

LumiCal数据率的估计

Lei Zhang (张雷)

Based on the work from Suen Hou, Haoyu Shi, Yilun Wang Renjie Ma,

Luminosity measurement

- Observable cross section $N = \sigma \cdot \int L$ L: Luminosity of e^+e^- collisions
- Luminosity measured by counting Bhabha events, QED precision < 0.1%
 - a pair of back-back electrons,
 - precision ϑ on $e,e(\gamma)$ in fiducial region

Physics request: Luminosity to 10-4 precision

Precision

- Bhabha systematic error : δL/L ~ 2 δθ/θ_{min}
 - requiring $\delta L/L = 10^{-4}$
- at $z = \pm 1 m$, $\theta_{min} = 20 mRad \rightarrow \delta \vartheta = 1 \mu Rad$ or $dr = 1 \mu m$
- error due to offset on Z \rightarrow **50** μ m on Z eq. dr = $\delta z \times \vartheta = 1 \mu m$

Luminosity systematics due to events in/out fiducial edge \rightarrow offset on the mean of θ_{min}

> $L=2x10^{36}/cm^{2}s^{1}$ @Z-pole, goal is 10^{-4} systematics • ø 20 mm racetrack, beam-crossing: 33 mRad • IP bunch : $\sigma_{x} \sigma_{y} \sigma_{z} = 6 \mu m$, 35 nm, 9 mm • Bunch crossing: 23 ns

LumiCal before Flange

 $z = 560^{700} \text{ mm}$

- **Two Si-wafers** for e^{\pm} impact θ
- 2X₀ LYSO = 23 mm

LumiCal behind Flange:

z= 900~1100 mm o **17 X₀ LYSO 200 mm**

O 2X₀ LYSO = 23 mm

LumiCal behind Bellow:

z= 900~1100 mm

- Flange+Bellow : ~60 mm, 6 X₀
- o 17 X₀ LYSO 200 mm

- LYSO readout based on SiPM
- Since silicon confront the beam more directly, we focus on the Si Wafer's event rate today.

CEPC Luminosity at TDR

Parameter	Operation mode			
	Н	Z	W	tĪ
Colliding particles	<i>e</i> ⁺ , <i>e</i> ⁻			
Center-of-mass energy (GeV)	240	91	160	360
Luminosity $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	5	115	16	0.5
No. of interaction points	2			

Table 1.3: Primary CEPC design objectives (@ 30 MW)

Table 1.4: Primary CEPC design objectives (@ 50 MW)

Parameter	Operation mode			
	Н	Z	W	tī
Colliding particles	e ⁺ , e ⁻			
Center-of-mass energy (GeV)	240	91	160	360
Luminosity $(10^{34} \text{ cm}^{-2}\text{s}^{-1})$	8.3	192	27	0.8
No. of interaction points	2			

Bhabha event rates Z (@50MW)

Signal rate O(kHz), data rate should around O(Mbps)

Background Estimation

- Single Beam
 - Touschek Scattering
 - Beam Gas Scattering(Elastic/inelastic)
 - Beam Thermal Photon Scattering
 - Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering
- Injection

Beamstrahlung @ Higgs

Dominant background

Charged particles fluence [Charged particles cm⁻²] for BX

Charged particles fluence [Charged particles cm⁻²] for BX

Lumical最小半径r=12mm

z=560mm

Charged particles fluence [Charged particles cm⁻²] for BX

z=640mm

Beamstrahlung @ Z

Charged particles fluence [Charged particles cm⁻²] for BX

Charged particles fluence [Charged particles cm⁻²] for BX

Charged particles fluence [Charged particles cm⁻²] for BX

z=640mm

Summary

	Higgs	Z
BXRate(Hz)	1.34e6	3.93e7

maxevents	Higgs	Z
z=560mm (Hz/cm^2)	83. 2*1. 34e6=1. 11e8	3. 63*3. 93e7=1. 43e8
z=640mm (Hz/cm^2)	102*1. 34e6=1. 37e8	4. 25*3. 93e7=1. 67e8

- At Z pole, the rate is about 0.17 GHz.
- Assuming 32/48 per hit, the data rate is 5.4/8.2 GBps/cm²
 This should be a maximum
- CEPCSW simulation implementation undergoing

Outlook

- Detector precision requirement , i.e. theta, to further studied
- Some physics, e.g. ISR, di-photon, BSM, etc, needs alignment with the whole detector.
 - L1 trigger signal
- Wireless readout for the far side LYSO?

