

Institute of High Energy Physics Chinese Academy of Sciences

BESIIL上粲介子强子衰变振幅分析

报告人: 卢泽辉

2024.5.11

√ 引言 ✓ 分析策略和数据集 √ 振幅分析 √总结

粲介子强子衰变振幅分析

√检验非微扰QCD理论

- •测量两体衰变 PP, VP, VV, SP, AP等分支比
- •研究 CP 破坏和SU(3)味道对称性破缺

√理解强子谱

• 为深入探讨轻标量介子提供实验支持

√ 为其他测量提供重要衰变模型

• 强相位测量等

√ BESIII上的粲介子强子衰变振幅分析

- 成果丰富: 二十余篇已发表
- 覆盖面广: 三、四与五体分析
 - 意义重要
 - $D^+ \to K_S^0 \pi^+ \eta$
 - $D^0 \rightarrow \pi^+ \pi^- \eta \& D^0 \rightarrow \pi^+ \pi^0 \eta$
 - $D_{S}^{+} \rightarrow \pi^{+}\pi^{0}\eta$
 - $D_S^+ \rightarrow K_S^0 K_S^0 \pi^+$
 - $D_s^+ \to K_s^0 K^+ \pi^0$

分析策略和数据集

振幅构造:

$$A(p_j) = F_{D_s}^L F_r^L P^L S^L$$

 $F_{D_s,r}^L$: Blatt-Weisskopf barrier factors

 P^L : Propagator

S^L: Spin-dependent angular term **Eur. Phys. J. A 16 (2003) 537**

- $D^{0/+}$: 收集于2011, 2022-2024, 共20 fb⁻¹ @ $E_{cm} = 3.773$ GeV D_s^+ : 收集于2013-2017, 共7.33 fb⁻¹ @ $E_{cm} = 4.128 - 4.226$ GeV
 - 单标记方法(ST): 仅重建标记侧 D介子
 - 相对高的本底
 - 更高的效率

- 双标记方法 (DT): 同时重建信号和标记侧 D介子
 - 低本底 以研究不同衰变过程
 - 标记侧系统误差 几乎被抵消

4

Observation of $D^+ \rightarrow K_S^0 a_0(980)^+$

 D^+ : 无法单独形成一个 \overline{K}^0

四夸克态下的a₀(980)+

Phys. Rev. Lett. 132, 131903 (2024)

q_1	Decay	Amplitude $D \rightarrow SP$
	$D^+ \to f_0 \pi^+$	$\frac{1}{\sqrt{2}}\alpha V_{cd}^* V_{ud}(T+C'+A+A') + \beta V_{cs}^* V_{us}C'$
q_2	$\rightarrow f_0 K^+$	$V_{cd}^* V_{us} \left[\frac{1}{\sqrt{2}} \alpha (T + A') + \beta A \right]$
q_2	$\rightarrow a_0^+ \overline{K}^0$	$V_{cs}^*V_{ud}(T'+C)$ 无E和A贡献
	$\rightarrow a_0^0 \pi^+$	$\frac{1}{\sqrt{2}}V_{cd}^*V_{ud}(-T-C'-A+A')$
\overline{q}_3	$\rightarrow \sigma \pi^+$	$\frac{1}{\sqrt{2}}\beta V_{cd}^* V_{ud}(T+C'+A+A') - \alpha V_{cs}^* V_{us}C'$
	$\rightarrow \bar{\kappa}^0 \pi^+$	$V_{cs}^* V_{ud}(T+C')$
	$\rightarrow \bar{\kappa}^0 K^+$	$V_{cs}^* V_{us} T + V_{cd}^* V_{ud} A$
	$D^0 \to f_0 \pi^0$	$\frac{1}{2}\alpha V_{cd}^* V_{ud}(-C + C' - E - E') + \frac{1}{\sqrt{2}}\beta V_{cs}^* V_{us}C'$
	$\rightarrow f_0 \overline{K}^0$	$V_{cs}^* V_{ud} \left[\frac{1}{\sqrt{2}} \alpha (C+E) + \beta E'\right]$
	$\rightarrow a_0^+ \pi^-$	$V_{cd}^* V_{ud}(T' + E)$
	$\rightarrow a_0^- \pi^+$	$V_{cd}^* V_{ud}(T+E')$
$\bar{U}_{*}(1,400)$	$\rightarrow a_0^+ K^-$	$V_{cs}^* V_{ud}(T' + E)$
$K_0^*(1430)^\circ$	$\rightarrow a_0^0 \overline{K}^0$	$V_{cs}^* V_{ud}(C-E)/\sqrt{2}$
)	$\rightarrow a_0^- K^+$	$V_{cd}^*V_{us}(T+E')$
$\left\{ \right\} \pi^{+}$	$ ightarrow \sigma \pi^0$	$\frac{1}{2}V_{cd}^*V_{ud}\beta(-C+C'-E-E') - \frac{1}{\sqrt{2}}\alpha V_{cs}^*V_{us}C'$

 $a_0(980)^+$

 $_{\bar{\mathcal{A}}} \Big\rangle \bar{K}^0$

- 为图方法研究 $D \rightarrow SP$ 过程提供重要参考
- 理解 $D \rightarrow a_0$ (980)P理论与实验不一致
- 帮助研究a₀(980)性质

Observation of $D \rightarrow a_0(980)\pi$ $\mathcal{B}(D_{s}^{+} \rightarrow a_{0}(980)^{+(0)}\pi^{0(+)}, a_{0}(980)^{+(0)} \rightarrow \pi^{+(0)}\eta$ $= (1.46 \pm 0.15 \pm 0.23)\%$ Phys. Rev. Lett. 123, 112001 (2019) 比其它WA过程大 一个数量级 → 末态相互作用

Observation of a a_0 -like state $a_0(1817)^+$ in D_s^+ $\rightarrow K_{S}^{0}K^{+}\pi^{0}$ Phys. Rev. Lett. 129, 182001 (2022)

可能是a₀(980)⁺⁽⁰⁾的激发态

 $r_{+/-} = \mathcal{B}(D^0 \to a_0(980)^+\pi^-) / \mathcal{B}(D^0 \to a_0(980)^-\pi^+) < 0.05$

- $a_0(980)^{\pm}\pi^{\mp} \oplus D^0 \rightarrow K_S^0 K^{\pm}\pi^{\mp} \oplus \oplus E^{\pm} \oplus E^{\pm}$
- $tar D^{0} \rightarrow \pi^{+}\pi^{-}\eta$ 中仅观察到峰状结构无法确定其存在

 $r_{+/0} = \mathcal{B}(D^+ \to a_0(980)^+ \pi^0) / \mathcal{B}(D^+ \to a_0(980)^0 \pi^+)$ • 对于D+存在来自外/内发射树图贡献

Amplitude	Phase (in unit rad)	FF(%)	Significance (σ)	BF $(\times 10^{-3})$
$D^0 o ho^0 \eta$	0 (fixed)	$15.2 \pm 1.7 \pm 1.0$	> 10	$0.19 \pm 0.02 \pm 0.01$
$D^0 \to a_0(980)^- \pi^+$	$0.06 \pm 0.16 \pm 0.12$	$5.9 \pm 1.3 \pm 1.0$	8.9	$0.07 \pm 0.02 \pm 0.01$
$D^0 \to a_0(980)^+\pi^-$	$-1.06 \pm 0.12 \pm 0.10$	$44.0\pm4.0\pm5.3$	> 10	$0.55 \pm 0.05 \pm 0.07$
$D^0 \to a_2(1320)^+ \pi^-$	$-1.16 \pm 0.25 \pm 0.23$	$2.1\pm0.9\pm0.8$	4.5	$0.03 \pm 0.01 \pm 0.01$
$D^0 \to a_2(1700)^+ \pi^-$	$0.08 \pm 0.17 \pm 0.23$	$5.5 \pm 1.8 \pm 2.7$	6.1	$0.07 \pm 0.02 \pm 0.03$
$D^0 \to (\pi^+\pi^-)_{S-\text{wave}}\eta$	$-0.92 \pm 0.29 \pm 0.14$	$3.9 \pm 1.8 \pm 2.1$	5.3	$0.05 \pm 0.02 \pm 0.03$
$r_{+/-}$		$7.5^{+2.5}_{-0.8} \pm 1.7$	7.7^{*}	
$D^+ \to \rho^+ \eta$	$-4.03 \pm 0.19 \pm 0.13$	$9.3 \pm 3.0 \pm 2.1$	6.0	$0.20 \pm 0.07 \pm 0.05$
$D^+ \to (\pi^+ \pi^0)_V \eta$	$-0.64 \pm 0.22 \pm 0.19$	$15.8 \pm 4.8 \pm 5.2$	4.7	$0.34 \pm 0.11 \pm 0.11$
$D^+ \to a_0(980)^+ \pi^0$	0 (fixed)	$43.7 \pm 5.6 \pm 1.9$	9.1	$0.95 \pm 0.12 \pm 0.05$
$D^+ \to a_0 (980)^0 \pi^+$	$2.44 \pm 0.20 \pm 0.10$	$17.0 \pm 4.4 \pm 1.7$	7.9	$0.37 \pm 0.10 \pm 0.04$
$D^+ \to a_2(1700)^+ \pi^0$	$0.92 \pm 0.20 \pm 0.14$	$4.2\pm2.1\pm0.7$	3.6	$0.09 \pm 0.05 \pm 0.02$
$D^+ \to a_0 (1450)^+ \pi^0$	$0.63 \pm 0.41 \pm 0.30$	$7.0\pm2.8\pm0.7$	4.7	$0.15 \pm 0.06 \pm 0.02$
$r_{+/0}$		$2.6 \pm 0.6 \pm 0.3$	4.0^{*}	_

* The significance is for the test hypothesis r = 1.0.

 $K^*K \rightarrow a_0(980)π$ 重散射的重要性 $\mathcal{B}(a_0(980)^+) > \mathcal{B}(a_0(980)^{-(0)})$ $r_{+/-} = 7.5^{+2.5}_{-0.8} \pm 1.7$ E 图 > T 图 $r_{+/-}$ $r_{+/0} = 2.6 \pm 0.6 \pm 0.3$

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \eta) = (1.24 \pm 0.04 \pm 0.03) \times 10^{-3}$ $\mathcal{B}(D^+ \to \pi^+ \pi^0 \eta) = (2.18 \pm 0.12 \pm 0.05) \times 10^{-3}$

Amplitude analysis of $D^+ \to K_S^0 \pi^+ \pi^0 \pi^0$

BESIII 2022: $\mathcal{B}(D^+ \to K_S^0 \pi^+ \pi^0 \pi^0) = (2.904 \pm 0.062 \pm 0.087)\%$

Source	1	2	3	4	5	6	7	8	
$N_{ m ST}^{ m tot}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
$(K/\pi)^{\pm}$ tracking	_	0.4	0.4	0.2	0.6	0.2	0.6	_	
$(K/\pi)^{\pm}$ PID	_	0.4	0.4	0.2	0.6	0.2	0.6	_	
K_S^0 reconstruction	1.6	1.6	_	1.6	1.6	1.6	_	3.2	
π^0 reconstruction	2.1	2.1	1.4	1.4	0.7	2.1	1.4	0.7	
2D fit	1.8	2.0	1.9	0.8	1.6	4.9	3.5	3.9	MC 模型是系统误
$\Delta E_{\rm sig}$ requirement	0.3	0.6	0.5	0.7	0.4	0.8	0.6	0.6	
Quoted \mathcal{B}	0.12	0.10	0.10	0.10	0.08	0.12	0.07	0.14	4
MC modeling	1.8	0.6	1.2	1.6	2.9	0.8	0.3	—	
MC statistics	0.7	0.8	0.9	0.6	0.8	0.9	0.6	0.5	
QC effect	0.7	0.6	0.6	—	—	—	—	0.7	
Total	3.8	3.3	3.4	3.0	4.0	5.8	4.0	5.2	

丰富的中间过程: $\overline{K}^{*0}, \rho^+, a_1(1260), K_1(1270), K_1(1400) \dots$

• • •

• 轴矢量介子研究

Amplitude analysis of $D^+ \rightarrow K_S^0 \pi^+ \pi^0 \pi^0$ $\stackrel{\text{``alpha}}{=} K_S^0 \pi^+ \pi^0 \pi^0$ **JHEP09(2023)077**

Amplitude	Phase ϕ_n (rad)	FF (%)	Significance (σ)
$D^+ \to K^0_S a_1(1260)^+ [S] (\to \rho^+ \pi^0)$	0.0 (fixed)	$30.0 \pm 3.6 \pm 4.2$	>10
$D^+ \to K_S^0 a_1(1260)^+ (\to f_0(500)\pi^+)$	$4.78 \pm 0.22 \pm 0.20$	$3.5 \pm 1.1 \pm 1.9$	6.9
$D^+ \to \bar{K}_1(1400)^0[S](\to \bar{K}^{*0}\pi^0)\pi^+$	$-3.01 \pm 0.12 \pm 0.16$	$6.0 \pm 1.2 \pm 0.3$	9.6
$D^+ \to \bar{K}_1(1400)^0[D](\to \bar{K}^{*0}\pi^0)\pi^+$	$4.29 \pm 0.16 \pm 0.20$	$2.4 \pm 0.6 \pm 0.2$	6.7
$D^+ \to \bar{K}_1(1400)^0 (\to \bar{K}^{*0} \pi^0) \pi^+$		$8.0 \pm 1.2 \pm 0.4$	
$D^+[S] \to \bar{K}^{*0} \rho^+$	$-3.33 \pm 0.10 \pm 0.17$	$31.8 \pm 2.7 \pm 1.3$	>10
$D^+[P] \to \bar{K}^{*0} \rho^+$	$-1.68 \pm 0.17 \pm 0.16$	$1.7 \pm 0.6 \pm 0.1$	5.0
$D^+ \to \bar{K}^{*0} \rho^+$		$33.6 \pm 2.7 \pm 1.4$	
$D^+[S] \to \bar{K}^{*0}(\pi^+\pi^0)_V$	$-5.60 \pm 0.13 \pm 0.16$	$9.1 \pm 2.0 \pm 1.0$	9.4
$D^+ \to K^0_S(\rho^+ \pi^0)_P$	$0.76 \pm 0.11 \pm 0.24$	$16.5 \pm 1.6 \pm 0.3$	>10

	This work	
$\overline{K}^{*0} ho^+$	$(5.82 \pm 0.49 \pm 0.28)\%$	$(4.8 \pm 1.2 \pm 1.4)\%^{[}$
$K_{S}^{0}a_{1}[S], a_{1} \rightarrow \rho^{+}\pi^{0}$	$(8.66 \pm 1.04 \pm 1.24) \times 10^{-3}$	$(11.97 \pm 0.62 \pm 1.20 \pm 0.44)$

[1] Phys. Rev.D 45 (1992) 2196 [2] Phys. Rev. D 100 (2019) 072008

- 存在 $\overline{K}_1(1400)^0 (\to \overline{K}^{*0}\pi^0)\pi^+$, 无 $K_1(1270)^+\pi^0$, 与理论预期一致
- 与 $D^+ \rightarrow K_S^0 \pi^+ \pi^+ \pi^-$ 一致

Source	Uncertainty $(\%)$
ST yield	0.5
Tracking efficiency	0.1
PID efficiency	0.1
K_S^0 reconstruction	1.6
π^0 reconstruction	1.4
MC sample size	0.6
Quoted BFs	0.1
Amplitude model	0.6
2D fit	0.5
$\Delta E_{\rm sig}$ requirement	0.4
Total	2.4

 $\mathcal{B}(D^+ \to K_S^0 \pi^+ \pi^0 \pi^0) = (2.888 \pm 0.058 \pm 0.069)\%$

需要可靠的 D^0 → 4π 振幅分析 模型为CKM角γ测量提供保障

$D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

• FOCUS,~6000事例,本底~10%

Accepted by CPC

• CLEO,~7000事例,本底~20%

 $D^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

• 无振幅分析结果

11

$D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^- \& D^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

Tag mode	$\bar{D}^0 \rightarrow K^+ \pi^-$	$\bar{D}^0 \rightarrow K^+ \pi^- \pi^0$	$\bar{D}^0 \to K^+ \pi^- \pi^+ \pi^-$	
$N^{\rm ST}$	549586 ± 778	914531 ± 1321	600316 ± 856	
$\epsilon^{ m ST}$	0.6762 ± 0.0004	0.2953 ± 0.0001	$0.3365~\pm~0.0002$	2.93 fb^{-1}
$N^{\rm DT}_{\pi^+\pi^-\pi^+\pi^-}$	1719 ± 42	$2560~\pm~56$	1520 ± 43	
$\epsilon^{\rm DT}_{\pi^+\pi^-\pi^+\pi^-}$	0.2792 ± 0.0006	0.1187 ± 0.0002	0.1221 ± 0.0003	D0、 $-++ 5000 黄石 体 库 000/$
$N_{\pi^+\pi^-\pi^0\pi^0}^{\mathrm{DT}}$ (non- η)	721 ± 32	917 ± 39	562 ± 29	$D^{\circ} \rightarrow \pi^{+}\pi^{-}\pi^{-}\pi^{-}\epsilon \sim 5800$ 争例,纯度~92%
$\epsilon^{\rm DT}_{\pi^+\pi^-\pi^0\pi^0}$ (non- η)	0.0818 ± 0.0003	0.0319 ± 0.0001	0.0334 ± 0.0001	$D^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$, ~2200 事例, 纯度~63%
$\frac{2rR\cos\delta}{1+r^2}$	-0.114 ± 0.004 [31]	$-0.067 \pm 0.005 \ [32]$	$-0.046^{+0.013}_{-0.011}$ [32]	

能量依赖宽度:

 $\Gamma_{a \to bcd}(s) \propto \frac{m_0}{\sqrt{s}} \int \sum_{\text{spin}} |A_{a \to bcd}|^2 \mathrm{d}\Phi_3$

Accepted by CPC

基于振幅分析模型结果

$D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^- \& D^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

:	Commonst	Branching fraction $(\%)$						
	Component	$\pi^+\pi^-\pi^+\pi^-$	$\pi^+\pi^-\pi^0\pi^0$					
·	$D^0 \rightarrow a_1(1260)^+ \pi^-$	$0.566 \pm 0.024 \pm 0.008 \pm 0.110$	$0.546 \pm 0.027 \pm 0.011 \pm 0.069$					
	$D^0 \rightarrow a_1(1260)^- \pi^+$	$0.071 \pm 0.010 \pm 0.001 \pm 0.017$	$0.068 \pm 0.011 \pm 0.001 \pm 0.021$					
ΔΡ	$D^0 \rightarrow a_1 (1260)^0 \pi^0$	_	$0.313 \pm 0.031 \pm 0.007 \pm 0.082$					
/ 11	$D^0 \rightarrow a_1(1640)^+\pi^-$	$0.012 \pm 0.003 \pm 0.000 \pm 0.006$	$0.010 \pm 0.003 \pm 0.000 \pm 0.007$					
	$D^0 \to h_1(1170)^0 \pi^0$	_	$0.012 \pm 0.006 \pm 0.000 \pm 0.010$					
	$D^0 \mathop{\rightarrow} \pi (1300)^+ \pi^-$	$0.222 \pm 0.018 \pm 0.003 \pm 0.031$	$0.148 \pm 0.014 \pm 0.003 \pm 0.025$					
חח	$D^0 \mathop{\rightarrow} \pi (1300)^- \pi^+$	$0.162 \pm 0.016 \pm 0.002 \pm 0.028$	$0.108 \pm 0.011 \pm 0.002 \pm 0.021$					
PP	$D^0 \rightarrow \pi (1300)^0 \pi^0$	_	$0.221 \pm 0.027 \pm 0.005 \pm 0.033$					
	$D^0 \to \pi_2(1670)^0 \pi^0$	_	$0.010 \pm 0.002 \pm 0.000 \pm 0.004$					
	$D^0 \to \rho(770)^0 \rho(770)^0$	$0.193 \pm 0.013 \pm 0.003 \pm 0.022$	_					
	$D^{0} \rightarrow \rho(770)^{0} \rho(770)^{0} [S]$	$0.012 \pm 0.004 \pm 0.000 \pm 0.003$	_					
1717	$D^0 \to \rho(770)^0 \rho(770)^0 [P]$	$0.067 \pm 0.007 \pm 0.001 \pm 0.006$	_					
VV	$D^0 \to \rho(770)^0 \rho(770)^0 [D]$	$0.159 \pm 0.015 \pm 0.002 \pm 0.017$	_					
	$D^0 \to \rho(770)^0 \rho(1450)^0$	$0.017 \pm 0.006 \pm 0.000 \pm 0.008$	_					
	$D^0 {\to} \rho(770)^0 \rho(1450)^0 [P]$	$0.007 \pm 0.003 \pm 0.000 \pm 0.003$	_					
	$D^0 \to \rho(770)^0 \rho(1450)^0 [D]$	$0.010 \pm 0.006 \pm 0.000 \pm 0.008$	-					
	$D^0 \rightarrow ho(770)^+ ho(770)^-$	-	$0.864 \pm 0.040 \pm 0.018 \pm 0.075$					
	$D^0 {\to} \rho(770)^+ \rho(770)^- [S]$	_	$0.124 \pm 0.019 \pm 0.003 \pm 0.033$					
	$D^0 \!\rightarrow\! \rho(770)^+ \rho(770)^- [P]$	_	$0.186 \pm 0.013 \pm 0.004 \pm 0.019$					
	$D^0 {\to} \rho(770)^+ \rho(770)^- [D]$	_	$0.342 \pm 0.029 \pm 0.007 \pm 0.024$					
	$D^0 {\to} \rho(770)^+ \rho(1450)^- [D]$	_	$0.016 \pm 0.008 \pm 0.000 \pm 0.016$					
	$D^0 \rightarrow \rho(770)^0 (\pi\pi)_S$	$0.019 \pm 0.004 \pm 0.000 \pm 0.012$	$0.010 \pm 0.002 \pm 0.000 \pm 0.004$					
	$D^0 \rightarrow (\pi^+\pi^-)_S (\pi\pi)_S$	$0.432 \pm 0.032 \pm 0.006 \pm 0.066$	$0.356 \pm 0.029 \pm 0.007 \pm 0.049$					
TP	$D^0 \to f_2(1270)^0 (\pi \pi)_S$	$0.012 \pm 0.003 \pm 0.000 \pm 0.008$	$0.010 \pm 0.002 \pm 0.000 \pm 0.008$					
V D	$D^0 \rightarrow \omega(782)\pi^0$	_	$0.009 \pm 0.004 \pm 0.000 \pm 0.002$					
V I	$D^0 \mathop{\rightarrow} \phi(1020) \pi^0$	-	$0.014 \pm 0.004 \pm 0.000 \pm 0.003$					

Accepted by CPC

$D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^- \& D^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

	$\mathrm{FF}(\%)$	12	14	17
	1. $D^0 \rightarrow a_1(1260)^+ \pi^-$	-18.6 ± 1.8	-33.5 ± 1.8	2.4 ± 0.8
9 13	2. $D^0 \rightarrow a_1(1260)^- \pi^+$	-7.6 ± 1.0	-12.1 ± 1.1	2.0 ± 0.4
-27.3 ± 2.1 5.2 ± 1.1	3. $D^0 \rightarrow a_1(1260)^0 \pi^0$	0.7 ± 0.1	-34.3 ± 2.6	4.8 ± 1.1
0.1 ± 0.1 3.4 ± 0.5	4. $D^0 \rightarrow a_1(1420)^+ \pi^-$	-0.3 ± 0.1	-0.4 ± 0.1	0.7 ± 0.1
-0.1 ± 0.1 5.4 ± 0.5	5. $D^0 \rightarrow a_1(1640)^+\pi^-$	3.7 ± 0.6	3.0 ± 0.5	-1.3 ± 0.4
0.1 ± 0.1 1.0 ± 0.2	6. $D^0 \rightarrow a_1(1640)^- \pi^+$	1.7 ± 0.5	1.1 ± 0.4	-1.4 ± 0.4
4.9 ± 0.7 -1.6 ± 0.6	7. $D^0 \rightarrow a_2(1320)^+ \pi^-$	0.0 ± 0.0	-0.6 ± 0.2	-0.0 ± 0.0
0.3 ± 0.1 -1.9 ± 0.5	8. $D^0 \rightarrow a_2(1320)^- \pi^+$	-0.0 ± 0.0	1.0 ± 0.2	-0.0 ± 0.0
0.0 ± 0.0 - 0.0 ± 0.0	9. $D^0 \rightarrow h_1(1170)^0 \pi^0$	-0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
-0.0 ± 0.0 0.0 ± 0.0	10. $D^0 \to \pi (1300)^+ \pi^-$	-3.7 ± 0.4	-5.3 ± 0.7	-14.6 ± 1.2
9.2 ± 1.5 -49.2 ± 4.1	11. $D^0 \rightarrow \pi (1300)^- \pi^+$	-3.1 ± 0.4	-1.9 ± 0.6	-11.1 ± 1.1
32 ± 1.0 32 ± 2.2 -39.8 ± 3.9	12. $D^0 \rightarrow \pi (1300)^0 \pi^0$	23.2 ± 2.8	-5.3 ± 1.2	-21.5 ± 2.2
23.3 ± 2.3 2.0 ± 0.5	13. $D^0 \to \pi_2(1670)^0 \pi^0$		-0.6 ± 0.2	-0.0 ± 0.0
2.0 ± 0.3	14. $D^0 \rightarrow \rho(770)^+ \rho(770)^-$		90.9 ± 3.9	-2.1 ± 1.0
-0.6 ± 0.3	15. $D^0 \rightarrow \rho(770)^+ \rho(1450)^- [D]$			-1.0 ± 0.3
0.0 ± 0.0	16. $D^0 \to \rho(770)^0 (\pi \pi)_S$			0.0 ± 0.0
62.8 ± 4.6	17. $D^0 \to (\pi^+\pi^-)_S(\pi\pi)_S$			37.4 ± 3.0
	18. $D^0 \to f_2(1270)^0(\pi\pi)_S$			
	19. $D^0 \to \omega(782)\pi^0$			
	20. $D^0 \to \phi(1020)\pi^0$		=================================	
	913 -27.3 ± 2.1 5.2 ± 1.1 -0.1 ± 0.1 3.4 ± 0.5 0.1 ± 0.1 1.0 ± 0.2 4.9 ± 0.7 -1.6 ± 0.6 0.3 ± 0.1 -1.9 ± 0.5 0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 0.0 ± 0.0 9.2 ± 1.5 -49.2 ± 4.1 23.5 ± 2.3 -39.8 ± 3.9 2.0 ± 0.5 -0.6 ± 0.3 0.0 ± 0.0 62.8 ± 4.6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	$F_{+}^{\pi^{+}\pi^{-}\pi^{+}\pi^{-}}$	F_{\pm}
This work (model-dependent)	$(75.2 \pm 1.1_{\rm stat.} \pm 1.5_{\rm syst.})\%$	(68.9 =
CLEO-c (model-dependent)	$(72.9 \pm 0.9_{\text{stat.}} \pm 1.5_{\text{syst.}} \pm 1.0_{\text{model}})\% [13]$	
CLEO-c (model-independent, global)	$(73.7 \pm 2.8)\% [52]$	
CLEO-c (model-independent, binned)	$(76.9 \pm 2.1_{\text{stat.}} \pm 1.0_{\text{syst.}} \pm 0.2_{K_S \text{ veto}})\%$ [6]	
BESIII (model-independent, global)	$(73.4 \pm 1.5_{\rm stat.} \pm 0.8_{\rm syst.})\%$ [53]	(6

Accepted by CPC

$D^0 \rightarrow a_1(1260)\pi, \pi(1300)\pi, \rho(770)\rho(770)$ 及2($\pi\pi$)_s间存在巨大干涉

 $\overline{r^+\pi^-\pi^0}\pi^0$ (non- η)

 $\pm 1.5_{\rm stat.} \pm 2.4_{\rm syst.})\%$

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \pi^+ \pi^-) = (0.688 \pm 0.010 \pm 0.010)\%$ $\mathcal{B}(D^0 \to \pi^+ \pi^- \pi^0 \pi^0) = (0.951 \pm 0.025 \pm 0.021)\%$ $58.2 \pm 7.7)\% [54]$

其他粲介子强子衰变振幅分析测量

• • • • • •

 $\sqrt{D_{S}^{+}} \rightarrow \pi^{+}\pi^{0}\pi^{0}$: <u>JHEP01(2022)052</u> $\sqrt{D_s^+} \to K^+ \pi^+ \pi^-$: <u>JHEP08 (2022) 196</u> $\sqrt{D_s^+} \to \pi^+ \pi^+ \pi^- \pi^0 : 待发表$ $\sqrt{D_s^+} \rightarrow \pi^+ \pi^+ \pi^- \pi^0 \pi^0$:待发表 $\sqrt{D^0} \rightarrow K_S^0 \pi^0 \eta$:待发表 $\sqrt{D^+} \rightarrow K_S^0 K_S^0 \pi^+$:待发表 $\sqrt{D^+} \rightarrow \pi^+ \pi^0 \pi^0$: 待发表 $\sqrt{D^+} \rightarrow K^+ \pi^+ \pi^- \pi^0$:待发表

✓BESIII上粲介子强子衰变振幅分析研究成果丰富

- 三、四与五体振幅分析的成功研究
- $D \rightarrow VP, SP, AP, VV...$ 等中间过程的精确测量
- *a*₀(980)性质研究
- √未来会有更多的重要结果
 - 20 fb⁻¹数据结果
 - DCS振幅分析研究

谢谢各位老师、同学的聆听!

