Status of CEPC Software

SUN Shengsen

CEPC Day Feb. 28, 2024

CEPCSW

- CEPC software development first started with iLCSoft
 - Reused most software modules: Marlin, LCIO, MokkaC, Gear
 - Developed its own software components for simulation and reconstruction
- CEPC software (CEPCSW) prototype was proposed at the Oxford workshop in April 2019
- Consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments
- CEPCSW software structure
 - Core software
 - > Applications: simulation, reconstruction and analysis

https://github.com/cepc/CEPCSW

Detector Description

- DD4hep is adopted to provide a full detector description with a single source of information
- CEPC v4 as baseline: TPC & solenoid outside HCal
- CEPC reference detector
 - 4th conceptual detector
 - \checkmark with silicon tracker as main tracker and DC as PID
 - ✓ Coil inside Hcal
 - Branches
 - ✓ CRD_o1_v01: silicon pixel detector (SPD) as SET/SOT
 - ✓ CRD_o1_v02: silicon strip detector (SSD) as SET/SOT
 - ✓ CRD_o1_v03: MOST2 vertex vs CRD_o1_v01
 - ✓ CRD_o1_v04: 10mm beam pipe vs CRD_o1_v01

Detector Description

- MDI: Beampipe
- LumiCal: todo
- Vertex
 - ≻VXD04 (ILD-like)
 - SiTrackerStaggeredLadder (MOST2)
- Silicon tracker
 - SIT_SimplePixel, SIT_SimplePlanar
 - SET_SimplePixel, SET_SimplePlanar
 - > FTD_SimpleStaggered, SiTrackerSkewRing
 (support skew angle)
 - ➤ TODO: dead region
- DC

DriftChamber

• TPC

➤ TPC10: to update according TDR

- Ecal, Hcal & Muon
 - ≻SEcal05 (si-W)
 - ≻ CRDEcal (4D crystal bar)
 - >RotatedCrystalCalorimeter (stereo crystal)
 - SHcalRpc01 (octahedron), SHcalRpc02 (optional side)
 - ≻ SHcalSc04
 - ≻Yoke05
 - RotatedPolyhedraBarrelCalorimeter

Reconstruction: Tracking

Tracking Efficiency

- Observed particles (N): has ≥ 6 linked tracker hits
 - Has linked track (Nf)
 - ε=Nf/N

Track Resolution

• σ_{IP}=(15μm, 36nm, 2.8mm)

Tracking (from 4th to ref-TDR)

- First step: work chain validation
 - Geometry:
 - Digitization: $\sqrt{}$
 - Reconstruction: $\sqrt{}$
- Next step:
 - Geometry update
 - Digitization:
 - Study of affect on performance
 - Reconstruction:
 - Performance with background and noise

Drift Chamber Simulation

Drift time based on

X-T relation

edm4hep:: TrackerHit

- Simplified digitization method was implemented to support the development of tracking algorithm
- Doca is smearing with a width equivalent to the wire resolution (110um) and converted to drift time based on X-T relation
- TrackHeedSimTool was implemented by combining Geant4 and Garfield++ to simulate the complete response of the gaseous detector

Drift Chamber Reconstruction

- Tracking with combinatorial Kalman Filter (CKF) method, combing track recognition and track fitting
- Track segments in silicon detector is used as seed tracks, are extrapolated to the DC, and DC hits belonging to the track are collected.
- Track fitting with the tool of Genfit

Drift Chamber Reconstruction

Cluster Counting dN/dx Simulation

dN/dx Reconstruction and PID Performance

- Traditional algorithm
 - Derivative-based peak finding
 - Peak merging clusterization
- ML algorithm (supervised, MC)
 - LSTM-based peak finding
 - DGCNN-based clusterization
- ML algorithm (semi-supervised, data)
 - Domain adaptation

- For 1m track, close to $3\sigma K/\pi$ separation @ 20 GeV/c
- ~10% improvement with ML (equivalent to a detector with 20% larger radius)

Track-level Model for CEPCSW

- Taking input from full simulation
- Parameterization interface:
 - Input: $\beta\gamma$ and $cos\theta$ of a track
 - Output: Track-level dN/dx
- Barrel model is completed. An end-cap model is being developed.

K/π separation power

Simulation and Simplified Digitization of ECAL

- Global: octagonal ECAL, R = 1.86 m, L =6.6 m, H = 28 cm
- Crystal Bar: $1 \times 1 \times 1 \times 40 \sim 60 \text{ cm}^3$
- Super Cell: 2 layers of perpendicular crossing bars $\sim 40 \times \sim 60 \times 2 \text{ cm}^3$
- Ideal digitization: no dead area, supporting, mechanics, etc.

Summary and Plan

- Toward TDR: A CEPCSW Version Release
- Geometry:
 - Almost all options are ready
 - Update according the latest design
 - Endcap,
- Digitization: some requirements for electronics
- Reconstruction/Performance
 - Vertex + Silicon Tracker + TPC available
 - DC tracking & dN/dx will be ready soon
 - Reconstruction of ECal is under developing
 - Achieved the first stage target of Arbor porting
- Beam background
 - Interfaces and convert need to be tuned
- Automated Validation System

