
$\Gamma(~\Xi_c^0 o \Xi^-\pi^+~)/\Gamma_{ m total}$		Γ_{13}/Γ +

4. prediction on $\Xi_c^0 \to \Xi^0(\pi^0, \eta, \eta')$

Channel	$10^3 \mathcal{B}$	α	β	γ	A	B	$\delta_P - \delta_S$
$\Xi_c^0\to\Xi^0\pi^0$	7.45 ± 0.64	-0.51 ± 0.08	0.34 ± 0.33	-0.79 ± 0.15	1.74 ± 0.64	16.78 ± 1.11	2.56 ± 0.44
	7.72 ± 0.65	-0.51 ± 0.09	0.10 ± 0.53	-0.85 ± 0.10	1.49 ± 0.47	17.37 ± 0.93	2.95 ± 0.98
$\Xi_c^0 o \Xi^0 \eta$	2.87 ± 0.66	0.08 ± 0.20	0.86 ± 0.18	0.50 ± 0.30	3.12 ± 0.45	6.61 ± 2.16	1.48 ± 0.24
	2.28 ± 0.53	0.24 ± 0.24	0.86 ± 0.24	0.45 ± 0.44	2.73 ± 0.55	6.20 ± 2.51	1.30 ± 0.28
$\Xi_c^0 o \Xi^0 \eta'$	5.31 ± 1.33	-0.59 ± 0.08	0.79 ± 0.07	0.18 ± 0.41	4.87 ± 1.38	23.13 ± 3.82	2.22 ± 0.08
	5.66 ± 1.62	-0.59 ± 0.09	0.79 ± 0.20	-0.16 ± 0.71	4.24 ± 2.23	28.35 ± 6.88	2.21 ± 0.19

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 (\mathrm{stat.}) \pm 0.5 (\mathrm{syst.}) \pm 1.5 (\mathrm{norm.})) \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2 (\mathrm{stat.}) \pm 0.2 (\mathrm{syst.}) \pm 0.4 (\mathrm{norm.})) \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 (\mathrm{stat.}) \pm 0.1 (\mathrm{syst.}) \pm 0.3 (\mathrm{norm.})) \times 10^{-3}$$

Belle II new results

$$\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15 \pm 0.23$$

31

IRA

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q_1, q_2}^{d, s} V_{cq_1} V_{uq_2} (c_1 O_1^{q_1 q_2} + c_2 O_2^{q_1 q_2}) + h.c.$$

$$= \frac{G_F}{\sqrt{2}} \sum_{q_1, q_2}^{d, s} V_{cq_1} V_{uq_2} (c_+ O_+^{q_1 q_2} + c_- O_-^{q_1 q_2}) + h.c.,$$

$$\mathcal{A}_{IRAa} = a_{1} (\mathcal{B}_{c})_{i} (H_{6})_{j}^{ik} (\mathcal{B}_{8})_{k}^{j} M_{l}^{l} + a_{2} (\mathcal{B}_{c})_{i} (H_{6})_{j}^{ik} (\mathcal{B}_{8})_{k}^{l} M_{l}^{j} + a_{3} (\mathcal{B}_{c})_{i} (H_{6})_{j}^{ik} (\mathcal{B}_{8})_{l}^{j} M_{k}^{l}$$

$$+ a_{4} (\mathcal{B}_{c})_{i} (H_{6})_{l}^{jk} (\mathcal{B}_{8})_{j}^{i} M_{k}^{l} + a_{5} (\mathcal{B}_{c})_{i} (H_{6})_{l}^{jk} (\mathcal{B}_{8})_{j}^{l} M_{k}^{i}$$

$$+ a_{6} (\mathcal{B}_{c})_{i} (H_{\overline{15}})_{j}^{ik} (\mathcal{B}_{8})_{k}^{j} M_{l}^{l} + a_{7} (\mathcal{B}_{c})_{i} (H_{\overline{15}})_{j}^{ik} (\mathcal{B}_{8})_{k}^{l} M_{l}^{j} + a_{8} (\mathcal{B}_{c})_{i} (H_{\overline{15}})_{j}^{ik} (\mathcal{B}_{8})_{l}^{j} M_{k}^{l}$$

$$+ a_{9} (\mathcal{B}_{c})_{i} (H_{\overline{15}})_{l}^{jk} (\mathcal{B}_{8})_{j}^{i} M_{k}^{l} + a_{10} (\mathcal{B}_{c})_{i} (H_{\overline{15}})_{l}^{jk} (\mathcal{B}_{8})_{j}^{l} M_{k}^{i}.$$

redundant dof:

$$a'_1 = a_1 - a_5, \quad a'_2 = a_2 + a_5, \quad a'_3 = a_3 + a_5, \quad a'_4 = a_4 + a_5,$$

KPW theorem:

$$a_6 = a_7 = a_8 = a_{10} = 0$$

Minimal set of IRA

$$\begin{split} \mathcal{A}_{\text{IRAa}} = & a_{1} \left(\mathcal{B}_{c} \right)_{i} \left(H_{6} \right)_{j}^{ik} \left(\mathcal{B}_{8} \right)_{k}^{j} M_{l}^{l} + a_{2} \left(\mathcal{B}_{c} \right)_{i} \left(H_{6} \right)_{j}^{ik} \left(\mathcal{B}_{8} \right)_{k}^{l} M_{l}^{j} + a_{3} \left(\mathcal{B}_{c} \right)_{i} \left(H_{6} \right)_{j}^{ik} \left(\mathcal{B}_{8} \right)_{l}^{j} M_{k}^{l} \\ & + a_{4} \left(\mathcal{B}_{c} \right)_{i} \left(H_{6} \right)_{l}^{jk} \left(\mathcal{B}_{8} \right)_{j}^{i} M_{k}^{l} + a_{5} \left(\mathcal{B}_{c} \right)_{i} \left(H_{6} \right)_{l}^{jk} \left(\mathcal{B}_{8} \right)_{j}^{l} M_{k}^{i} \\ & + a_{6} \left(\mathcal{B}_{c} \right)_{i} \left(H_{\overline{15}} \right)_{j}^{ik} \left(\mathcal{B}_{8} \right)_{k}^{j} M_{l}^{l} + a_{7} \left(\mathcal{B}_{c} \right)_{i} \left(H_{\overline{15}} \right)_{j}^{ik} \left(\mathcal{B}_{8} \right)_{k}^{l} M_{l}^{j} + a_{8} \left(\mathcal{B}_{c} \right)_{i} \left(H_{\overline{15}} \right)_{j}^{ik} \left(\mathcal{B}_{8} \right)_{l}^{j} M_{k}^{l} \\ & + a_{9} \left(\mathcal{B}_{c} \right)_{i} \left(H_{\overline{15}} \right)_{l}^{jk} \left(\mathcal{B}_{8} \right)_{j}^{i} M_{k}^{l} + a_{10} \left(\mathcal{B}_{c} \right)_{i} \left(H_{\overline{15}} \right)_{l}^{jk} \left(\mathcal{B}_{8} \right)_{j}^{l} M_{k}^{i}. \end{split}$$

$$\mathcal{A}_{IRAb} = \tilde{f}^{a} (\mathcal{B}_{c})^{ik} (H_{6})_{ij} (\mathcal{B}_{8})_{k}^{j} M_{l}^{l} + \tilde{f}^{b} (\mathcal{B}_{c})^{ik} (H_{6})_{ij} (\mathcal{B}_{8})_{k}^{l} M_{l}^{j} + \tilde{f}^{c} (\mathcal{B}_{c})^{ik} (H_{6})_{ij} (\mathcal{B}_{8})_{l}^{j} M_{k}^{l} + \tilde{f}^{e} (\mathcal{B}_{c})_{i} (H_{\overline{15}})_{l}^{ik} (\mathcal{B}_{8})_{i}^{j} M_{k}^{l}.$$

Unification

Equivalence

$$ilde{T} = rac{1}{2}(-a_2 + a_4 + a_9), \qquad ilde{C} = rac{1}{2}(a_2 - a_4 + a_9), \ ilde{C}' = -a_2 - a_5, \qquad ilde{E_1} = a_3 + a_5, \qquad ilde{E_h} = -a_1 + a_5.$$

$$\tilde{T} = \frac{1}{2}(-a_2 + a_4 + a_9),$$
 $\tilde{C} = \frac{1}{2}(a_2 - a_4 + a_9),$ $\tilde{T} = \frac{1}{2}(\tilde{f}^b + \tilde{f}^e),$ $\tilde{C} = \frac{1}{2}(-\tilde{f}^b + \tilde{f}^e),$ $\tilde{C} = \frac{1}{2}(-\tilde{f}^b + \tilde{f}^e),$ $\tilde{C}' = -a_2 - a_5,$ $\tilde{E}_1 = a_3 + a_5,$ $\tilde{E}_h = -a_1 + a_5.$ $\tilde{C}' = \tilde{f}^b - \tilde{f}^d,$ $\tilde{E}_1 = -\tilde{f}^c,$ $\tilde{E}_h = -\tilde{f}^a,$

Fitted parameters

	$ X_i _S$	$ X_i _P$	$\delta_S^{X_i}$	$\delta_P^{X_i}$		
	$(10^{-2}G)$	$_{F}~ m GeV^{2})$	(in radian)			
$ ilde{T}$	2.37 ± 0.41	16.56 ± 0.69	_	2.76 ± 0.32		
$ ilde{C}$	1.04 ± 1.08	13.82 ± 0.58	-1.97 ± 0.79	-0.37 ± 0.44		
$ ilde{C}'$	2.59 ± 0.95	24.97 ± 1.67	0.29 ± 0.19	2.86 ± 0.36		
$ ilde{E_1}$	4.10 ± 0.20	2.56 ± 2.21	1.18 ± 0.38	-0.96 ± 0.43		
$ ilde{E_h}$	1.54 ± 1.22	19.16 ± 3.00	-1.35 ± 0.60	0.37 ± 0.41		
$ ilde{f}^a $	0.81 ± 1.89	23.02 ± 4.04	_	2.12 ± 1.03		
$ ilde{f}^b$	2.89 ± 1.50	30.56 ± 1.30	2.03 ± 0.61	-1.78 ± 0.98		
$ ilde{f}^c$	4.20 ± 0.18	1.95 ± 2.21	-0.06 ± 1.03	-2.68 ± 1.16		
$ ilde{f}^d$	0.98 ± 0.90	7.25 ± 2.07	2.72 ± 1.29	-2.55 ± 1.00		
$ ilde{f}^e$	2.06 ± 0.62	4.73 ± 2.11	1.09 ± 0.99	-0.94 ± 0.99		

Part of predictions

Channel	$10^2 \mathcal{B}$	α	β	γ	A	B	$\delta_P - \delta_S$	$\mathcal{B}_{ ext{exp}}$	$lpha_{ m exp}$
$\Lambda_c^+ \to \Lambda^0 \pi^+$	1.31 ± 0.05	-0.76 ± 0.01						1.29 ± 0.05	-0.76 ± 0.01
	1.31 ± 0.05			-0.59 ± 0.16					
$\Lambda_c^+ \to \Sigma^0 \pi^+$	1.26 ± 0.05	-0.48 ± 0.02		-0.17 ± 0.35			2.08 ± 0.04	1.27 ± 0.06	-0.47 ± 0.03
	1.25 ± 0.05	-0.48 ± 0.02		-0.39 ± 0.47			2.11 ± 0.13		5.2 5.05
$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.27 ± 0.05	-0.48 ± 0.02		-0.17 ± 0.35			2.08 ± 0.04	1.25 ± 0.09	-0.49 ± 0.03
	1.26 ± 0.05	-0.48 ± 0.02		-0.39 ± 0.47			2.11 ± 0.13		
$\Lambda_c^+ o \Sigma^+ \eta$	0.33 ± 0.04	-0.93 ± 0.04						-0.32 ± 0.04	-0.99 ± 0.06
,	0.31 ± 0.04	-0.95 ± 0.05				8.29 ± 1.35			
$\Lambda_c^+ o \Sigma^+ \eta'$	0.39 ± 0.12	-0.45 ± 0.07	0.89 ± 0.04			23.04 ± 3.76	2.03 ± 0.08	0.44 ± 0.15	-0.46 ± 0.07
,	0.41 ± 0.13	-0.46 ± 0.07		-0.38 ± 0.82			2.09 ± 0.22		
$\Lambda_c^+ o \Xi^0 K^+$	0.41 ± 0.03	-0.16 ± 0.13				2.43 ± 2.12		0.55 ± 0.07	0.01 ± 0.16
	0.42 ± 0.03	-0.19 ± 0.12							
$\Lambda_c^+ \to \Lambda^0 K^+$	0.0639 ± 0.0030		0.83 ± 0.04				2.17 ± 0.06	0.0635 ± 0.0031	-0.585 ± 0.052
	0.0039 ± 0.0030			-0.11 ± 0.50			2.18 ± 0.08		
$\Lambda_c^+ o \Sigma^0 K^+$	0.0376 ± 0.0032			-0.76 ± 0.17			2.56 ± 0.44	0.0382 ± 0.0051	-0.55 ± 0.20
	0.0388 ± 0.0032			-0.83 ± 0.11			2.95 ± 0.98		
$\Lambda_c^+ o \Sigma^+ K_S$	0.0377 ± 0.0032			-0.77 ± 0.17			2.56 ± 0.44	0.047 ± 0.014	
	0.0389 ± 0.0032			-0.83 ± 0.11		4.00 ± 0.21	2.95 ± 0.98		
$\Lambda_c^+ \to n \pi^+$	0.063 ± 0.009	-0.78 ± 0.13					-2.47 ± 0.30	0.066 ± 0.013	
	0.059 ± 0.008	-0.81 ± 0.14					-2.52 ± 0.27		
$\Lambda_c^+ o p \pi^0$	0.0176 ± 0.0032						-1.69 ± 0.76	$0.0156^{+0.0075}_{-0.0061}$	
	0.0208 ± 0.0045								
$\Lambda_c^+ o p K_S$	1.55 ± 0.06 1.57 ± 0.06	0.01 ± 0.24 0.03 ± 0.24		-0.93 ± 0.13 -0.91 ± 0.19			1.54 ± 0.65 1.50 ± 0.54	1.59 ± 0.07	0.18 ± 0.45
	0.151 ± 0.008	0.03 ± 0.24 0.07 ± 0.30		-0.91 ± 0.19 -0.63 ± 0.33			1.30 ± 0.34 1.48 ± 0.38		
$\Lambda_c^+ o p\eta$	0.131 ± 0.008 0.149 ± 0.008	0.07 ± 0.30 0.36 ± 0.29		-0.03 ± 0.33 -0.56 ± 0.44			1.40 ± 0.30 1.12 ± 0.32	0.149 ± 0.008	
$\Lambda_c^+ o p \eta'$	0.149 ± 0.008 0.052 ± 0.008	-0.54 ± 0.19		-0.56 ± 0.44 -0.56 ± 0.35			2.29 ± 0.13		
	0.052 ± 0.008 0.053 ± 0.009	-0.04 ± 0.13 -0.01 ± 0.37		-0.36 ± 0.33 -0.26 ± 0.64			1.59 ± 0.38	0.049 ± 0.009	
$\Xi_c^0\to\Xi^-\pi^+$	2.83 ± 0.10	-0.72 ± 0.03		-0.63 ± 0.13			2.76 ± 0.32	1.80 ± 0.52	-0.64 ± 0.05
	2.87 ± 0.10	-0.72 ± 0.03		-0.68 ± 0.10			2.76 ± 0.62 2.96 ± 0.60		
$\Xi_c^+ \to \Xi^0 \pi^+$	0.9 ± 0.2	-0.93 ± 0.07		-0.09 ± 0.22			2.79 ± 0.23	1.6 ± 0.8	
	0.8 ± 0.1	-0.93 ± 0.09		-0.14 ± 0.28			2.78 ± 0.29		
	0.0 ± 0.1	0.00 ± 0.00	0.00 ± 0.20	0.11 ± 0.20		0.00 ± 1.0		0	

SUMMARY

- In theory
 - * TDA approach to charmed baryon is established.
 - * The unification of TDA & IRA is demonstrated.
 - * The predictions on $\Xi_c^0 \to \Xi^-(\pi^0, \eta, \eta')$ is confirmed by LHCb.
 - A further understanding of strong phase dynamically is required.
- For experiment
 - * The measurement of β , either of $\Lambda_c^+ \to \Xi^0 K^+$ or other modes, is highlighted.
 - * Improved measurement of $\Xi_c^0 \to \Xi^- \pi^+$ and its related are highly expected.