



## Status and Plan of MDI WP towards CEPC Detector Ref-TDR

Haoyu SHI

On Behalf of the CEPC MDI&Lumi WP of Detector Ref-TDR

CEPC Day

2024.2.28



## MDI+LumiCal



- Interface region with Acc.(Discussion when needed)
- Beam Induced Backgrounds(1 staff+0.2 postdoc+1 undergraduated+2 graduates from det.)
  - Estimation(Simulation) of Impacts and Radiation Environment
  - Software Upgrade/Migration
  - Validation and optimization of the Codes/Results
- LumiCal(Led by Suen/Lei, several students from Nanjing University)
  - Detector Design of the LumiCal
    - Detector Technology/Electronics/Readout...
    - Software/Simulation
  - Interference with other detectors/acc components
- Optimization of Interaction Region/MDI(several staff, including acc.)
  - Shielding for the detectors/detector hall
  - Working together with accelerator colleagues
- Key Technology Issues(2 staffs):
  - Gold Coating
  - The manufacture of Beryllium pipe, including the welding with Al.





- MDI stands for "Machine Detector Interface"
  - Interaction Region and other components
  - 2 IPs
  - 33mrad Crossing angle
- Flexible optics design
  - Common Layout in IR for all energies TDR 50MW
  - High Luminosity, low background impact, low error
  - Stable and easy to install, replace/repair





|                                                              | Higgs            | Z               | W           | tī                |  |
|--------------------------------------------------------------|------------------|-----------------|-------------|-------------------|--|
| Number of IPs                                                | 2                |                 |             |                   |  |
| Circumference (km)                                           | 100.0            |                 |             |                   |  |
| SR power per beam (MW)                                       | 50               |                 |             |                   |  |
| Half crossing angle at IP (mrad)                             | 16.5             |                 |             |                   |  |
| Bending radius (km)                                          | 10.7             |                 |             |                   |  |
| Energy (GeV)                                                 | 120              | 45.5            | 80          | 180               |  |
| Energy loss per turn (GeV)                                   | 1.8              | 0.037           | 0.357       | 9.1               |  |
| Damping time $\tau_x / \tau_y / \tau_z$ (ms)                 | 44.6/44.6/22.3   | 816/816/408     | 150/150/75  | 13.2/13.2/6.6     |  |
| Piwinski angle                                               | 4.88             | 29.52           | 5.98        | 1.23              |  |
| Bunch number                                                 | 446              | 13104           | 2162        | 58                |  |
| Bunch spacing (ns)                                           | 355<br>(53% gap) | 23<br>(10% gap) | 154         | 2714<br>(53% gap) |  |
| Bunch population $(10^{11})$                                 | 1.3              | 2.14            | 1.35        | 2.0               |  |
| Beam current (mA)                                            | 27.8             | 1340.9          | 140.2       | 5.5               |  |
| Phase advance of arc FODO (°)                                | 90               | 60              | 60          | 90                |  |
| Momentum compaction (10 <sup>-5</sup> )                      | 0.71             | 1.43            | 1.43        | 0.71              |  |
| Beta functions at IP $\beta_x^* / \beta_y^*$<br>(m/mm)       | 0.3/1            | 0.13/0.9        | 0.21/1      | 1.04/2.7          |  |
| Emittance $\varepsilon_r/\varepsilon_v$ (nm/pm)              | 0.64/1.3         | 0.27/1.4        | 0.87/1.7    | 1.4/4.7           |  |
| Betatron tune $v_x/v_y$                                      | 445/445          | 317/317         | 317/317     | 445/445           |  |
| Beam size at IP $\sigma_x/\sigma_y$ (um/nm)                  | 14/36            | 6/35            | 13/42       | 39/113            |  |
| Bunch length (natural/total) (mm)                            | 2.3/4.1          | 2.7/10.6        | 2.5/4.9     | 2.2/2.9           |  |
| Energy spread (natural/total) (%)                            | 0.10/0.17        | 0.04/0.15       | 0.07/0.14   | 0.15/0.20         |  |
| Energy acceptance (DA/RF) (%)                                | 1.6/2.2          | 1.0/1.5         | 1.05/2.5    | 2.0/2.6           |  |
| Beam-beam parameters $\xi_x / \xi_y$                         | 0.015/0.11       | 0.0045/0.13     | 0.012/0.113 | 0.071/0.1         |  |
| RF voltage (GV)                                              | 2.2              | 0.1             | 0.7         | 10                |  |
| RF frequency (MHz)                                           | 650              |                 |             |                   |  |
| Longitudinal tune $v_s$                                      | 0.049            | 0.032           | 0.062       | 0.078             |  |
| Beam lifetime<br>(Bhabha/beamstrahlung) (min)                | 40/40            | 90/930          | 60/195      | 81/23             |  |
| Beam lifetime requirement (min)                              | 20               | 81              | 25          | 18                |  |
| Hourglass Factor                                             | 0.9              | 0.97            | 0.9         | 0.89              |  |
| Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$ | 8.3              | 192             | 26.7        | 0.8               |  |





- Interaction Region Layout/Parameters
  - L\* = 1.9m / Detector Acceptance = 0.99



The length of Interaction Region is -7m~7m at TDR Phase



### New Beampipe Design – Half Detector pipe





CEPC Day Feb. 28-2024, H.Shi(shihy@ihep.ac.cn)



## **Background Estimation**



A. Natochii

- Single Beam
  - Touschek Scattering
  - Beam Gas Scattering(Elastic/inelastic)
  - Beam Thermal Photon Scattering
  - Synchrotron Radiation
- Luminosity Related
  - Beamstrahlung
  - Radiative Bhabha Scattering
- Injection



Beam Loss BG

Photon BG



Injection BG

| Background                    | Generation        | Tracking     | Detector Simu.                       |  |
|-------------------------------|-------------------|--------------|--------------------------------------|--|
| Synchrotron Radiation         | BDSim             | BDSim/Geant4 |                                      |  |
| Beamstrahlung/Pair Production | Guinea-Pig++      |              |                                      |  |
| Beam-Thermal Photon           | PyBTH[Ref]        |              | <u>Mokka/CEPCSW/FLU</u><br><u>KA</u> |  |
| Beam-Gas Bremsstrahlung       | PyBGB[Ref]        | SAD          |                                      |  |
| Beam-Gas Coulomb              | BGC in <u>SAD</u> | <u>SAD</u>   |                                      |  |
| Radiative Bhabha              | BBBREM            |              |                                      |  |
| Touschek                      | TSC in SAD        |              |                                      |  |

- One Beam Simulated
- Simulate each background separately
- Whole-Ring generation for single beam BGs
- Multi-turn tracking(50 turns)
  - Using built-in LOSSMAP
  - SR emitting/RF on
  - Radtaper on
  - No detector solenoid yet(Z updating)





- Estimation of Impacts and Radiation Environment(50MW)
  - First Preliminary version: Using existing geometry in CEPCSoft with beam pipe and inner vertex updated; Focusing on Higgs/Z of vertex; without any safety factor – Early March
  - Implementing BG Simulation in CEPCSW(Generator-like): Before the end of June(Thanks for help from Zhan/Tianyuan)
  - Second Preliminary version: Using new tool/geometry; all 4 modes; without any safety factor – Late July/Early August
  - Optimization of the IR layout/configuration...(need help from all sub-D)
  - Final Ref-TDR version: Based on CEPCSW; all 4 modes; with optimized safety factor if possible-- Late October/Early November
- Offering BG samples for mixing/detector optimization: when needed, data saved as database, mixing in hit level
- Validation of the tool/simulation: Using BII/BIIU this year.
- Manpower: Haoyu Shi, Zhan Li(CEPCSW), Tianyuan Zhang(CEPCSW), Wei Xu(CEPCSoft), Qiying Huang(CEPCSoft) CEPC Day Feb. 28-2024, H.Shi(shihy@ihep.ac.cn)



## Beam Induced Backgrounds



#### • Current Status towards First Pre. Version(Based on CEPCSoft):

| Background                    | Mode  | Generation | Tracking | Noise Estimation | Rad. Da. Esti. | Rad. Env. Esti. |
|-------------------------------|-------|------------|----------|------------------|----------------|-----------------|
| Synchrotron Radiation         | Higgs | To do      | To do    | To do            | -              | -               |
|                               | Z     | To do      | To do    | To do            | -              | -               |
| Beamstrahlung/Pair Production | Higgs | Done       | -        | Doing with VTX   | Doing with VTX | -               |
|                               | Z     | Doing      | -        | Doing with VTX   | Doing with VTX | -               |
| Beam-Thermal Photon           | Higgs | Done       | Done     | Doing with VTX   | Doing with VTX | -               |
|                               | Z     | Done       | Done     | Doing with VTX   | Doing with VTX | -               |
| Beam-Gas Bremsstrahlung       | Higgs | Done       | Done     | Doing with VTX   | Doing with VTX | -               |
|                               | Z     | Done       | Done     | Doing with VTX   | Doing with VTX | -               |
| Beam-Gas Coulomb              | Higgs | Done       | Done     | Doing with VTX   | Doing with VTX | -               |
|                               | Z     | Done       | Done     | Doing with VTX   | Doing with VTX | -               |
| Radiative Bhabha              | Higgs | -          | -        | -                | -              | -               |
|                               | Z     | -          | -        | -                | -              | -               |
| Touschek                      | Higgs | -          | -        | -                | -              | -               |
|                               | Z     | Doing      | Doing    | To do            | To do          | -               |







 After lots of iteration(>10 times) in last three years, currently we have baseline detector ready.









- Remaining tasks
  - Requirement/Goal: 1e-4 precision measurement of integrated lumi; fast meet the requirement from acc/lumical.
  - CAD Drawing of latest design, then implement to CEPCSW together with MDI Geometry
  - Simulate the updated beampipe with the electron and photon from Bhabha
  - Finalize the design of the tracker and the EM calorimeter, logically consistent
    - The silicon/diamond tracker and crystal detector of the LumiCal will closely following the central detector
  - Finalize the readout electronics/TDAQ
  - Simulation studies to be finished by September to October 2024
  - Test beam or cosmic ray studies using particle telescope to validate the simulation of the beam pipe interacting with electron/photon
  - Manpower: Suen Hou, Lei Zhang, Weiming Song and Several students from Nanjing/Jilin University: Yilun Wang, Chuanye Wang, Junhui Yang, Jiading Gong, Xingyang Sun, Gaodeng Fan, Jialiang Chang and Guangyan Xiao



## TOC of Ref-TDR



- One whole Chapter(same with CDR): Machine Detector Interface and Luminosity Detectors (Haoyu/Suen/Sha)
  - Introduction & Requirements
  - IR Layout(Haoyu/Sha/Quan/Haijing)
  - Key design/parameters(beampipe, final focusing, etc..)(Haoyu/Sha/....)
  - Detector/IR Backgrounds(Haoyu)
    - Introduction
    - Shielding Design/mitigation methods
    - Estimation
  - Luminosity Measurement System(Suen/Lei/Weiming)
  - Summary & Outlook
  - Ref. List

# Thank You

# Backup





• Still Preliminary, without safety factor. Currently assuming 10000000s running time per year. Calculating based on the TDR value of Luminosity.

|                    |                                       |        | Higgs                      |       | Z                                                    |                                                                                             |  |
|--------------------|---------------------------------------|--------|----------------------------|-------|------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| BXRate(Hz)         |                                       | 1.34e6 |                            | 3.93e | 3.93e7                                               |                                                                                             |  |
|                    |                                       |        |                            |       |                                                      |                                                                                             |  |
| Background         | Hit Density( $cm^{-2} \cdot s^{-1}$ ) |        | $TID(M rad \cdot yr^{-1})$ |       | 1 MeV equivation flue $(n_{eq} 	imes 10^{12} \cdot $ | 1 MeV equivalent neutron<br>fluence<br>$(n_{eq} 	imes 10^{12} \cdot cm^{-2} \cdot yr^{-1})$ |  |
|                    | Higgs                                 | Z      | Higgs                      | Z     | Higgs                                                | Z                                                                                           |  |
| Pair<br>production | 2.95e5                                | 9.83e6 | 3.2                        | 3.5   | 44.23                                                | 0.11                                                                                        |  |
| Beam Loss          |                                       |        |                            |       |                                                      |                                                                                             |  |
| Total              |                                       |        |                            |       |                                                      |                                                                                             |  |



## Figure of Pair Production



Charged Particle fluence/BX



1 MeV eq. Si. Neutron Fluence /yr









- Action items:
  - Discussion on mechanical drawings with accelerator people, this Thursday afternoon
  - Updating the BG Table using CEPCSoft, with help from detector designers
  - Migrate to CEPCSW:
    - Training on geometry implementation of CEPCSW
    - Algorithms in CEPCSW to get hit rate/occupancy