

Synergy between LHCb and BESIII charm program (focusing on CKM physics)

Wenbin Qian (钱文斌) University of Chinese Academy of Sciences (中国科学院大学)

> BESIII粲强子物理研讨会 2024/05/12

Outline

- Introduction
- Joint efforts on γ measurements
- Synergy on measurements of CKM matrix element magnitudes
- Conclusion

CP violation in SM

- CP violation essential in explaining matter-antimatter difference in universe
- Complex phases in CKM matrix and PMNS matrix generate CP violation in SM
- CKM matrix: unitary matrix connecting interaction and mass eigenstates

幺正矩阵,标准模型唯一限制条件CKMPMNS
$$\begin{pmatrix} d^I \\ s^I \\ b^I \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
dsb $v_1 & v_2 & v_3$ Interaction eigenstatesMass eigenstatestvImage: Comparison of the second s

- However, CP violation in SM model only contribute tiny to antimatter problem in universe
- Need more sources of CP violation

Unitary test

- Unitarity condition: only requirement in SM
- Closure test of unitary triangle etc

$$\sum_{i} V_{ij}^* V_{ij} = 1$$

$$\sum_{i} V_{ij}^* V_{ik} = 0$$

- All measurements consistent with each other? Yes
- Is current precision enough? No

$$V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* - 1$$

 10^{-5}

 $= -0.00230^{+0.00218}_{-0.00023} (1\sigma)$ $-0.00230^{+0.00237}_{-0.00044} (2\sigma)$ $-0.00230^{+0.00242}_{-0.00065} (3\sigma)$

Direct measurements:

 $\alpha + \beta + \gamma = (179^{+7}_{-6})^{\circ}$

Global fits:

$$\alpha + \beta + \gamma = (179.9^{+1.9}_{-1.7})^{\circ}$$

CKM angle γ

$$A = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)} \qquad \bar{A} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$$

$$A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \propto \sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

- Tree level processes → SM candle, NP normally enters loop diagrams
- Loop level processes suppressed, theoretically clean, $\delta\gamma/\gamma \sim 10^{-7}$
- All QCD parameters (hard to calculate) obtained from experimental measurements (global fit)

Probe γ in different methods

Global combination

LHCb-CONF-2022-003

B decay	D decay	Ref.	Decay	Parameters	Source
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[29]	$B^{\pm} \rightarrow DK^{*\pm}$	$\kappa^{DK^{*\pm}}_{B^{\pm}}$	LHCb
$B^{\pm} ightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	$B^0 \to DK^{*0}$	$\kappa^{DK^{*0}}_{B^0}$	LHCb
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[18]	$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV
$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	[19]	$B^0_s \to D^{\mp}_s K^{\pm}(\pi\pi)$	ϕ_s	HFLAV
$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[31]	$D \rightarrow K^+ \pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c
$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$	[32]	$D \rightarrow K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^0}, r_{L}^{K\pi}\cos\delta_{L}^{K\pi}, r_{L}^{K\pi}\sin\delta_{L}^{K\pi}$	BESIII
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	[29]	$D \rightarrow h^+ h^- \pi^0$	F^+ 0. F^+_{KK} 0	CLEO-c
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ h^-$	[33]	$D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	F^{+}	CLEO-c+BESIII
$B^{\pm} \to DK^{*\pm}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	[33]	$D \rightarrow V^+ 0$	$^{\prime}4\pi$	
$B^{\pm} ightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$	[34]	$D \rightarrow K + \pi^{-} \pi^{-}$	T_D^{max} , θ_D^{max} , k_D^{max}	CLEO-C+LHCD+DESIII
$B^0 ightarrow DK^{*0}$	$D ightarrow h^+ h^-$	[35]	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII
$B^0 ightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	$D o K^0_{ m S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi},\delta_D^{K_{ m S}^0K\pi},\kappa_D^{K_{ m S}^0K\pi}$	CLEO
$B^0 \to DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[36]	$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi}$	LHCb
$B^0 ightarrow D^{\mp} \pi^{\pm}$	$D^+ ightarrow {ar K}^- \pi^+ \pi^+$	[37]			
$B^0_{\circ} ightarrow D^{\mp}_{\circ} K^{\pm}$	$D^+_{*} \rightarrow h^+ h^- \pi^+$	[38]	C.	narm (and b) inputs	
$B_s^{\stackrel{\circ}{0}} \rightarrow D_s^{\stackrel{\circ}{\mp}} K^{\pm} \pi^+ \pi^-$	$D_s^{^s} \rightarrow h^+ h^- \pi^+$	[39]	D decay	Observable(s) Ref.	

Measurements from b-decays

Also constrain D mixing parameters

	0.0000000000000000000000000000000000000	
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]
$D^0 ightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]
$D^0 ightarrow h^+ h^-$	$y_{C\!P}-y_{C\!P}^{K^-\pi^+}$	[42]
$D^0 ightarrow h^+ h^-$	$y_{C\!P}-y_{C\!P}^{K^-\pi^+}$	[15]
$D^0 ightarrow h^+ h^-$	ΔY	[43-46]
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[47]
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[48]
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[49]
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	x, y	[50]
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]
$D^0 \rightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[52]
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^- \ (\mu^- { m tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]

A table for strong phase measurements

Decay modes	Strategy	Quantities	BESIII status	LHCb status
$D ightarrow K^0_S h^+ h^-$	binned	c _i , s _i	3 fb ⁻¹ published; 8 fb ⁻¹ ongoing;	9 fb ⁻¹ published; (5° VS 1°)
$D ightarrow K_S^0 h^+ h^-$	Fourier	$a_c^i, a_s^i, b_c^i, b_s^i$	8 fb ⁻¹ ongoing;	9 fb ⁻¹ ongoing
$D o K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	global and binned	$egin{aligned} R_{K3\pi}, \delta_{K3\pi},\ R^i_{K3\pi}, \delta^i_{K3\pi} \end{aligned}$	3 fb⁻¹ published ; New data ongoing	9 fb ⁻¹ published; (6° VS 6°)
$D o K^+ K^- \pi^+ \pi^-$	global and binned	F_+, c_i, s_i	16 fb ⁻¹ ongoing	9 fb ⁻¹ published (MD); 9 fb ⁻¹ ongoing (MI); (12° VS 10°)
$D o \pi^+ \pi^- \pi^+ \pi^-$	global and binned	F_+, c_i, s_i	3 fb ⁻¹ ongoing	9 fb ⁻¹ ongoing (MI); (9° VS 3°)
$D o K^{\pm} \pi^{\mp} \pi^0$	global	$R = 0.792 \pm 0.033$	3 fb ⁻¹ published New data ongoing	9 fb ⁻¹ published;
$D o K^0_S K^{\pm} \pi^{\pm}$	global	$R=0.70\pm0.08$	8 fb ⁻¹ ongoing	9 fb ⁻¹ published;
$D o K_S^0 \pi^+ \pi^- \pi^0$	global and binned	$F_{+} = 0.238 \pm 0.017,$ c_{i}, s_{i}	3 fb ⁻¹ ongoing	9 fb ⁻¹ ongoing
$D o K^+ K^- \pi^0$	global	$F_{+} = 0.73 \pm 0.06,$ c_{i}, s_{i}	8 fb ⁻¹ published	9 fb ⁻¹ published;
$D o K^+ \pi^-$	global	δ	3 fb ⁻¹ published	9 fb ⁻¹ published;

Charm mixing data

• Neutral charm meson can mix and thus affect the decay rate

- Strong parameters same as those from charm threshold data
- With the inputs of charm mixing related parameters, strong parameters can be constrained: global determination
- Charm mixing offers valuable constrains even with current LHCb data for ADS modes

Constraints from global fit

- Uncertainties from charm threshold around 8°, while including LHCb measurements from charm and beauty gives around 3°
- With 20 fb⁻¹, BESIII will give around 4°
- Strong parameters receive more constrains from charm decays
- Add beauty part further help reducing uncertainties

Global combination results

- Compatible with indirect determination $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}_{\text{CKMfitter}}$
 - **Dominant by** B^+ decays
 - Different decays contribute differently, global combination gives best sensitivity
 - Sensitivity on y parameters improves

CKM observables: magnitude

From S. Descotes-Genon

- $|V_{ud}|$: superallowed nuclear β decays
- $|V_{us}|: K \to \pi l \nu, K \to l \nu, \tau \to K \nu$ etc. + form factors, decay constants
- $|V_{cs}|$, $|V_{cd}|$: (semi-)leptonic charm decays + Lattice inputs
- $|V_{ub}|$, $|V_{cb}|$: (semi-)leptonic *B* decays + Lattice inputs
- $|V_{td}|$, $|V_{ts}|$: Δm_d , Δm_s + bag parameters, decay constants

General on magnitude measurements

• Leptonic decays, only need decay constant of the decaying particle

Precise BF measurements $B[M \to \ell \nu_{\ell}]_{\rm SM} = \frac{G_F^2 m_M m_{\ell}^2}{8\pi} \left(1 - \frac{m_{\ell}^2}{m_M^2}\right)^2 |V_{q_u q_d}|^2 f_M^2 \tau_M (1 + \delta_{em}^{M\ell 2})$

- Semi-leptonic decays, form factor needed (2 when P is Pseudo-scalar, more for vector and fermions) BF as function of q^2 $\frac{d\Gamma(M \to P\ell\nu)}{dq^2} = \begin{bmatrix} G_F^2 | V_{q_Uq_d} |^2 \\ 24\pi^3 \end{bmatrix} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_H^2} \\
 \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) m_M^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (m_M^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$
 - Meson mixing, decay constant and bag parameters

$$\Delta m_{q} = \frac{G_{F}^{2}}{6\pi^{2}} \left| V_{tq}^{*} V_{tb} \right|^{2} M_{W}^{2} S_{0}(x_{t}) B_{q} f_{Bq}^{2} M_{Bq} \widehat{\eta_{B}}$$

BESIII contributions

(Semi-)Leptonic decays

Pure leptonic decays:

 $\begin{array}{l} D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}, \tau^{+} \rightarrow e^{+}\nu_{e}\bar{\nu}_{\tau}, \mbox{ Phys. Rev. Lett. 127, 171801 (2021)} \\ D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}, \tau^{+} \rightarrow \pi^{+}\bar{\nu}_{\tau} \mbox{ \& } D_{s}^{+} \rightarrow \mu^{+}\nu_{\mu}, \mbox{ Phys. Rev. D 104, 052009 (2021)} \\ D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}, \tau^{+} \rightarrow \pi^{+}\pi^{0}\bar{\nu}_{\tau}, \mbox{ Phys. Rev. D 104, 032001 (2021)} \\ D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}, \tau^{+} \rightarrow \mu^{+}\nu_{\mu}\bar{\nu}_{\tau}, \mbox{ arXiv:2303.12468} \\ D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}, \tau^{+} \rightarrow \pi^{+}\bar{\nu}_{\tau}, \mbox{ arXiv:2303.12600} \\ D_{s}^{*+} \rightarrow e^{+}\nu_{e}, \mbox{ arXiv:2304.12159, first experimental result on } f_{D_{s}^{*+}} \end{array}$

Semi-leptonic decays:

 $D^{0} \rightarrow K_{1}(1270)^{-}e^{+}\nu_{e}, \text{Phys. Rev. Lett. 127, 131801 (2021)}$ $D_{s}^{+} \rightarrow a_{0}(980)^{0}e^{+}\nu_{e}, \text{Phys. Rev. D 103, 092004(2021)}$ $D^{0} \rightarrow K^{-}e^{+}\nu_{e} \& D^{+} \rightarrow \bar{K}^{0}e^{+}\nu_{e}, \text{Phys. Rev. D 104, 052008 (2021)}$ $D_{s}^{+} \rightarrow \pi^{0}\pi^{0}e^{+}\nu_{e} \& K_{S}^{0}K_{S}^{0}e^{+}\nu_{e}, \text{Phys. Rev. D 105, L031101 (2022)}$ $D_{s}^{+} \rightarrow \pi^{0}e^{+}\nu_{e}, \text{Phys. Rev. D 106, 112004 (2022)}$ $D_{s}^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu_{e}, \text{arXiv:2303.12927}$ $D_{s}^{+} \rightarrow \eta e^{+}\nu_{e}, \eta' e^{+}\nu_{e}, \text{arXiv:2306.05194}$

Gives the magnitudes of the triangles; could also be used to test QCD

CKMFitter HFLAV21	PTEP2022(2022)083C01 arXiv:2206.07501 [hep-ex]	0.97349±0.00016 0.9701±0.0081	
CLEO	PRD79(2009)052002 , τ _e ν	0.981±0.044±0.021	H=1
CLEO	PRD80(2009)112004 , τ _ρ ν	$1.001 \pm 0.052 \pm 0.019$	⊢ ⊷I
CLEO	PRD79(2009)052001 , τ _π ν	$1.079 \pm 0.068 \pm 0.016$	H +++
BaBar	PRD82(2010)091103, τ _{e,μ} ν	0.953±0.033±0.047	Hat
Belle	JHEP09(2013)139 , τ _{e,μ,π} ν	$1.017 {\pm} 0.019 {\pm} 0.028$	Hell
BESIII 0.482 fb ⁻¹	PRD94(2016)072004 , μν	0.956±0.069±0.020	H+++
CLEO	PRD79(2009)052001 , μν	$1.000 {\pm} 0.040 {\pm} 0.016$	H=1
BaBar	PRD82(2010)091103, μν	$1.032 \pm 0.033 \pm 0.029$	H+1
Belle	JHEP09(2013)139 , μν	0.969±0.026±0.019	1 -1
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	$0.985 {\pm} 0.014 {\pm} 0.014$	•
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , μν	0.973±0.012±0.015	#
RESIII 6.32 fb ⁻¹	PRD104(2021)052009, τ_ν	0.972±0.023±0.016	1
BESIII 6.32 fb ⁻¹	PRD104(2021)032001, τ _o ν	0.980±0.023±0.019	H
BESHI 6.32 fb ⁻¹	PRL127(2021)171801, τ.v	0.978±0.009±0.012	
BESIII 7.33 fb ⁻¹	arXiv:2303.12600 [hep-ex], τ,ν	0.991±0.015±0.013	H
BESHI 7.33 fb ⁻¹	arXiv:2303.12468 [hep-ex], T., V	0.984±0.015±0.010	
BESHI	TV	0.982±0.007±0.008	 Combined
	$ V_{cs} $		1

0	100	200	30
BESIII		252.1±1.7±2.0	Combined
BESIII 7.33 fb ⁻¹	arXiv:2303.12468 [hep-ex], $\tau_{\mu}\nu$	252.7±3.8±2.6	H
BESIII 7.33 fb ⁻¹	arXiv:2303.12600 [hep-ex], $\tau_{\pi} v$	254.3±4.0±3.3	•••
BESIII 6.32 fb ⁻¹	PRL127(2021)171801, $\tau_e v$	251.1±2.4±3.0	H+H
BESIII 6.32 fb ⁻¹	PRD104 (2021)032001, $\tau_{p}v$	251.6±5.9±4.9	HH
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , τ _π ν	249.7±6.0±4.2	⊷ -1
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , μν	249.8±3.0±3.9	H <mark>=H</mark>
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	253.0±3.7±3.6	H <mark>+</mark> H
Belle	JHEP09(2013)139 , μν	248.8±6.6±4.8	H-+-H
BaBar	PRD82(2010)091103, μν	264.9±8.4±7.6	H + H
CLEO	PRD79(2009)052001, μν	256.7±10.2±4.0	H-H-H
BESIII 0.482 fb ⁻¹	PRD94(2016)072004 , μν	245.5±17.8±5.1	 -
Belle	JHEP09(2013)139, T	261.1±4.8±7.2	H+H
BaBar	PRD82(2010)091103, T V	244.6+8.6+12.0	H + + + +
CLEO	PRD79(2009)052001, T_V	277.1±17.5±4.0	
CLEO	PRD80(2009)112004, τ _v v	257.0+13.3+5.0	
HFLAV21 CLEO	arXiv:2206.07501 [hep-ex] PRD79(2009)052002. τ v	252.2±2.5 251.8+11.2+5.3	- <mark>14</mark> -1
FLAG21(2+1+1)	arxiv.2111.07047 [hep-lat]	249.9±0.5	
$FI \wedge C(2+1+1)$	arViv:2111.00840 [hep-lat]	249.9±0.4	
E1M(2+1+1) EMIL $C(2+1+1)$	PRD91(2015)054507 PDD98(2018)074512	247.214.1	- T
PT1(2.1.1)	DDD01/2015)054505		

Talk by Z. Lu

7

Contribution of BESIII to CKM global fit

• However, still much worse than from indirect constrain; need improvements

LHCb contributions

$$\Delta m_{q} = \frac{G_{F}^{2}}{6\pi^{2}} \left| V_{tq}^{*} V_{tb} \right|^{2} M_{W}^{2} S_{0}(x_{t}) B_{q} f_{Bq}^{2} M_{Bq} \widehat{\eta_{B}}, \quad x_{t} = \frac{m_{t}^{2}}{M_{W}^{2}}$$
$$S_{0}(x) = x \left[\frac{1}{4} + \frac{9}{4} \frac{1}{1-x} - \frac{3}{2} \frac{1}{(1-x)^{2}} \right] - \frac{3}{2} \left[\frac{x}{1-x} \right]^{3} \ln x$$

- LHCb not only contributes to $|V_{ub}|$ and $|V_{cb}|$, but also $|V_{tq}|$
- **Uncertainties mainly from Bag parameters (3%) obtained from lattice**

CKM status over years

Conclusion

- Understanding matter-antimatter problem through unitarity test of CKM matrix is important
- Joint efforts from beauty to charmed data (LHCb), charm threshold data (BESIII) and charm mixing data (LHCb) are key to establish world-best sensitivity on γ angle and on charm mixing parameters
- Global efforts also needed on measurements of CKM matrix element magnitude, especially from charmed data

Thank You for Your Attention

QCD: key inputs to extract EW parameters

Precisely calculated by QED

Theoretical inputs as important as experimental measurements

$$\frac{\Gamma_1}{\Gamma_2} = \frac{(\text{Weak})_1}{(\text{Weak})_2} \frac{(\text{EM})_1}{(\text{EM})_2} \frac{(\text{QCD})_1}{(\text{QCD})_2}$$

Ratios generally preferred both experimentally and theoretically

