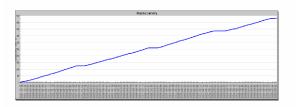
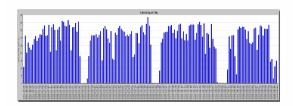
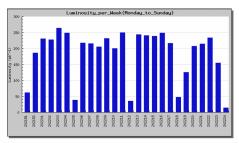
$\psi(3770)$ Round17 Data Taking Report 2024 BESIII Charm Hadron Physics Seminar in Zhengzhou

Yang Gao⁴, Hui Li², Xiaoyu Li¹, Xuhong Li⁴, Zhenxuan Li², Zehui Lu¹, Yu Lu³, Shaoshi Rong¹, Xinyu Shan⁴, Han Zhang⁵, Zeheng Zhang¹, Liaoyuan Dong¹, Cong Geng¹, Baician Ke⁵, Hailong Ma¹, Haiping Peng⁴

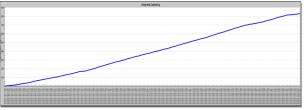
 1 Institute of High Energy Physics, CAS 2 Nankai University 3 Central South University 4 University of Science and Technology of China 5 Zhengzhou University

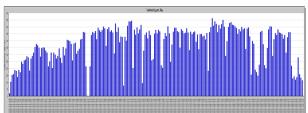

Outline


Data Taking of Round17


Checks on Round17 ψ (3770) Data

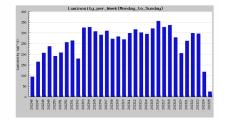
Round15 Data Collected




Total luminosity is up to $4815.775~pb^{-1}$ ended at 2022-06-13 Average per day is $30.480~pb^{-1}$, peak is $43.614~pb^{-1}$ Average per week is $192.033~pb^{-1}$, peak is $264.229~pb^{-1}$ Information can be found at

BESIII Database: http://bes3db.ihep.ac.cn/

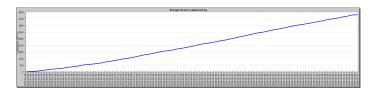
Round16 Data Collected

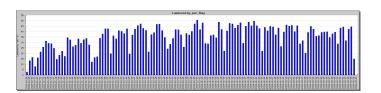


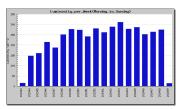
- Total integrated luminosity: 8.2 fb⁻¹
- Average: 38 pb⁻¹/Day

More information:

http://bes3db.ihep.ac.cn/


bes3 bes3charm





Round17 Data Collected (231029-240224)

Integrated Luminosity = 4.212 fb^{-1}

Week Average = 235.945 pb^{-1}

Day Average = 35.178 pb^{-1}

Outline

Data Taking of Round17

Checks on Round17 ψ (3770) Data Check of Luminosity, Han Zhang et al.

Check of Beam Energy, Zehui Lu et al. Check of MDC HV Trip, Shaoshi Rong et al. Check of Single-tag Yields of D Meson, Yang Gao et al.

Data Set

BOSS version: BOSS 7.1.1;

Original Work←

- Data: Round17 231029-240224;
- · Control samples: BhaBha and Di-gamma
- Signal MC: generated by Babayaga-00-00-26, calibrated by round17 ψ (3770) data(BhaBha and digamma);

Parameter	Value	
BeamEnergy	1.8865 GeV	
MinThetaAngle	33.87 deg.	
MaxThetaAngle	146.13 deg.	
MinimumEnergy	0.00158 GeV	
MaximumAcollinearity	180 deg.	
RunningAlpha	1(0 = off, 1 = on)	
FSR Switch	1(0 = off, 1 = on)	

Table: Babayaga Generator Information

6

Summary

Event Selection

BhaBha

- $V_{xy} < 1.0 \text{ cm}; |V_z| < 10.0 \text{ cm for charged tracks};$
- ♦ $0.05 < P_{trk} < E_{beam} + 0.3 \text{ GeV/}c$;
- ♦ 1.0 < *E*_{FMC} < 2.5 GeV:
- ♦ $5^{\circ} < |\Delta \phi_{\mathsf{EMC}}| < 40^{\circ},$ $(\Delta \phi_{\mathsf{EMC}} = |\phi_1 - \phi_2| - 180^{\circ});$
- $ightharpoonup |\cos \theta_{\rm EMC}| < 0.80;$
- ♦ $N_{Good} = 2$ and $Q_1 + Q_2 = 0$:

Di-gamma

- ightharpoonup $E_{\text{EMC}} > 0.7 E_{\text{beam}};$
- $ightharpoonup |\cos \theta_{\rm EMC}| < 0.80;$
- $igwedge N_{\gamma} \geq$ 2 and $N_{\mathsf{Good}} = 0;$
- $|\Delta \phi_{\gamma}| < 2.0$;
- $|\Delta \theta_{\gamma}| < 10.0$;

BhaBha: Distributions of Observables

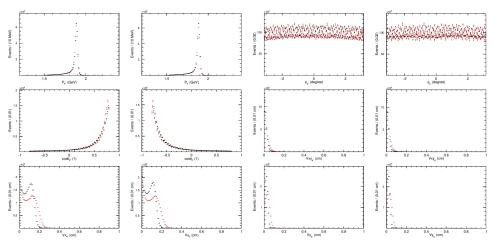


Figure: Black is data, red is MC

BhaBha: Distributions of Observables

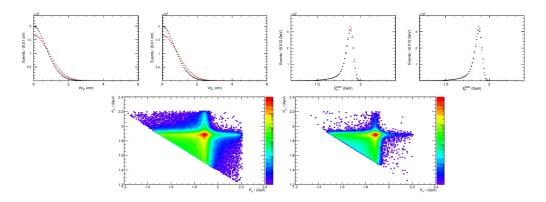


Figure: Black is data, red is MC. For 2D Plots, left is data and right is MC

Online & Offline Luminosity

The luminosity is calculated by following formula

$$L = \frac{N_{obs}}{\sigma \times \epsilon}$$

where N_{obs} is the total number of observed signal events, cross section σ is given by accurate QED theoratical calculation and ϵ is estimated by signal MC;

Parameter	BhaBha	Di-gamma
N _{MCGen}	1000000	1000000
N_{MCObs}	611474	746704
N _{obs}	424070312	46915912
σ	148.21 nb	14.62 nb
arepsilon	61.15%	74.67%
Lonline	$4.23~{\rm fb}^{-1}$	$4.23~{\rm fb}^{-1}$
$L_{offline}$	$4.19 \; { m fb}^{-1}$	$4.18~{\rm fb}^{-1}$
Deviation	-0.9%	-1.18%

Run by Run Luminosity

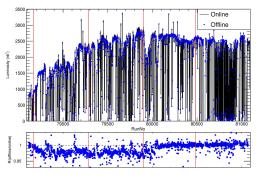


Figure: BhaBha

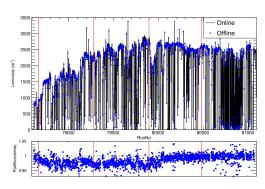


Figure: Di-gamma

Outline

Data Taking of Round17

Checks on Round17 ψ (3770) Data

Check of Luminosity, Han Zhang et al.

Check of Beam Energy, Zehui Lu et al.

Check of MDC HV Trip, Shaoshi Rong et al.

Check of Single-tag Yields of D Meson, Yang Gao et al.

Calibration Method

· Calibration method:

Pair production of $D\overline{D} \Rightarrow$ beam energy = energy of D meson

$$E_b^2(output) = E_b^2(input) + m^2(PDG) - M_{BC}^2(measured)$$

m(PDG): PDG value of D meson

 $E_b(input)$: input beam energy 1.8865 GeV

 $M_{BC}(measured)$: beam constrained mass of D meson $M_{BC} = \sqrt{E_b(input)^2 - P_D^2}$

· Three channels are used in this study:

$$D^0 \to K^-\pi^+$$
, $D^0 \to K^-\pi^+\pi^+\pi^-$, $D^+ \to K^-\pi^+\pi^+$.

Original Work

←

Event Selection

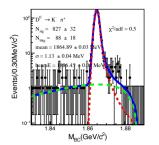
Based on DTagAlg Package in BOSS 7.1.1

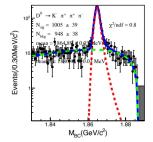
- Charged track selection:
 - $|V_z| \le 10cm, |V_{xy}| \le 1cm, |\cos\theta| \le 0.93$
- \triangleright Cosmic rays rejection for $D^0 \rightarrow K^-\pi^+$
 - The two charged tracks used must have a TOF time difference less than 5ns
 - They must not be consistent with being a muon pair or an electron-positron pair
 - The event will be accepted if the angles between any one good shower and two good charged tracks are larger than 20°

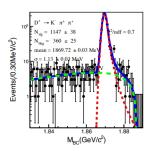
PID:

$$\pi: P(\pi) > P(K)$$

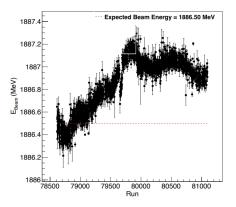
 $K: P(K) > P(\pi)$


Tag D Reconstruction:

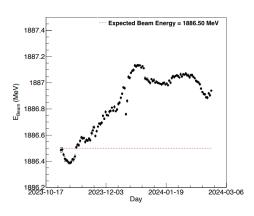

•
$$\Delta E = E_D - E_{beam}$$
, $M_{bc} = \sqrt{E_{beam}^2 - \overrightarrow{P}_D^2}$


- Minimum ΔE is used to select best candidate
- ΔE cut: (-0.025, 0.025) GeV

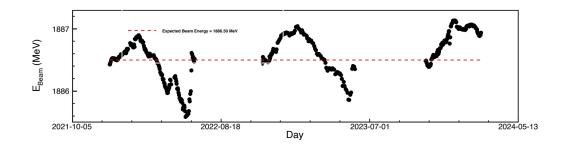
Fit to M_{BC}



Signal: Crystal Ball; Background: ARGUS function.


The means of $m_{\rm BC}$ of D^0 and D^+ are constrained by $m(D^+) - m(D^0) = 4.822$ MeV, quoted from PDG.

Results for Run78615-81094


Calibration beam energy vs Run number

Calibration beam energy vs Date

Results for Round15, 16 and 17 Data

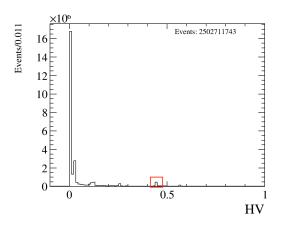
Summary

The calibration for round17 data shows that the average E_{beam} is 1886.85 MeV, which is deviated from expected energy about 0.4 MeV.

Outline

Data Taking of Round17

Checks on Round17 ψ (3770) Data


Check of Luminosity, Han Zhang et al. Check of Beam Energy, Zehui Lu et al.

Check of MDC HV Trip, Shaoshi Rong et al.

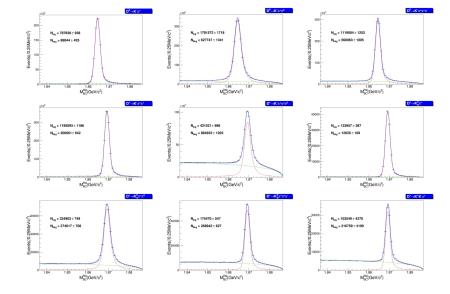
Check of Single-tag Yields of D Meson, Yang Gao et al.

Definition

Voltage drop leads to dE/dx drop, which complies the following relation

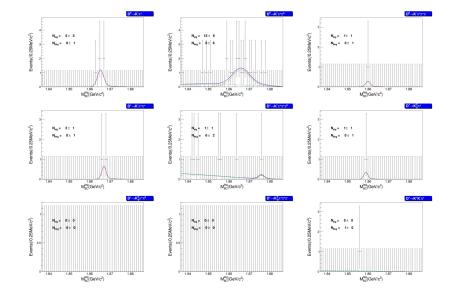
$$\frac{\Delta(\mathrm{d}E/\mathrm{d}x)_m}{(\mathrm{d}E/\mathrm{d}x)_m} \approx 13.6 \cdot \mathrm{HV} \tag{1}$$

where HV(namely Rd) is the average high voltage drop ratio


$$HV = \frac{1}{N_{layer}} \sum_{i=1}^{N_{layer}} \frac{\Delta V_i}{V_i}$$
 (2)

Original Work

←


Fitting When HV < 0.40

Fitting When HV > 0.40

Result

We have 9934078233 events with HV < 0.40 and 3410699 with HV > 0.40. And events with HV > 0.40 accounted for 0.034% of the total.

Decay Mode	D Yields(HV<0.40)	$Ratio(\times 10^{-5})$	D Yields(HV>0.40)	$Ratio(\times 10^{-5})$
$D^0 o {\mathcal K}^-\pi^+$	787839 ± 938	7.931	5 ± 5	0.14
$D^0 o K^-\pi^+\pi^0$	1781572 ± 1718	17.930	15 ± 6	0.43
$D^0 o K^-\pi^+\pi^+\pi^-$	1119504 ± 1253	11.27	1 ± 1	0.02
$D^+ o K^-\pi^+\pi^+$	1195093 ± 1186	12.03	2 ± 1	0.05
$D^+ ightarrow K^- \pi^+ \pi^+ \pi^0$	431521 ± 998	4.344	1 ± 1	0.02
$D^+ o K^0_S\pi^+$	133957 ± 387	1.348	1 ± 1	0.02
$D^+ o K_S^0\pi^+\pi^0$	334903 ± 749	3.371	0 ± 0	0.
$D^+ ightarrow K_S^0 \pi^+ \pi^+ \pi^-$	175470 ± 547	1.766	0 ± 0	0.
$D^+ o K^+ K^- \pi^+$	103549 ± 4270	1.042	0 ± 0	0.

Outline

Data Taking of Round17

Checks on Round17 ψ (3770) Data

Check of Luminosity, Han Zhang et al. Check of Beam Energy, Zehui Lu et al. Check of MDC HV Trip, Shaoshi Rong et al.

Check of Single-tag Yields of D Meson, Yang Gao et al.

Event Selection

9 dominate ST tag modes of D (Based on DTagAlg Package in BOSS 711 & Boss 710)

➤ Good charged tracks:

$$|Rz| \le 10$$
cm, $|Rxy| \le 1$ cm, $|\cos\theta| \le 0.93$

Good Photons:

• Barrel : $E_v > 0.025 \text{GeV}$, $|\cos\theta| \le 0.8$

• Endcap : $E_{\gamma} > 0.05 \text{GeV}$, $0.84 \le |\cos \theta| \le 0.92$

• Time cut: $0 \le T \le 14$ (in unit of 50 ns);

• |dang|> 10°;

> PID (Particle ID Package):

• TOF + dE/dx

• Pion : $prob(\pi) > prob(K)$;

• Kaon: $prob(K) > prob(\pi)$;

 $> \pi^0$ Candidates :

• π^0 : 0.115<M($\gamma\gamma$)<0.150 GeV/c², X^2_{1c} <50;

➤ K_S⁰ Candidates:

• Daughter tracks: |Rz|≤20cm, |cosθ| ≤0.93 :

No PID for tracks

• Mass window: $0.487 < M(\pi^+\pi^-) < 0.511 \text{ GeV/c}^2$.

• Vertex fit $\chi^2 < 100$

• Secondary vertex fit $\chi^2 < 100 \& L/\sigma > 2.0$

Cosmic Ray Veto

> Tag D Reconstruction:

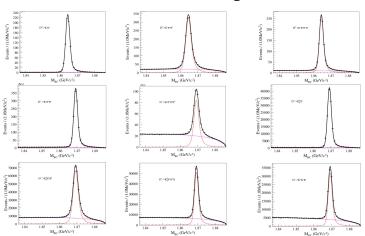
• $\Delta E = E_D - E_{beam}$, $M_{bc} = \sqrt{E_{beam}^2 - \overrightarrow{P}_D^2}$

• Minimum ΔE is used to select best candidate

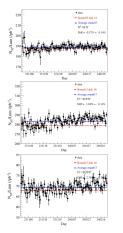
ΔE cut: Same with Xiang Pang's work

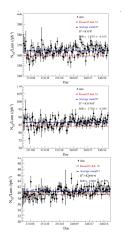
 \succ K_S⁰ Veto for K3 π tag mode:

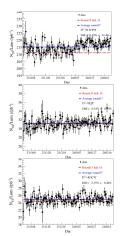
• $|M(\pi^+\pi^-) - 0.4976| > 0.03 \text{ GeV}/c^2$


Original Work←

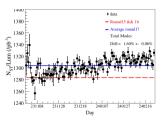
Fit to Data


Signal PDF (MC shape⊗ Gaussian) + Background PDF (Argus function: cutoff = 1.8865)


New data: 231029-240224 @ 711 PID



ST Yields / Offline Lum of Data(231029-240224)



Lum: provided by Han Zhang

ST yields/ ${\rm pb}^{-1}$ (offline) of new data (231029-240224 @ 711) are , mainly from beam shift,higher (\sim 1.6%) than that of the old data (round15 & 16 @ SimplePID) on average, primarily due to beam shift.

Summary • O

- ▶ BESIII round17 data taking collect about 4.2fb⁻¹ data @ 3.770 GeV, total luminosity adds up to more than 20fb⁻¹.
- ▶ Some checks on round17 ψ (3770) has been done:
 - The offline luminosity is, on average, 1.0% lower than the online luminosity;
 - The beam energy is checked with a shift < 0.4 MeV;
 - The HV trip events accounted for 0.034% of the total;
 - ST yields/fb⁻¹is checked with a deviation 0.5% compared with round16 data.

Thank you!