

Charm Physics at Belle (II)

Outline

Belle and Belle II experimentsCharmed meson

- Search for neutral $D \rightarrow p\ell$
- Search for $D^0 \rightarrow hh'e^+e^-$
- CPV in charm four-body decays
- □ Charmed baryon

Summary

- First search for $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$
- Study of $\Xi_c^0 \rightarrow \Xi^0 h^0$, $h^0 = \pi^0 / \eta / \eta'$
- □ Charm lifetimes at Belle II

Belle [PRD 109, L031101 (2024)]

Belle [PRELIMINARY]

Belle [PRD 107, 052001 (2023); PRD 108, L111102 (2023); arXiv: 2305.12806]

Belle [PRD 109, 052003 (2024)]

Belle + Belle II [PRELIMINARY]

Belle II [PRL 131, 171803 (2023); PRD 107, L031103 (2023); PRL 130, 071802 (2023)]

Belle experiment

KEKB is an asymmetric-energy e⁺e⁻ collider mainly operating near Υ(4S) resonance.
 Belle detector has good performances on momentum/vertex resolution, particle identification...

Belle II experiment

Charm samples at Belle (II)

Search for neutral $D \rightarrow p\ell$

- □ Baryon number violation (BNV) is one of the crucial ingredients to create the matter-antimatter asymmetry as observed in the Universe. [JETP Lett. 5, 24 (1967)]
- □ Analogous to proton decays, the decays of $D^0 \rightarrow \bar{p}\ell^+$ can be explained using leptoquark couplings. [PRD 25, 266 (1982)]
- □ The branching fractions for $D^0 \rightarrow \bar{p}\ell^+$ are predicted to be of the order of $10^{-27} \sim 10^{-39}$. [PRL 32, 438 (1974);
- □ The decays $D \rightarrow p\ell$ simultaneously violate B and L but $\Delta(B L) = 0$. □ BESIII searched for D → pe decay modes:

$$\begin{aligned} \mathcal{B}(\mathrm{D}^{0} \rightarrow \mathrm{\bar{p}e^{+}}) < 1.2 \times 10^{-6} \\ \mathcal{B}(\mathrm{D}^{0} \rightarrow \mathrm{pe^{-}}) < 2.2 \times 10^{-6} \end{aligned}$$

[PRD 105, 032006 (2022)]

■ We report a search for the D meson decay modes $D^0 \rightarrow p\ell^-$, $\overline{D}^0 \rightarrow p\ell^-$, $D^0 \rightarrow \overline{p}\ell^+$, $\overline{D}^0 \rightarrow \overline{p}\ell^+$, where ℓ is e or μ .

non-SM gauge bosons (a) X and (b) Y.

Search for neutral $D \rightarrow p\ell$

□ No signal observed, set upper limits on the branching

fractions at 90% CL.

Search for $D^0 \rightarrow hh'e^+e^-$

- \square FCNC c \rightarrow u $\ell\ell$ are suppressed processes in the SM, interesting place to look for NP.
- □ The $D^0 \to X^0 \ell^+ \ell^-$ can have contributions from both short-distance (SD) and long distance (LD) amplitudes. $\ell \quad \ell$
- SM long-distance contributions dominate, especially near resonances.
- BSM contributions maybe visible far from resonances. [PRD 98, 035041 (2018)]

LHCb: PLB517, 558(2016); PRL 119, 181805 (2017)

Search for $D^0 \rightarrow hh'e^+e^-$

CPV in charm four-body decays

Charge-parity violation (CPV) in charm decays is predicted to be very small $\leq O(10^{-3})$. **D**CPV in D four-body decay was searched with triple-product asymmetries by the FOCUS, [PLB 622, 239 (2005); PRD 84, 031103 (2011); JHEP 10, 005 (2014)] Babar, LHCb, and Belle experiments. **Triple-product** $C_T = \vec{p}_i \cdot (\vec{p}_i \times \vec{p}_k)$ is calculated in the $M \rightarrow P_i P_j P_k P_l$ mother's rest frame, satisfying $CP(C_T) = -C(C_T) = -\overline{C}_T$. $_{\uparrow}\vec{p}_{j}\times\vec{p}_{k}$ □ The T-odd asymmetries are defined as: $A_{\rm T}({\rm D}^+) = \frac{{\rm N}_+({\rm C}_{\rm T}>0) - {\rm N}_+({\rm C}_{\rm T}<0)}{{\rm N}_+({\rm C}_{\rm T}>0) + {\rm N}_+({\rm C}_{\rm T}<0)} \quad \overline{{\rm A}}_{\rm T}({\rm D}^-) = \frac{{\rm N}_-(-\overline{{\rm C}}_{\rm T}>0) - {\rm N}_-(-\overline{{\rm C}}_{\rm T}<0)}{{\rm N}_-(-\overline{{\rm C}}_{\rm T}>0) + {\rm N}_-(-\overline{{\rm C}}_{\rm T}<0)}$ • $A_T(\overline{A}_T) \neq 0$ can also arise from final-state interaction. **T**-odd CP-asymmetry: M rest $a_{CP}^{T-odd} = \frac{1}{2}(A_T - \overline{A}_T).$ frame • a_{CP}^{T-odd} is unaffected by production and reconstruction [Int. J. Mod. Phys. A 19, 2505 (2004)] asymmetries. • $a_{CP}^{T-odd} \propto \sin\phi\cos\delta$ has largest value when $\delta = 0$ ($A_{CP}^{dir} \neq 0$ need $\delta \neq 0$). 10

CPV in charm four-body decays

First search for
$$\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$$

□ Semi-leptonic decay provides a test on Lepton Flavor Universality.

□ Several baryonic neutrino-less semi-leptonic decays have been observed.

channels	Exp. results		
$\mathcal{B}(\Xi^0 \to \Lambda e^+ e^-)$ [PLB 650, 1 (2007)]	$(7.6 \pm 0.6) \times 10^{-6}$		
$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-)$ [PRL 94,021801(2005)]	$(8.6^{+8.6}_{-7.7}) \times 10^{-8}$		
$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-)$ [PRL 120, 221803 (2018)]	$(2.2^{+1.7}_{-1.4}) \times 10^{-8}$		
$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-)$ [ZPHY 228, 151 (1969)]	< 7 × 10 ⁻⁶ , 90% CL		
$\mathcal{B}(\Lambda_b \to \Lambda \mu^+ \mu^-)$ [PRL 107,201802(2011)]	$(1.73 \pm 0.69) \times 10^{-6}$		
$\mathcal{B}(\Lambda_b \to \Lambda \mu^+ \mu^-)$ [JHEP 06,115(2015)]	$(0.96 \pm 0.29) \times 10^{-6}$		
$\mathcal{B}(\Lambda_c \to pe^+e^-)$ [PRD 84,072006(2011)]	$< 5.5 \times 10^{-6}$, 90% CL		
$\mathcal{B}(\Lambda_c \to p\mu^+ \mu^-)$ [PRD 84,072006(2011)]	$< 44 \times 10^{-6}$, 90% CL		
$\mathcal{B}(\Lambda_c \to p\mu^+\mu^-)$ [PRD 97,091101(2018)]	$< 7.7 \times 10^{-8}$, 90% CL		

□ For charmed baryons, only $\Lambda_c^+ \rightarrow p\ell^+\ell^-$ were searched. There are no significant signals.

□ The $\Lambda_c^+ \rightarrow p\ell^+\ell^-$ decays receive both *W*-exchange and FCNC process contributions.

First search for
$$\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$$

□ The Cabibbo-favored Ξ⁰_c → Ξ⁰ℓ⁺ℓ⁻ decay only receive the *W*-exchange contributions.
 □ If observed, the signal channels would allow to test LFU.
 ■ Belle 980/fb [PRD 109, 052003 (2024)]

- Fully reconstruct $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ with $\Xi^0 \to \Lambda \pi^0$ in $e^+e^- \to c\overline{c}$ continuum process using all Belle data.
- Take $\Xi_c^0 \to \Xi^- \pi^+$ as normalization mode.

Taking $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.43 \pm 0.32)\%$, we set upper limits at 90% CL

 $\mathcal{B}(\Xi_{c}^{0} \to \Xi^{0}e^{+}e^{-}) < 9.9 \times 10^{-5}$ $\mathcal{B}(\Xi_{c}^{0} \to \Xi^{0}\mu^{+}\mu^{-}) < 6.5 \times 10^{-5}$

 Theoretical predictions under SU(3) symmetry give upper limits at 2.35 (2.25) × 10⁻⁶ for electron (muon) mode. [PRD 103, 013007 (2021)].

Study of $\Xi_c^0 \rightarrow \Xi^0 h^0$, $h^0 = \pi^0 / \eta / \eta'$

- □ In hadronic weak decays of charmed baryons, nonfactorizable amplitudes play an essential role and lead to difficulties for theoretical predictions.
- □ The Cabibbo-favored $\Xi_c^0 \rightarrow \Xi^0 h^0$ decays only receive nonfactorizable contributions.
- □ Serval theoretical approaches developed to deal with nonfactorizable contributions, give various predictions on branching fractions (in unit of 10^{-3}) and decay asymmetry parameter.

d		<u> </u>							
и	-	_	Reference	Model	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$	$\mathcal{B}(\Xi^0_c \to \Xi^0 \eta')$	$\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$	
		$- \overline{d}$	Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92	[5] 7 Dhua C 55 (50 (1002)
Inner W-emissi	on (Ivanov et al. [6]	quark	0.5	3.7	4.1	0.94	[5] Z. Phys. C 55, 659 (1992)
			Xu, Kamal [7]	pole	7.7	-	-	0.92	[0] PRD 57, 0352 (1998)
		11	Cheng, Tseng [8]	pole	3.8	-	-	-0.78	[/] PRD 40, 2/0 (1992)
🗕 کر		— и	Żenczykowski [9]	pole	6.9	1.0	9.0	0.21	[8] PRD 48, 4188 (1993)
<i>c</i>	>	<i>S</i>	Zou <i>et al.</i> [10]	pole	18.2	26.7	-	-0.77	[9] PRD 50, 5787 (1994)
s	→	<i>S</i>	Sharma, Verma [11]	CA	-	-	-	-0.8	[10] PRD 101, 014011 (2020)
-	2		Cheng, Tseng [8]	\mathbf{CA}	17.1	-	-	0.54	[11] EPJC 7, 217 (1999)
$d \longrightarrow $	11	Geng et al. $[12]$	${ m SU}(3)_{ m F}$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-	[12] PRD 97, 073006 (2018)	
	{	<i>и</i>	Geng et al. $[13]$	${ m SU}(3)_{ m F}$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00^{+0.07}_{-0.00}$	[13] PLB 794, 19 (2019)
		\overline{u}	Zhao <i>et al.</i> [14]	${ m SU}(3)_{ m F}$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-	[14] JHEP 02, 165 (2020)
	\geq (~~	Huang $et \ al. \ [15]$	${ m SU}(3)_{ m F}$	2.56 ± 0.93	-	-	-0.23 ± 0.60	[15] JHEP 03, 143 (2022)
W-exchange	\$ (Hsiao $et al. [16]$	${ m SU}(3)_{ m F}$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	-	[16] JHEP 09, 35 (2022)
8	\geq		Hsiao <i>et al.</i> [16]	$SU(3)_{F}$ -breaking	3.6 ± 1.2	7.3 ± 3.2	-	-	[17] JHEP 02, 235 (2023)
	$ \rightarrow $	<i>u</i>	Zhong $et al. [17]$	${ m SU}(3)_{ m F}$	$1.13^{+0.59}_{-0.49}$	1.56 ± 1.92	$0.683^{+3.272}_{-3.268}$	$0.50^{+0.37}_{-0.35}$	[18] PRD 108, 053004 (2023)
c	>	S	Zhong $et al. [17]$	$SU(3)_{F}$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63^{+5.09}_{-5.14}$	$-0.29^{+0.20}_{-0.17}$	
6		s	Xing et al. $[18]$	${ m SU}(3)_{ m F}$	1.30 ± 0.51	-	-	-0.28 ± 0.18	
5		S							

Need experiment measurement to clarify the theoretical picture.
 First combined Belle and Belle II charm measurement!

Study of $\Xi_c^0 \rightarrow \Xi^0 h^0$, $h^0 = \pi^0 / \eta / \eta'$

- □ First measurements of the branching fractions using combined data: $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3(\text{stat.}) \pm 0.5(\text{syst.}) \pm 1.5(\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2(\text{stat.}) \pm 0.2(\text{syst.}) \pm 0.4(\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3(\text{stat.}) \pm 0.1(\text{syst.}) \pm 0.3(\text{norm.})) \times 10^{-3}$
- Taking $\Xi_c^0 \to \Xi^- \pi^+$ as reference mode; favoriting predictions in $SU(3)_F$ -breaking model [JHEP 02, 235 (2023)].
- First asymmetry parameter $\alpha(\Xi_c^0 → \Xi^0 \pi^0)$ measurement depending and on

$$\frac{\mathrm{dN}}{\mathrm{dcos}\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \mathrm{cos}\theta_{\Xi^0}$$

through a simultaneous fit to Belle and Belle II data samples

 $\alpha(\Xi_{c}^{0} \to \Xi^{0}\pi^{0}) = -0.90 \pm 0.15(\text{stat.}) \pm 0.23(\text{syst.})$

taking $\alpha(\Xi^0 \rightarrow \Lambda \pi^0) = -0.349 \pm 0.009$ (PDG)

Belle + Belle II~1.4/ab PRELIMINARY

Charm lifetimes at Belle II

□ At Belle II, the decay-time resolution is × 2 better than that at Belle/Babar. □ Based on the early Belle II dataset, the most precise charm lifetimes are measured: $\tau(D^0) = 410.5 \pm 1.1 \pm 0.8$ fs, $\tau(D^+) = 1030.4 \pm 4.7 \pm 3.1$ fs, and $\tau(\Lambda_c^+) = 203.20 \pm 0.89 \pm 0.77$ fs.

Charm lifetimes at Belle II

Charm lifetimes at Belle II

In all cases except for Ω⁰_c, Belle II has made the world's highest precision measurement (in some cases after 20 years).

E

LHCb

 $arOmega_{\!c}^{\,0}$

> For Ω_c^0 , the Belle II measurement confirms the longer lifetime measured by LHCb.

Summary

- \square Belle are lasting to produce the fruitful charm results although its data taking finished 14 years
 - ago.
- Search for $D \rightarrow p\ell/D^0 \rightarrow hh'e^+e^-$
- CPV in charm four-body decays
- Search for $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$
- □ Belle II has joined the game.
- Study of $\Xi_c^0\to \Xi^0\pi^0/\Xi^0\eta/\Xi^0\eta'$
- Utilizing the early dataset, we obtain the world best $\tau(D^{0,+})$, $\tau(D_s^+)$, and $\tau(\Lambda_c^+)$ confirmation of LHCb $\tau(\Omega_c^0)$ result.

 \Box More charm results utilizing 1.4 ab⁻¹ of dataset at Belle and Belle II in 2024. Please stay tuned!

Thanks for your attention !

Backup

Backup

TABLE I. $D^0 \to h^- h^{(')+} e^+ e^-$ modes yields, significance, branching fractions, branching fraction upper limits, and the efficiencies of each m_{ee} region [×10⁻⁷]. A fitted yield and a branching fraction are not reported for $K^- K^+ e^+ e^-$ mode with m_{ee} in the m_{η} region since only one event is observed, and the significance is determined from the CL_s distribution.

m_{ee} region	$[MeV/c^2]$	Yield	Significance	B	UL @ 90% CL	Efficiency
$K^-K^+e^+e^-$						
η	520-560	-	$< 0.1\sigma$	-	< 2.3	3.53 ± 0.04
$ ho^0/\omega$	> 675	2.6 ± 1.8	2.0σ	$1.2 \pm 0.9 \pm 0.1$	< 3.0	6.00 ± 0.06
non-resonant	$> 200^{a}$	3.5 ± 3.3	1.5σ	$3.1 \pm 3.0 \pm 0.4$	< 7.7	3.19 ± 0.04
$\pi^{-}\pi^{+}e^{+}e^{-}$						
η	520-560	0.6 ± 2.3	0.3σ	$0.4 \pm 1.4 \pm 0.2$	< 3.2	5.31 ± 0.05
$ ho^0/\omega$	675 - 875	3.7 ± 4.1	0.9σ	$2.0 \pm 2.2 \pm 0.8$	< 6.1	5.69 ± 0.05
ϕ	995 - 1035	3.6 ± 3.2	1.1σ	$1.1 \pm 1.1 \pm 0.2$	< 3.1	9.41 ± 0.06
non-resonant	> 200	-0.2 ± 4.1	$< 0.1\sigma$	$-0.2 \pm 3.4 \pm 0.9$	< 7.2	3.69 ± 0.04
$K^-\pi^+e^+e^-$						
η	520-560	4.0 ± 2.7	1.6σ	$2.2 \pm 1.5 \pm 0.5$	< 5.6	5.09 ± 0.04
$ ho^0/\omega$	675 - 875	110 ± 13	11.8σ	$39.6 \pm 4.5 \pm 2.9$	-	8.01 ± 0.06
ϕ	990-1034	4.6 ± 2.4	2.5σ	$1.4 \pm 0.8 \pm 0.3$	< 2.9	9.19 ± 0.06
$\operatorname{non-resonant}$	> 560	2.2 ± 4.2	0.4σ	$1.3 \pm 2.4 \pm 0.6$	< 6.5	4.89 ± 0.09

^a Excluding resonance regions, which is same for all three modes.