Proposal of data taking plan for research of charmed baryon

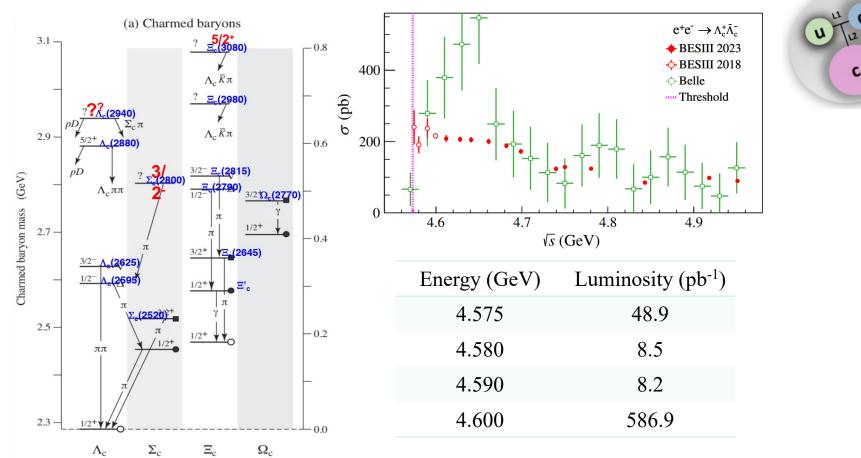
Pei-Rong Li¹, Dong Xiao¹, Xiao-Rui Lyu²

¹Lanzhou University ²University of Chinese Academic of Sciences

2024.05.12

Pei-Rong Li (LZU)

Data taking plan for charm baryon study


2024/05/12

Outline

- Review of research on charmed baryons
- **Part I** Large data taking at certain E_{cm}
- > Part II Data taking at $\Lambda_c^+ \overline{\Lambda}_c^-$ threshold

> Summary

 Λ_c^+ is the ground state charmed baryon, which provide important information to understand strong and weak interactions.

In 2014, BESIII collected the first data of $\Lambda_c^+ \overline{\Lambda}_c^-$ pair at threshold (35 days), leading to a series of important physics results of Λ_c^+ .

Pei-Rong Li (LZU)

First round physics results on Λ_c^+

7 PRL + 10 PRD / PLB / EPJC / CPC produced !

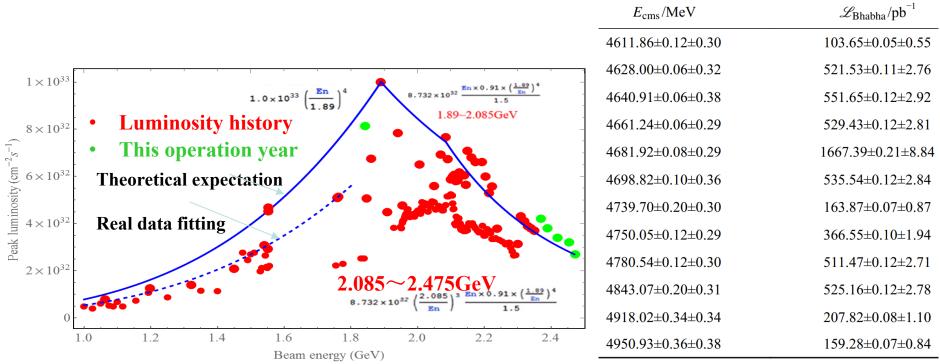
Hadronic decay

$\Lambda_c^+ \rightarrow p K^- \pi^+ + 11 \ hadronic \ decay \ modes$
$\Lambda_c^+ ightarrow p K^+ K^-$, $p \pi^+ \pi^-$
$\Lambda_c^+ \to n K_S^0 \pi^+$
Semi-leptonic decay
$\Lambda_c^+ \to \Lambda e^+ \nu_e$
Inclusive decay
$\Lambda_c^+ \to \Lambda X$
$\Lambda_c^+ \to X e^+ \nu_e$
Production
$\Lambda_c^+ \bar{\Lambda}_c^-$ cross section
Decay Asymmetry
Λ_c^+ weak decay asymmetry
Spin
Λ_c^+ spin

PRL 116, 052001 (2016) PRL 117, 232002 (2016) PRL 118, 12001 (2017)

PRL 115, 221805 (2015)

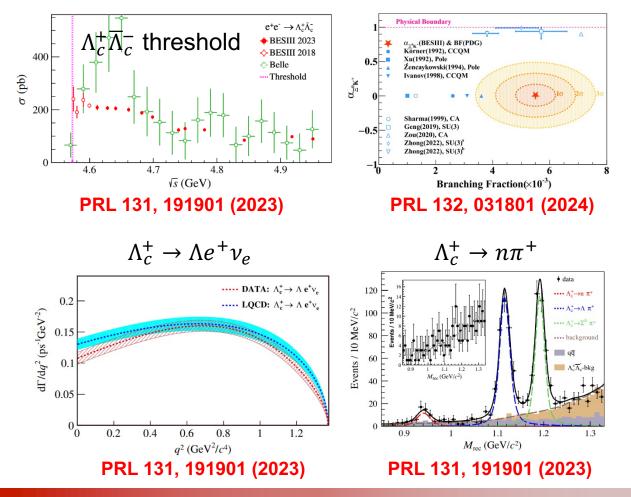
PRL 121, 062003 (2018) PRL 121, 251801 (2018)


PRL 120, 132001 (2018)

PRD 100, 072004 (2019)

PRD 103 L 091101 (2021)

Review


During December 2019 to June 2021, BESIII collected ~5.85fb⁻¹ of data at \sqrt{s} between 4.61 and 4.95 GeV.

This spark another wave of research about Λ_c^+ and contribute to a serious of new important result !

Second round physics results on Λ_c^+

4 PRL + 3 JHEP + 15 PRDL / PRD / PLB / CPC produced ! Highlights: $\Lambda_c^+ \rightarrow \Xi^0 K^+$ decay asymmetry

In summary, BESIII has achieved great success on Λ_c^+ study!

Pei-Rong Li (LZU)

Data taking plan for charm baryon study

What's next for Λ_c^+ ?

- 1. The precisions of measurements for Λ_c^+ decays are still less than the charm meson sector. => (need more data to improve)
- 2. Unique physics goals on BESIII:
 - a) Polarization study;
 - b) Final states containing neutral particles; (*n* or K_L^0)
 - c) Semi-leptonic decays;
 - d) Inclusive decays;
 - e) Quantum correlation;
 - f) Cross section close to threshold.

Part I Large data taking at certain E_{cm}

BEPCII Upgrade:

	BEPCI I @ 2.35GeV	BEPCII- U @ 2.35GeV	BEPCII- U @ 2.8GeV	1×10 ³³ Upgrade VS BEPCII
L $[10^{32} \text{cm}^{-2} \text{s}^{-1}]$	3.5	11	3.7	Luc the second
β_y^* [cm]	1.5	1.35	3.0	2×10 ³²
Beam current [mA]	400	900	450	34. ⁹ . ⁹ .
SR Power [kW]	110	250	250	1.0 1.5 2.0 2.5 Beam energy (GeV)
$\xi_{y,\text{lum}}$	0.029	0.033	0.043	
Emittance [nmrad]	147	152	200	Double beam power &
Couping [%]	0.53	0.35	0.5	Optics upgrade &
Bucket Height	0.0069	0.011	0.009	opties upgrade &
$\sigma_{z,0}$ [cm]	1.54	1.07	1.4	Higher gradient of magnets
σ_{z} [cm]	1.69	1.22	1.6	
RF Voltage [MV]	1.6	3.3	3.3	

Pei-Rong Li (LZU)

Data taking plan for charm baryon study

3 times

BESIII Physics Report

Int. J. Mod. Phys. A 24, S1-794 (2009) [arXiv:0809.1869 [hep-ex]].

Chin. Phys. C 44, 040001 (2020) doi:10.1088/1674-1137/44/4/040001 [arXiv:1912.05983 [hep-ex]].

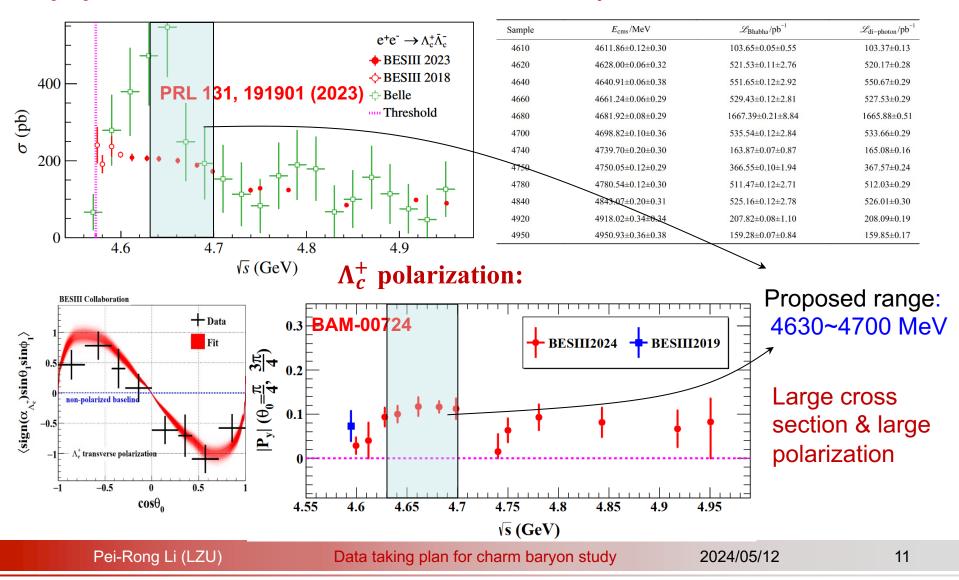
Planned future data set

Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current ($T_{\rm C}$) or upgraded ($T_{\rm U}$) machine. The machine upgrades include top-up implementation and beam current increase.

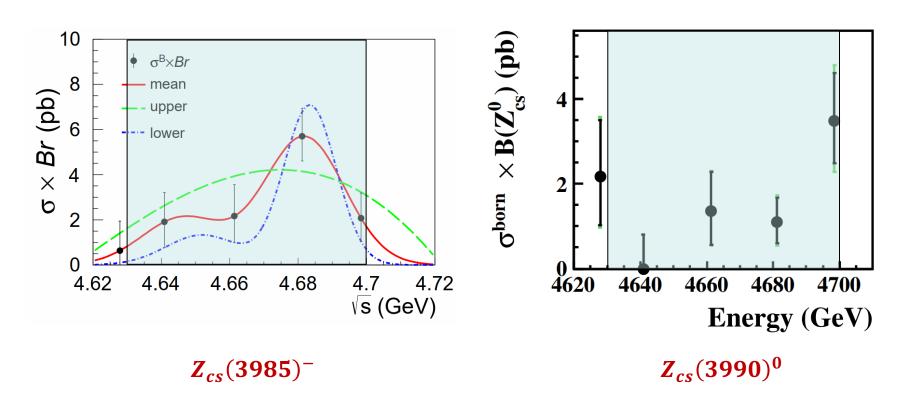
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Energy	Physics motivations	Current data	Expected final data	$T_{ m C}$ / $T_{ m U}$	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.8 - 2.0 GeV	R values	N/A	0.1 fb^{-1}	60/50 days	-
$ \begin{array}{ c c c c c c c c } \hline Cross-sections & (20 energy points) & (additional points) & & & & \\ \hline J/\psi \ peak & Light hadron \& Glueball & 3.2 \ fb^{-1} & 3.2 \ fb^{-1} & N/A \\ \hline J/\psi \ decays & (10 \ billion) & (10 \ billion) & & & \\ \hline \psi(3686) \ peak & Light hadron \& Glueball & 0.67 \ fb^{-1} & 4.5 \ fb^{-1} & 150/90 \ days & \\ \hline Charmonium \ decays & (0.45 \ billion) & (3.0 \ billion) & & \\ \hline \psi(3770) \ peak & D^0/D^{\pm} \ decays & 2.9 \ fb^{-1} & 20.0 \ fb^{-1} & 610/360 \ days & \\ \hline \psi(3770) \ peak & D^0/D^{\pm} \ decays & 2.9 \ fb^{-1} & 20.0 \ fb^{-1} & 610/360 \ days & \\ \hline \hline \psi(3770) \ peak & D^0/D^{\pm} \ decay & 2.9 \ fb^{-1} & 20.0 \ fb^{-1} & 610/360 \ days & \\ \hline \hline \psi(3770) \ peak & D^0/D^{\pm} \ decay & 3.2 \ fb^{-1} & 6 \ fb^{-1} & 140/50 \ days & \\ \hline \hline 4.180 \ GeV & D_s \ decay & 3.2 \ fb^{-1} & 6 \ fb^{-1} & 140/50 \ days & \\ \hline \hline 4.0 \ - 4.6 \ GeV & Higher \ charmonia & 16.0 \ fb^{-1} & 30 \ fb^{-1} & 770/310 \ days & \\ \hline \hline \hline 4.6 \ - 4.9 \ GeV & Charmed \ baryon/XYZ & 0.56 \ fb^{-1} & 15 \ fb^{-1} & 1490/600 \ days & \\ \hline \hline \hline \hline \hline 4.74 \ GeV & \Sigma_c^{+} \Lambda_c^{-} \ cross-section & N/A & 1.0 \ fb^{-1} & 120/50 \ days & \\ \hline \hline \hline 4.74 \ GeV & \Sigma_c^{-} \Lambda_c^{-} \ cross-section & N/A & 1.0 \ fb^{-1} & 120/50 \ days & \\ \hline \hline \hline \hline \hline \Lambda_c^{+} \ data & \\ \hline \hline \hline \hline \hline \end{array}$		Nucleon cross-sections		(fine scan)		_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.0 - 3.1 GeV	R values	Fine scan	Complete scan	250/180 days	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cross-sections				2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\int J/\psi$ peak	Light hadron & Glueball	3.2 fb^{-1}	3.2 fb^{-1}	N/A	
$ \begin{array}{ c c c c c c c } \hline Charmonium decays & (0.45 \ billion) & (3.0 \ billion) \\ \hline \psi(3770) \ peak & D^0/D^{\pm} \ decays & 2.9 \ fb^{-1} & 20.0 \ fb^{-1} & 610/360 \ days \\ \hline 3.8 - 4.6 \ GeV & R \ values & Fine \ scan & No \ requirement & N/A \\ \hline XYZ/Open \ charm & (105 \ energy \ points) & & & \\ \hline 4.180 \ GeV & D_s \ decay & 3.2 \ fb^{-1} & 6 \ fb^{-1} & 140/50 \ days \\ \hline XYZ/Open \ charm & & & \\ \hline 4.0 - 4.6 \ GeV & Higher \ charmonia & 16.0 \ fb^{-1} & 30 \ fb^{-1} & 770/310 \ days \\ \hline 4.6 - 4.9 \ GeV & Charmed \ baryon/XYZ & 0.56 \ fb^{-1} & 15 \ fb^{-1} & 1490/600 \ days \\ \hline \hline 4.6 - 4.9 \ GeV & Charmed \ baryon/XYZ & 0.56 \ fb^{-1} & 15 \ fb^{-1} & 1490/600 \ days \\ \hline \hline 4.74 \ GeV & \Sigma_c^{+} \Lambda_c^{-} \ cross-section & N/A & 1.0 \ fb^{-1} & 120/50 \ days \\ \hline \hline 4.91 \ GeV & \Sigma_c \Sigma_c \ cross-section & N/A & 1.0 \ fb^{-1} & 120/50 \ days \\ \hline \end{array}$	v	1				Completed
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\psi(3686)$ peak	Light hadron & Glueball	$0.67 {\rm ~fb^{-1}}$		150/90 days	Completed
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\psi(3770)$ peak	D^0/D^{\pm} decays	2.9 fb^{-1}	20.0 fb^{-1}	610/360 days	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.8 - 4.6 GeV	R values	Fine scan	No requirement	N/A	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		XYZ/Open charm				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$4.180 {\rm GeV}$	0 0	3.2 fb^{-1}	$6 {\rm fb}^{-1}$	140/50 days	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		XYZ/Open charm				_
$ \begin{array}{c c} \hline cross-sections & at different \sqrt{s} & at different \sqrt{s} \\ \hline 4.6 - 4.9 \ {\rm GeV} & {\rm Charmed \ baryon/XYZ} & 0.56 \ {\rm fb}^{-1} & 15 \ {\rm fb}^{-1} & 1490/600 \ {\rm days} \\ \hline cross-sections & at 4.6 \ {\rm GeV} & at \ different \sqrt{s} \\ \hline \hline 4.74 \ {\rm GeV} & \Sigma_c^+ \bar{\Lambda}_c^- \ cross-section & {\rm N/A} & 1.0 \ {\rm fb}^{-1} & 100/40 \ {\rm days} \\ \hline 4.91 \ {\rm GeV} & \Sigma_c \bar{\Sigma}_c \ cross-section & {\rm N/A} & 1.0 \ {\rm fb}^{-1} & 120/50 \ {\rm days} \\ \hline \end{array} $, -				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4.0 - 4.6 GeV	Higher charmonia			770/310 days	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		cross-sections				-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.6 - 4.9 GeV	- 1			1490/600 days	
$\frac{4.74 \text{ GeV}}{4.91 \text{ GeV}} \sum_{c} \overline{\Sigma_{c}} \text{ cross-section} \qquad N/A \qquad 1.0 \text{ fb}^{-1} \qquad 100/40 \text{ days} \\ \overline{\Sigma_{c}} \overline{\Sigma_{c}} \text{ cross-section} \qquad N/A \qquad 1.0 \text{ fb}^{-1} \qquad 120/50 \text{ days} \qquad \Lambda_{c}^{+} \text{ data}$		cross-sections	at 4.6 GeV			18 fb ⁻¹
	$4.74 \mathrm{GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A		100/40 days	
	$4.91 {\rm GeV}$	$\Sigma_c \bar{\Sigma}_c$ cross-section	,		120/50 days	Λ_{c}^{-} data
	$4.95 \mathrm{GeV}$	Ξ_c decays	N/A	$1.0 {\rm ~fb^{-1}}$	130/50 days	

in 2020-2021, 5.8 fb⁻¹ is taken

Chin. Phys. C 46, 113003 (2022)


Pei-Rong Li (LZU)

Where to take data ?


 $\Lambda_c^+ \overline{\Lambda}_c^-$ cross section:

Part I

Already taken:

Further study of $Z_{cs}(3985)$. The cross section line shapes are:

The proposed range (4670 ~ 4690 MeV) is good for $Z_{cs}(3985)^-$.

Data taking plan for charm baryon study

Improve the precision of Λ_c^+ decays to the level of charmed mesons!

	$N_{h\overline{h}}^{tot}$	N_h^{tag}	SCS	Semi-leptonic
D^0	7.2×10 ⁷	7.9×10 ⁶	K^+K^- : (4.01 ± 0.07)×10 ⁻³ (2%) $\pi^+\pi^-$: (1.454 ± 0.024)×10 ⁻³ (1.7%)	$\pi^{-}e^{+}v_{e}$: (2.91 ± 0.04)×10 ⁻³ (1.4%) $\pi^{-}\pi^{0}e^{+}v_{e}$: (1.45 ± 0.07)×10 ⁻³ (5%)
D^+	5.7×10 ⁷	4.1×10 ⁶	$K_{S}^{0}K^{+}:(2.95 \pm 0.15) \times 10^{-3} (5\%)$ $\pi^{+}\pi^{0}:(1.247 \pm 0.033) \times 10^{-3} (2.6\%)$	$\pi^{0}e^{+}v_{e}:(3.72 \pm 0.17) \times 10^{-3} (5\%)$ $\pi^{+}\pi^{-}e^{+}v_{e}:(2.49 \pm 0.11) \times 10^{-3} (4\%)$
D_s^+	6.2×10 ⁶	5.0×10 ⁵	$K^+\eta$: (1.73 ± 0.08)×10 ⁻³ (5%) $K_S^0\pi^+$: (1.05 ± 0.05)×10 ⁻³ (5%)	$K^0 e^+ v_e$: (3.4 ± 0.4)×10 ⁻³ (12%) $\phi e^+ v_e$: (2.39 ± 0.16)×10 ⁻³ (7%)
Λ_c^+	7.6×10 ⁵	1.2×10 ⁵	$\Lambda K^{+}: (6.21 \pm 0.44) \times 10^{-4} \ (7\%)$ $n\pi^{+}: (6.6 \pm 1.2) \times 10^{-4} \ (18\%)$	$pK^{-}e^{+}v_{e}$: (8.8 ± 1.8)×10 ⁻⁴ (20%) $ne^{+}v_{e}$: (3.57 ± 0.34)×10 ⁻³ (10%)

Baseline: at least about 15 fb⁻¹ $\Lambda_c^+ \overline{\Lambda}_c^-$ is needed to improve the precision to 5%. (about 150 day)

Welcome your suggestion!

13

Part II Data Taking near $\Lambda_c^+ \overline{\Lambda}_c^-$ threshold

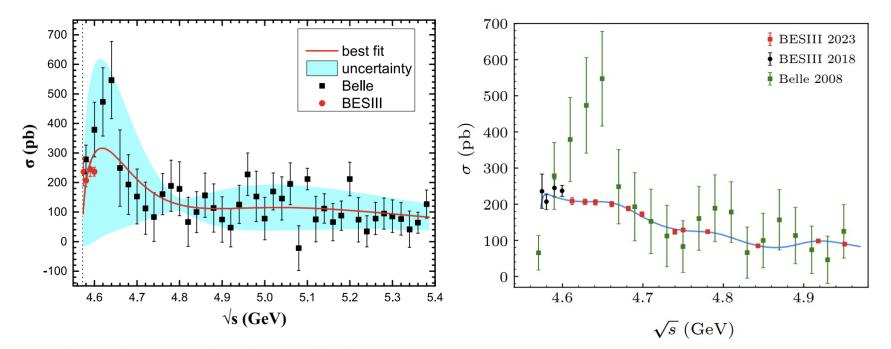
Numerous experiments support non-zero cross sections near baryon threshold ^[1~6]:

To explain the non vanishment of cross section of $e^+e^- \rightarrow B\overline{B}$ (*B* is a spin -1/2 baryon) near threshold^[1~6], Sommerfeld^[7] & Sakharov^[8] put forward the parameterization form based on one-photon exchange(OPEX) assumption:

$$\sigma_{B\bar{B}}(q) = \frac{4\pi\alpha^2 C\beta}{3q^2} [|G_M(q)|^2 + \frac{1}{2\tau} |G_E(q)|^2]$$

where the interaction between the outgoing baryons is considered in the Coulomb factor $C = \varepsilon \cdot R$, which plays a very important role in description of nonzero cross section near threshold due to the enhancement factor $\varepsilon = \pi \alpha / \beta$.

Model for $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$:					
$\sigma = \frac{4\pi\alpha^2\beta C}{3s} \left(G_{\rm M}(q^2) ^2 + \frac{2M_{\Lambda_c^+}^2}{s} G_{\rm E}(q^2) ^2 \right)$					
$s = q^2$ is the invariant mass squared of the e^+e^- system					
$\begin{aligned} \alpha &= e^2/(4\pi) \text{ is the electromagnetic fine structure constant} \\ \beta &= \sqrt{1 - 4M_{A_c^+}^2/s} \text{ is the velocity of baryon } \Lambda_c^+ \qquad \tau = q^2/(4M_{A_c^+}^2) \end{aligned}$					
which is $C(y) = \frac{y}{1-e^{-y}}$ with $y = \frac{\alpha \pi}{\beta} \frac{2M_{A_c^+}}{\sqrt{s}}$					
$\begin{array}{c} \widehat{G}_{\rm E} \text{ and } \widehat{G}_{\rm M} \text{ can be obtained by combining the Pauli and Dirac form factors} \\ \\ G_{\rm E}(q^2) = F_1(q^2) + \tau F_2(q^2), \\ G_{\rm M}(q^2) = F_1(q^2) + F_2(q^2), \\ \end{array} \qquad \begin{array}{c} F_1 = g(s) \Big(f_1 + \sum_{i=1}^4 \beta_i B_{R_i} \Big), \\ F_2 = g(s) \Big(f_2 B_{R_1} + \sum_{i=2}^4 \alpha_i B_{R_i} \Big), \\ \end{array} \qquad \begin{array}{c} B_{R_i} = \frac{M_{R_i}^2}{M_{R_i}^2 - s - iM_{R_i} \Gamma_{R_i}}, \\ g(s) = \frac{1}{(1 - \gamma s)^2} \end{array}$					
$R_1 \equiv \psi(4500), R_2 \equiv \psi(4660), R_3 \equiv \psi(4790), \text{ and } R_4 \equiv \psi(4900)$ State Mass M_R (MeV) Width Γ_R (MeV)					
$ \begin{split} f_1 &= 1 - \beta_1 - \beta_2 - \beta_3 - \beta_4, \\ f_2 &= \mu_{\Lambda_c^+} - 1 - \alpha_2 - \alpha_3 - \alpha_4 \end{split} \\ \begin{array}{c} \hline Parameter & Value & Parameter & Value \\ \hline g_{\Lambda_c} & 1.173 \pm 0.259 & \beta_4 & -0.141 \pm 0.097 \\ \hline \beta_1 & 1.883 \pm 0.484 & \alpha_2 & 1.089 \pm 0.297 \\ \hline \beta_2 & -1.101 \pm 0.302 & \alpha_3 & 0.438 \pm 0.192 \\ \hline \beta_3 & -0.439 \pm 0.194 & \alpha_4 & 0.133 \pm 0.096 \\ \hline \end{array} \\ \begin{array}{c} \hline \psi(4500) & 4500 & 125 \\ \hline \psi(4600) & 4670 & 115 \\ \hline \psi(4790) & 4790 & 100 \\ \hline \psi(4900) & 4900 & 100 \\ \hline \psi(4900) & 4900 & 100 \\ \hline \end{array} \\ \end{split}$					


Pei-Rong Li (LZU)

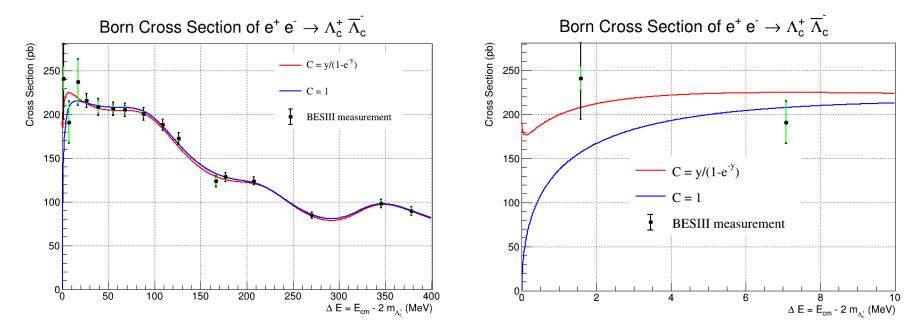
Data taking plan for charm baryon study

2024/05/12

Part II

By employing the vector meson dominance^[9-11] (VMD) model, the electromagnetic form factors (EMFFs) in the formula of cross section can be described well by many theorists group^[12,13]:

The electromagnetic form factors of Λ_c hyperon in the vector meson dominance model


Junyao Wan¹, Yongliang Yang^{2,a}, Zhun Lu^{1,b}

¹ School of Physics, Southeast University, Nanjing 211189, China
 ² College of Physics, Qingdao University, Qingdao 266071, China

$e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ Cross Sections and the Λ_c^+ Electromagnetic Form Factors within the Extended Vector Meson Dominance Model

Cheng Chen(陈诚)^{1,2*}, Bing Yan(闫冰)^{1,3*}, and Ju-Jun Xie(谢聚军)^{1,2,4*}

However, the existence of Coulomb factor C 's effect hasn't been really confirmed, since the current model for baryon cross section can fit to experiment data whether including the Coulomb factor or not:

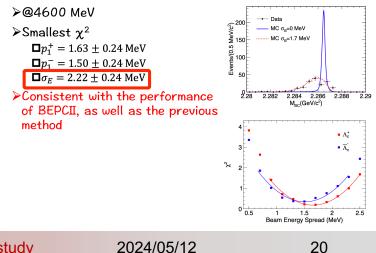
The two line shapes begin to diverge only at the points extremely close to the baryon threshold !

Currently only a few measurements for baryon cross sections touch the region within 2 MeV of the baryon threshold.

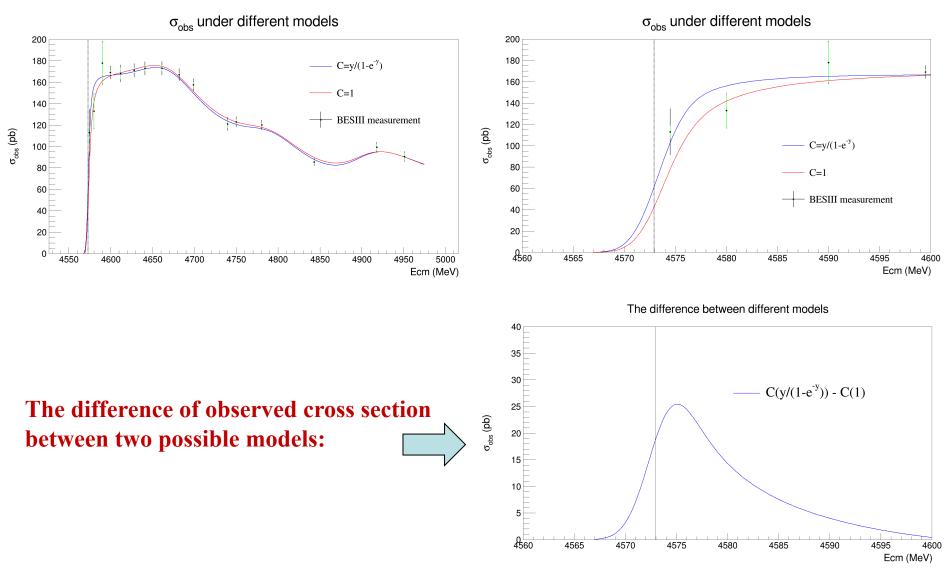
$e^+e^- ightarrow B\overline{B}$	Threshold (MeV)	First √ <i>s</i> point (MeV)	ΔM (MeV)	P_{child}^{max} (1	MeV)
$par{p}$	1876.54	1876 ~ 1880 (ISR)	1.46		0
$n \overline{n}$	1879.13	2000.0	120.87		0
$\Lambda\overline{\Lambda}$	2231.34	2231 ~ 2250 (ISR)	9.16	$(p\pi^{-})$	101
$\Sigma^+\overline{\Sigma}^-$	2378.74	2379 ~ 2440 (ISR)	30.76	$(p\pi^0)$	189
$\Sigma^0 \overline{\Sigma}{}^0$	2385.28	2386.4	1.12	(Λγ)	74
Ξ-Ξ+	2643.42	2644.4	0.98	$(\Lambda \pi^{-})$	140
$\Omega^-\overline{\Omega}^+$	3344.9	3490.0	145.1	(ΛK^{-})	211
$\Lambda_c^+\overline{\Lambda}_c^-$	4572.92	4574.5	1.58	$(pK^{-}\pi^{+}$) 823

Among these baryons, the measurements for cross section of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ has great advantages, since the final state particles of Λ_c^+ still have large momenta to be detected, while other channels are not.

To confirm the non-vanishment of the baryon cross section near threshold, $e^+e^- \rightarrow e^ \Lambda_c^+ \overline{\Lambda_c^-}$ collision data extremely close to the $\Lambda_c^+ \overline{\Lambda_c^-}$ threshold is important !

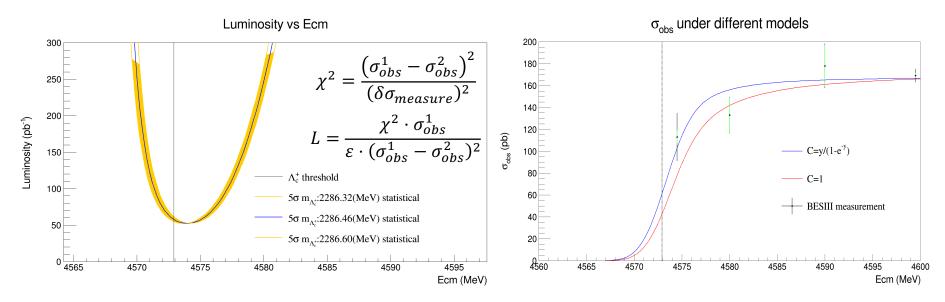

The observed cross section of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ can be derived from of born cross section:

$$\sigma(E_{c.m.},m_{\Lambda_c^+},\delta_w^{BEMS}) = rac{1}{\sqrt{2\pi}\delta_w^{BEMS}}\int_{2m_{\Lambda_c^+}}^\infty \mathrm{d}E_{c.m.}'e^{rac{-(E_{c.m.}-E_{c.m.}')^2}{2(\delta_w^{BEMS})^2}}\int_0^{1-rac{4m^2}{E_{c.m.}'}}\mathrm{d}xF(x,E_{c.m.}')rac{\sigma_1(E_{c.m.}'\sqrt{1-x},m_{\Lambda_c^+})}{\left|1-\prod(E_{c.m.})
ight|^2}$$


which is determined by the cernter-of-mass energy $E_{c.m.}$, baryon mass $m_{\Lambda^+_{c}}$ and beam energy spread δ_w^{BEMS} .

 $F(x, E'_{c.m.})$ is the radiative correction factor $|1 - \Pi(E_{c.m.})|^2$ is the vacuum polarization factor.

Application



Derived observed cross section:

Data taking plan for charm baryon study

Base on statistical method of hypothesis testing, the minimum luminosity needed to distinguish two models with a significance of 5σ is estimated:

Data taken at **4573.6 MeV** (about 0.7 MeV above the threshold) can test the Coulomb factor best in this VMD model. [CPL 41, 021302 (2024)]

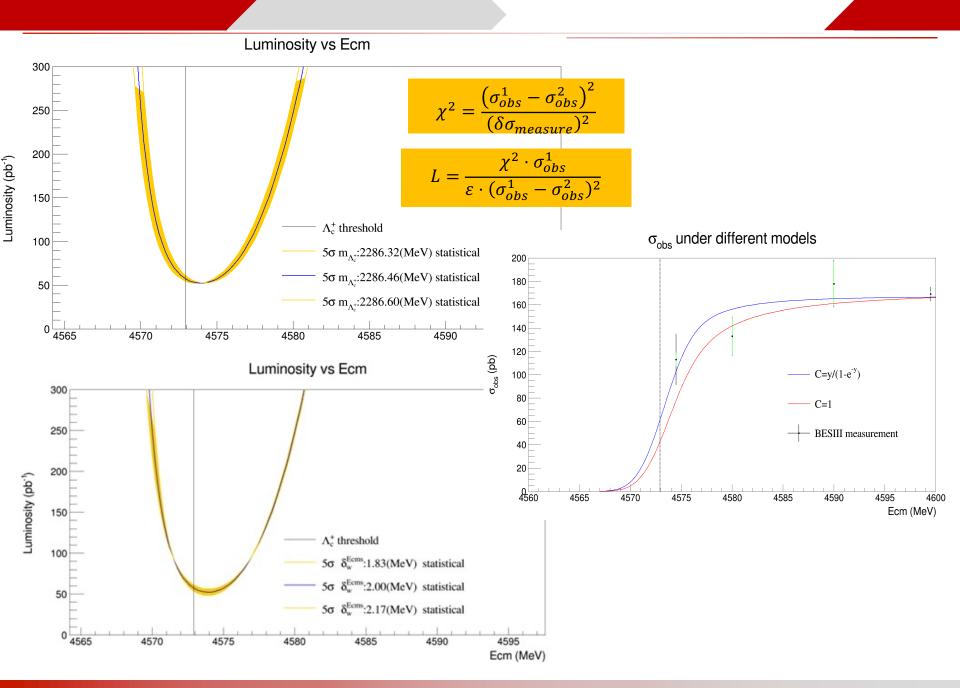
Proposed data taking points: (about 6 day)

<i>E_{cm}</i> (MeV)	4572	4573	4574	4575	4576	4577	All
Luminosity (<i>pb</i> ⁻¹)	100	76	70	77	95	128	546

Pei-F	Ronc	1 l i ('I 7U
	to ng		

Data taking plan for charm baryon study

Summary

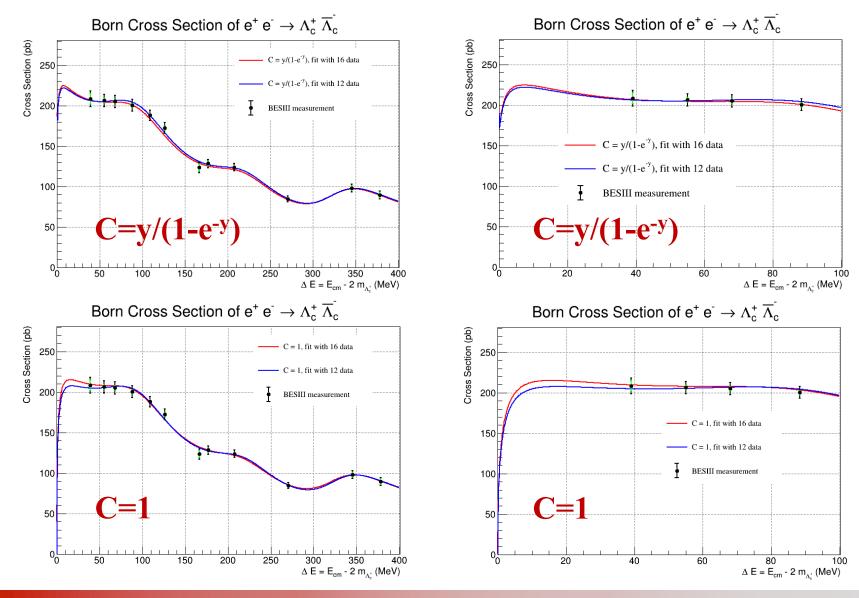

A proposal of data taking is raised up to further study the Λ_c^+ baryon.

- Large data set taken at about 4630 ~ 4700 MeV, about 15 fb⁻¹ (150 days) is needed, which has relatively large cross section and polarization;
- 2. Data taken at the \sqrt{s} region close to $\Lambda_c^+ \overline{\Lambda}_c^-$ threshold, from 4572 ~ 4577 MeV, about 550 pb⁻¹ (6 days) is needed.

Backup

Suggestions from accelerator experts:

2.3 GeV束流能量下(质心能量4.6GeV附近),束流能量最小步长0.12MeV能确定做到精确。 BEPCII二极磁铁电源精度按十万分之五的技术指标要求进行设计制造,实际精度肯定会更好些 正负电子环的二极铁电流是独立的吧?那总对撞能量扫描最小精度应该是sqrt(0.12**2+0.12**2)=0.17MeV


Pei-Rong Li (LZU)

Data taking plan for charm baryon study

2024/05/12

26

Fitting the born cross section with high E_{cm} data:

Pei-Rong Li (LZU)

Data taking plan for charm baryon study

 χ^2 test for current data near threshold to distinguish different models:

$E_{cm}(MeV)$	σ_{obs}	χ^2 with $\sigma_{C\ is\ not\ constant}$	χ^2 with $\sigma_{Cisconstant}$
4574.5	$113.0 \pm 5 \pm 20$	2.7640	33.9233
4580.0	133.0 ± 16	2.1006	0.3068
4590.0	178.0 <u>±</u> 19	0.4600	0.7920
4599.5	169.1±2.3	1.3381	1.9107
Total	\	6.6627	36.9328